1932

Abstract

Nanomanufacturing—the fabrication of macroscopic products from well-defined nanoscale building blocks—in a truly scalable and versatile manner is still far from our current reality. Here, we describe the barriers to large-scale nanomanufacturing and identify routes to overcome them. We argue for nanomanufacturing systems consisting of an iterative sequence of synthesis/assembly and separation/sorting unit operations, analogous to those used in chemicals manufacturing. In addition to performance and economic considerations, phenomena unique to the nanoscale must guide the design of each unit operation and the overall process flow. We identify and discuss four key nanomanufacturing process design needs: () appropriately selected process break points, () synthesis techniques appropriate for large-scale manufacturing, () new structure- and property-based separations, and () advances in stabilization and packaging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060816-101522
2017-06-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/8/1/annurev-chembioeng-060816-101522.html?itemId=/content/journals/10.1146/annurev-chembioeng-060816-101522&mimeType=html&fmt=ahah

Literature Cited

  1. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. 1.  2013. Carbon nanotubes: present and future commercial applications. Science 339:535–39 [Google Scholar]
  2. Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V. 2.  2013. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7:13–23 [Google Scholar]
  3. Wallentin J, Anttu N, Asoli D, Huffman M, Aberg I. 3.  et al. 2013. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339:1057–60 [Google Scholar]
  4. 4. ASTM International. 2012. Standard terminology relating to nanotechnology ASTM Standard E2456, ASTM Int. West Conshohocken, PA: https://www.astm.org/Standards/E2456.htm
  5. Lee JW, Ye BU, Kim D-Y, Kim JK, Heo J. 5.  et al. 2014. ZnO nanowire-based antireflective coatings with double-nanotextured surfaces. ACS Appl. Mater. Interfaces 6:1375–79 [Google Scholar]
  6. Wu YY, Fan R, Yang PD. 6.  2002. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett 2:83–86 [Google Scholar]
  7. Yan H, Choe HS, Nam S, Hu Y, Das S. 7.  et al. 2011. Programmable nanowire circuits for nanoprocessors. Nature 470:240–44 [Google Scholar]
  8. Hillhouse HW, Beard MC. 8.  2009. Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics. Curr. Opin. Colloid Interface Sci. 14:245–59 [Google Scholar]
  9. 9. National Nanotechnology Initiative. 2016. Frequently asked questions Arlington, VA: Natl. Nanotechnol. Initiat https://www.nano.gov/nanotech-101/nanotechnology-facts
  10. Dahlgren E, Goecmen C, Lackner K, van Ryzin G. 10.  2013. Small modular infrastructure. Eng. Econ. 58:231–64 [Google Scholar]
  11. Chan EM, Mathies RA, Alivisatos AP. 11.  2003. Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett 3:199–201 [Google Scholar]
  12. Baek J, Allen PM, Bawendi MG, Jensen KF. 12.  2011. Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. Angew. Chem. Int. Ed. 50:627–30 [Google Scholar]
  13. Niu GD, Ruditskiy A, Vara M, Xia YN. 13.  2015. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chem. Soc. Rev. 44:5806–20 [Google Scholar]
  14. Law M, Goldberger J, Yang PD. 14.  2004. Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34:83–122 [Google Scholar]
  15. Yin Y, Alivisatos AP. 15.  2005. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–70 [Google Scholar]
  16. Schmidt V, Wittemann JV, Senz S, Gosele U. 16.  2009. Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21:2681–702 [Google Scholar]
  17. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV. 17.  2010. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110:389–458 [Google Scholar]
  18. Hersam MC. 18.  2008. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3:387–94 [Google Scholar]
  19. Kowalczyk B, Lagzi I, Grzybowski BA. 19.  2011. Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Curr. Opin. Colloid Interface Sci. 16:135–48 [Google Scholar]
  20. Bishop KJM, Wilmer CE, Soh S, Grzybowski BA. 20.  2009. Nanoscale forces and their uses in self-assembly. Small 5:1600–30 [Google Scholar]
  21. Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM. 21.  2010. Directed self-assembly of nanoparticles. ACS Nano 4:3591–605 [Google Scholar]
  22. Menard E, Meitl MA, Sun Y, Park J-U, Shir DJ-L. 22.  et al. 2007. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107:1117–60 [Google Scholar]
  23. Fan ZY, Ho JC, Takahashi T, Yerushalmi R, Takei K. 23.  et al. 2009. Toward the development of printable nanowire electronics and sensors. Adv. Mater. 21:3730–43 [Google Scholar]
  24. Khan S, Lorenzelli L, Dahiya RS. 24.  2015. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15:3164–85 [Google Scholar]
  25. Lu W, Lieber CM. 25.  2007. Nanoelectronics from the bottom up. Nat. Mater. 6:841–50 [Google Scholar]
  26. Dasgupta NP, Sun JW, Liu C, Brittman S, Andrews SC. 26.  et al. 2014. Semiconductor nanowires—synthesis, characterization, and applications. Adv. Mater. 26:2137–84 [Google Scholar]
  27. Kagan CR, Lifshitz E, Sargent EH, Talapin DV. 27.  2016. Building devices from colloidal quantum dots. Science 353:885 [Google Scholar]
  28. Clark KB, Baldwin CY. 28.  2000. Design Rules 1 The Power of Modularity Cambridge, MA: MIT Press
  29. Beard MC, Midgett AG, Law M, Semonin OE, Ellingson RJ, Nozik AJ. 29.  2009. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett 9:836–45 [Google Scholar]
  30. Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG. 30.  2010. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 22:3970–80 [Google Scholar]
  31. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G. 31.  2009. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2:466–79 [Google Scholar]
  32. Bux SK, Blair RG, Gogna PK, Lee H, Chen G. 32.  et al. 2009. Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19:2445–52 [Google Scholar]
  33. Peercy PS. 33.  2000. The drive to miniaturization. Nature 406:1023–26 [Google Scholar]
  34. Dick KA, Kodambaka S, Reuter MC, Deppert K, Samuelson L. 34.  et al. 2007. The morphology of axial and branched nanowire heterostructures. Nano Lett 7:1817–22 [Google Scholar]
  35. Gleiter H. 35.  2000. Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29 [Google Scholar]
  36. Calvert P. 36.  2001. Inkjet printing for materials and devices. Chem. Mater. 13:3299–305 [Google Scholar]
  37. Gibson I, Rosen DW, Stucker B. 37.  2010. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing Berlin: Springer-Verlag459 pp.
  38. Comiskey B, Albert JD, Yoshizawa H, Jacobson J. 38.  1998. An electrophoretic ink for all-printed reflective electronic displays. Nature 394:253–55 [Google Scholar]
  39. Chen Y, Au J, Kazlas P, Ritenour A, Gates H, McCreary M. 39.  2003. Flexible active-matrix electronic ink display. Nature 423:136 [Google Scholar]
  40. Min YJ, Akbulut M, Kristiansen K, Golan Y, Israelachvili J. 40.  2008. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7:527–38 [Google Scholar]
  41. Israelachvili JN. 41.  2011. Intermolecular and Surface Forces Amsterdam: Elsevier
  42. Biancaniello PL, Kim AJ, Crocker JC. 42.  2005. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94:058302 [Google Scholar]
  43. Nykypanchuk D, Maye MM, van der Lelie D, Gang O. 43.  2008. DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–52 [Google Scholar]
  44. Sacanna S, Irvine WTM, Chaikin PM, Pine DJ. 44.  2010. Lock and key colloids. Nature 464:575–78 [Google Scholar]
  45. Wang Y, Wang YF, Zheng XL, Yi GR, Sacanna S. 45.  et al. 2014. Three-dimensional lock and key colloids. J. Am. Chem. Soc. 136:6866–69 [Google Scholar]
  46. Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L. 46.  et al. 2012. Colloids with valence and specific directional bonding. Nature 491:51–55 [Google Scholar]
  47. Chen Q, Bae SC, Granick S. 47.  2011. Directed self-assembly of a colloidal kagome lattice. Nature 469:381–84 [Google Scholar]
  48. Kraft DJ, Ni R, Smallenburg F, Hermes M, Yoon K. 48.  et al. 2012. Surface roughness directed self-assembly of patchy particles into colloidal micelles. PNAS 109:10787–92 [Google Scholar]
  49. Winfree E, Liu FR, Wenzler LA, Seeman NC. 49.  1998. Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–44 [Google Scholar]
  50. Rothemund PWK. 50.  2006. Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302 [Google Scholar]
  51. Rogers WB, Shih WM, Manoharan VN. 51.  2016. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1:1–14 [Google Scholar]
  52. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM. 52.  2009. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–18 [Google Scholar]
  53. Wei B, Dai M, Yin P. 53.  2012. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485:623–26 [Google Scholar]
  54. Tabor RF, Manica R, Chan DYC, Grieser F, Dagastine RR. 54.  2011. Repulsive Van der Waals forces in soft matter: why bubbles do not stick to walls. Phys. Rev. Lett. 106:064501 [Google Scholar]
  55. Bevan MA, Prieve DC. 55.  1999. Direct measurement of retarded Van der Waals attraction. Langmuir 15:7925–36 [Google Scholar]
  56. Matar S, Hatch LF. 56.  2001. Chemistry of Petrochemical Processes Houston, TX: Gulf Prof. Publ, 2nd ed..
  57. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J. 57.  et al. 2006. The path forward for biofuels and biomaterials. Science 311:484–89 [Google Scholar]
  58. Wettstein SG, Alonso DM, Gürbüz EI, Dumesic JA. 58.  2012. A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr. Opin. Chem. Eng. 1:218–24 [Google Scholar]
  59. Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA, Heath JR. 59.  2008. Silicon nanowires as efficient thermoelectric materials. Nature 451:168–71 [Google Scholar]
  60. Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC. 60.  et al. 2008. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–67 [Google Scholar]
  61. Lim JW, Hippalgaonkar K, Andrews SC, Majumdar A, Yang PD. 61.  2012. Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett 12:2475–82 [Google Scholar]
  62. Wallentin J, Borgstrom MT. 62.  2011. Doping of semiconductor nanowires. J. Mater. Res. 26:2142–56 [Google Scholar]
  63. Koren E, Berkovitch N, Rosenwaks Y. 63.  2010. Measurement of active dopant distribution and diffusion in individual silicon nanowires. Nano Lett 10:1163–67 [Google Scholar]
  64. Connell JG, Yoon K, Perea DE, Schwalbach EJ, Voorhees PW, Lauhon LJ. 64.  2013. Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires. Nano Lett 13:199–206 [Google Scholar]
  65. Christesen JD, Pinion CW, Zhang X, McBride JR, Cahoon JF. 65.  2014. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst. ACS Nano 8:11790–98 [Google Scholar]
  66. Chou L-W, Boyuk DS, Filler MA. 66.  2015. Optically abrupt localized surface plasmon resonances in Si nanowires by mitigation of carrier density gradients. ACS Nano 9:1250–56 [Google Scholar]
  67. Lauhon LJ, Gudiksen MS, Lieber CM. 67.  2004. Semiconductor nanowire heterostructures. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 362:1247–60 [Google Scholar]
  68. Hyun JK, Zhang S, Lauhon LJ. 68.  2013. Nanowire heterostructures. Annu. Rev. Mater. Res. 43:451–79 [Google Scholar]
  69. Wen CY, Reuter MC, Bruley J, Tersoff J, Kodambaka S. 69.  et al. 2009. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 326:1247–50 [Google Scholar]
  70. Dick KA, Caroff P, Bolinsson J, Messing ME, Johansson J. 70.  et al. 2010. Control of III-V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 25:024009 [Google Scholar]
  71. Hocevar M, Immink G, Verheijen M, Akopian N, Zwiller V. 71.  et al. 2012. Growth and optical properties of axial hybrid III-V/silicon nanowires. Nat. Commun. 3:1266 [Google Scholar]
  72. Bjork MT, Ohlsson BJ, Thelander C, Persson AI, Deppert K. 72.  et al. 2002. Nanowire resonant tunneling diodes. Appl. Phys. Lett. 81:4458–60 [Google Scholar]
  73. Thelander C, Bjork MT, Larsson MW, Hansen AE, Wallenberg LR, Samuelson L. 73.  2004. Electron transport in InAs nanowires and heterostructure nanowire devices. Solid State Commun 131:573–79 [Google Scholar]
  74. Tatebayashi J, Kako S, Ho J, Ota Y, Iwamoto S, Arakawa Y. 74.  2015. Room-temperature lasing in a single nanowire with quantum dots. Nat. Photonics 9:501–5 [Google Scholar]
  75. Minot ED, Kelkensberg F, van Kouwen M, van Dam JA, Kouwenhoven LP. 75.  et al. 2007. Single quantum dot nanowire LEDs. Nano Lett 7:367–71 [Google Scholar]
  76. Buck MR, Schaak RE. 76.  2013. Emerging strategies for the total synthesis of inorganic nanostructures. Angew. Chem. 52:6154–78 [Google Scholar]
  77. Kim DK, Lai Y, Diroll BT, Murray CB, Kagan CR. 77.  2012. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nat. Commun. 3:1216 [Google Scholar]
  78. Geier ML, McMorrow JJ, Xu W, Zhu J, Kim CH. 78.  et al. 2015. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 10:944–48 [Google Scholar]
  79. Thelander C, Rehnstedt C, Froberg LE, Lind E, Martensson T. 79.  et al. 2008. Development of a vertical wrap-gated InAs FET. IEEE Trans. Electron Devices 55:3030–36 [Google Scholar]
  80. Williamson CB, Nevers DR, Hanrath T, Robinson RD. 80.  2015. Prodigious effects of concentration intensification on nanoparticle synthesis: a high-quality, scalable approach. J. Am. Chem. Soc. 137:15843–51 [Google Scholar]
  81. Murray CB, Kagan CR, Bawendi MG. 81.  2000. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30:545–610 [Google Scholar]
  82. Xia Y, Xiong Y, Lim B, Skrabalak SE. 82.  2009. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?. Angew. Chem. 48:60–103 [Google Scholar]
  83. Kortshagen U. 83.  2009. Nonthermal plasma synthesis of semiconductor nanocrystals. J. Phys. D 42:113001 [Google Scholar]
  84. Ajayan PM. 84.  1999. Nanotubes from carbon. Chem. Rev. 99:1787–99 [Google Scholar]
  85. Walther A, Müller AHE. 85.  2013. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113:5194–261 [Google Scholar]
  86. Champion JA, Katare YK, Mitragotri S. 86.  2007. Making polymeric micro- and nanoparticles of complex shapes. PNAS 104:11901–4 [Google Scholar]
  87. Cheng HM, Li F, Su G, Pan HY, He LL. 87.  et al. 1998. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 72:3282–84 [Google Scholar]
  88. Heurlin M, Magnusson MH, Lindgren D, Ek M, Wallenberg LR. 88.  et al. 2012. Continuous gas-phase synthesis of nanowires with tunable properties. Nature 492:90–94 [Google Scholar]
  89. Yang FF, Messing ME, Mergenthaler K, Ghasemi M, Johansson J. 89.  et al. 2015. Zn-doping of GaAs nanowires grown by Aerotaxy. J. Cryst. Growth 414:181–86 [Google Scholar]
  90. Fogler HS. 90.  2005. Elements of Chemical Reaction Engineering Upper Saddle River, NJ: Prentice Hall
  91. Jacobsson D, Panciera F, Tersoff J, Reuter MC, Lehmann S. 91.  et al. 2016. Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531:317–22 [Google Scholar]
  92. Sivaram SV, Shin NC, Chou L-W, Filler MA. 92.  2015. Direct observation of transient surface species during Ge nanowire growth and their influence on growth stability. J. Am. Chem. Soc. 137:9861–69 [Google Scholar]
  93. Kodambaka S, Tersoff J, Reuter MC, Ross FM. 93.  2007. Germanium nanowire growth below the eutectic temperature. Science 316:729–32 [Google Scholar]
  94. Murray CB, Norris DJ, Bawendi MG. 94.  1993. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–15 [Google Scholar]
  95. McLeod MC, Anand M, Kitchens CL, Roberts CB. 95.  2005. Precise and rapid size selection and targeted deposition of nanoparticle populations using CO2 gas expanded liquids. Nano Lett 5:461–65 [Google Scholar]
  96. Hanauer M, Pierrat S, Zins I, Lotz A, Sonnichsen C. 96.  2007. Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7:2881–85 [Google Scholar]
  97. Ho S, Critchley K, Lilly GD, Shim B, Kotov NA. 97.  2009. Free flow electrophoresis for the separation of CdTe nanoparticles. J. Mater. Chem. 19:1390–94 [Google Scholar]
  98. Siebrands T, Giersig M, Mulvaney P, Fischer CH. 98.  1993. Steric exclusion chromatography of nanometer-sized gold particles. Langmuir 9:2297–300 [Google Scholar]
  99. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC. 99.  2006. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1:60–65 [Google Scholar]
  100. Green AA, Hersam MC. 100.  2011. Nearly single-chirality single-walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv. Mater. 23:2185–90 [Google Scholar]
  101. Sun X, Tabakman SM, Seo W-S, Zhang L, Zhang G. 101.  et al. 2009. Separation of nanoparticles in a density gradient: FeCO@C and gold nanocrystals. Angew. Chem. 48:939–42 [Google Scholar]
  102. Mastronardi ML, Hennrich F, Henderson EJ, Maier-Flaig F, Blum C. 102.  et al. 2011. Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J. Am. Chem. Soc. 133:11928–31 [Google Scholar]
  103. Kang J, Seo J-WT, Alducin D, Ponce A, Yacaman MJ, Hersam MC. 103.  2014. Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation. Nat. Commun. 5:5478 [Google Scholar]
  104. Anand M, Odom LA, Roberts CB. 104.  2007. Finely controlled size-selective precipitation and separation of CdSe/ZnS semiconductor nanocrystals using CO2-gas-expanded liquids. Langmuir 23:7338–43 [Google Scholar]
  105. Diarra M, Niquet YM, Delerue C, Allan G. 105.  2007. Ionization energy of donor and acceptor impurities in semiconductor nanowires: importance of dielectric confinement. Phys. Rev. B 75:045301 [Google Scholar]
  106. Akin C, Yi J, Feldman LC, Durand C, Hus SM. 106.  et al. 2015. Contactless determination of electrical conductivity of one-dimensional nanomaterials by solution-based electro-orientation spectroscopy. ACS Nano 9:5405–12 [Google Scholar]
  107. Akin C, Feldman LC, Durand C, Hus SM, Li A-P. 107.  et al. 2016. High-throughput electrical measurement and microfluidic sorting of semiconductor nanowires. Lab Chip 16:2126–34 [Google Scholar]
  108. Shields CW, Reyes CD, Lopez GP. 108.  2015. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15:1230–49 [Google Scholar]
  109. Chen G, Wang Y, Tan LH, Yang M, Tan LS. 109.  et al. 2009. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 131:4218–19 [Google Scholar]
  110. Tyler TP, Henry A-I, Van Duyne RP, Hersam MC. 110.  2011. Improved monodispersity of plasmonic nanoantennas via centrifugal processing. J. Phys. Chem. Lett. 2:218–22 [Google Scholar]
  111. Burrows ND, Lin W, Hinman JG, Dennison JM, Vartanian AM. 111.  et al. 2016. Surface chemistry of gold nanorods. Langmuir 32:9905–21 [Google Scholar]
  112. De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K. 112.  et al. 2007. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 19:1821–31 [Google Scholar]
  113. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM. 113.  2002. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–20 [Google Scholar]
  114. Braun D, Cherdron H, Rehahn M, Ritter H, Voit B. 114.  2013. Polymer Synthesis: Theory and Practice Berlin: Springer-Verlag, 5th ed..
/content/journals/10.1146/annurev-chembioeng-060816-101522
Loading
/content/journals/10.1146/annurev-chembioeng-060816-101522
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error