1932

Abstract

As multiscale structures are inherent in multiphase flows, constitutive models employed in conjunction with transport equations for momentum, species, and energy are scale dependent. We suggest that this scale dependency can be better quantified through deep learning techniques and formulation of transport equations for additional quantities such as drift velocity and analogies for species, energy, and momentum transfer. How one should incorporate interparticle forces, which arise through van der Waals interaction, dynamic liquid bridges between wet particles, and tribocharging, in multiscale models warrants further study. Development of multiscale models that account for all the known interactions would improve confidence in the use of simulations to explore design options, decrease the number of pilot-scale experiments, and accelerate commercialization of new technologies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060817-084025
2018-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/9/1/annurev-chembioeng-060817-084025.html?itemId=/content/journals/10.1146/annurev-chembioeng-060817-084025&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Anderson TB, Jackson R 1969. Fluid mechanical description of fluidized beds. Comparison of theory and experiment. Ind. Eng. Chem. Fundam. 8:137–44
    [Google Scholar]
  2. 2.  Duru P, Nicolas M, Hinch J, Guazzelli É 2002. Constitutive laws in liquid-fluidized beds. J. Fluid Mech. 452:371–404
    [Google Scholar]
  3. 3.  Duru P, Guazzelli É 2002. Experimental investigation on the secondary instability of liquid-fluidized beds and the formation of bubbles. J. Fluid Mech. 470:359–82
    [Google Scholar]
  4. 4.  Shaffer F, Gopalan B, Breault RW, Cocco R, Karri SBR et al. 2013. High speed imaging of particle flow fields in CFB risers. Powder Technol 242:86–99
    [Google Scholar]
  5. 5.  Goldhirsch I, Tan ML, Zanetti G 1993. A molecular dynamical study of granular fluids I: the unforced granular gas in two dimensions. J. Sci. Comput. 8:1–40
    [Google Scholar]
  6. 6.  Prosperetti A, Tryggvason G, eds. 2009. Computational Methods for Multiphase Flow Cambridge, UK: Cambridge Univ. Press
  7. 7.  Pannala S, Syamlal M, O'Brien TJ 2011. Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice Hershey, PA: IGI Global
  8. 8.  Ladd AJC 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271:285–309
    [Google Scholar]
  9. 9.  Derksen JJ, Sundaresan S 2007. Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds. J. Fluid Mech. 587:303–36
    [Google Scholar]
  10. 10.  Tenneti S, Subramaniam S 2014. Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46:199–230
    [Google Scholar]
  11. 11.  Ozel A, Brändle de Motta JC, Abbas M, Fede P, Masbernat O et al. 2017. Particle resolved direct numerical simulation of a liquid-solid fluidized bed: comparison with experimental data. Int. J. Multiphase Flow 89:228–40
    [Google Scholar]
  12. 12.  Beetstra R, van der Hoef MA, Kuipers JAM 2007. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J 53:489–501
    [Google Scholar]
  13. 13.  Costa P, Picano F, Brandt L, Breugem WP 2016. Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett. 117:134501
    [Google Scholar]
  14. 14.  Tanaka T, Kawaguchi T, Tsuji Y 1993. Discrete particle simulation of flow patterns in two-dimensional gas fluidized beds. Int. J. Mod. Phys. B 7:1889–98
    [Google Scholar]
  15. 15.  Capecelatro J, Desjardins O 2013. An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238:1–31
    [Google Scholar]
  16. 16.  Anderson TB, Jackson R 1967. Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6:527–39
    [Google Scholar]
  17. 17.  Gidaspow D 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions Boston: Academic, 1st ed..
  18. 18.  Jackson R 2000. The Dynamics of Fluidized Particles Cambridge, UK: Cambridge Univ. Press
  19. 19.  Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N 1984. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140:223–56
    [Google Scholar]
  20. 20.  Koch DL, Sangani AS 1999. Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations. J. Fluid Mech. 400:229–63
    [Google Scholar]
  21. 21.  Garzó V, Tenneti S, Subramaniam S, Hrenya CM 2012. Enskog kinetic theory for monodisperse gas-solid flows. J. Fluid Mech. 712:129–68
    [Google Scholar]
  22. 22.  Yang LL, Padding JTJ, Kuipers JAMH 2016. Modification of kinetic theory of granular flow for frictional spheres, part I: two-fluid model derivation and numerical implementation. Chem. Eng. Sci. 152:767–82
    [Google Scholar]
  23. 23.  Glasser BJ, Sundaresan S, Kevrekidis IG 1998. From bubbles to clusters in fluidized beds. Phys. Rev. Lett. 81:1849–52
    [Google Scholar]
  24. 24.  Snider DM 2001. An incompressible three-dimensional Multiphase Particle-in-Cell model for dense particle flows. J. Comput. Phys. 170:523–49
    [Google Scholar]
  25. 25.  O'Rourke PJ, Snider DM 2010. An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets. Chem. Eng. Sci. 65:6014–28
    [Google Scholar]
  26. 26.  Patankar NA, Joseph DD 2001. Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach. Int. J. Multiphase Flow 27:1659–84
    [Google Scholar]
  27. 27.  Lu L, Benyahia S, Li T 2017. An efficient and reliable predictive method for fluidized bed simulation. AIChE J 63:5320–34
    [Google Scholar]
  28. 28.  Lu L, Gopalan B, Benyahia S 2017. Assessment of different discrete particle methods ability to predict gas-particle flow in a small-scale fluidized bed. Ind. Eng. Chem. Res. 56:7865–76
    [Google Scholar]
  29. 29.  Agrawal K, Loezos PN, Syamlal M, Sundaresan S 2001. The role of meso-scale structures in rapid gas-solid flows. J. Fluid Mech. 445:151–85
    [Google Scholar]
  30. 30.  Wang J, van der Hoef MA, Kuipers JAM 2009. Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: a tentative answer. Chem. Eng. Sci. 64:622–25
    [Google Scholar]
  31. 31.  Parmentier JF, Simonin O, Delsart O 2012. A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed. AIChE J 58:1084–98
    [Google Scholar]
  32. 32.  Ozel A, Fede P, Simonin O 2013. Development of filtered Euler–Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses. Int. J. Multiphase Flow 55:43–63
    [Google Scholar]
  33. 33.  Schneiderbauer S, Pirker S 2014. Filtered and heterogeneity-based subgrid modifications for gas-solid drag and solid stresses in bubbling fluidized beds. AIChE J 60:839–54
    [Google Scholar]
  34. 34.  Kolehmainen J, Elfvengren J, Saarenrinne P 2013. A measurement-integrated solution for particle image velocimetry and volume fraction measurements in a fluidized bed. Int. J. Multiphase Flow 56:72–80
    [Google Scholar]
  35. 35.  Capecelatro J, Desjardins O, Fox RO 2014. Numerical study of collisional particle dynamics in cluster-induced turbulence. J. Fluid Mech. 747:R2
    [Google Scholar]
  36. 36.  Capecelatro J, Pepiot P, Desjardins O 2014. Numerical characterization and modeling of particle clustering in wall-bounded vertical risers. Chem. Eng. J. 245:295–310
    [Google Scholar]
  37. 37.  Radl S, Sundaresan S 2014. A drag model for filtered Euler–Lagrange simulations of clustered gas-particle suspensions. Chem. Eng. Sci. 117:416–25
    [Google Scholar]
  38. 38.  Ozel A, Kolehmainen J, Radl S, Sundaresan S 2016. Fluid and particle coarsening of drag force for discrete-parcel approach. Chem. Eng. Sci. 155:258–67
    [Google Scholar]
  39. 39.  Hrenya CM, Sinclair JL 1997. Effects of particle-phase turbulence in gas-solid flows. AIChE J 43:853–69
    [Google Scholar]
  40. 40.  Fox RO 2014. On multiphase turbulence models for collisional fluid-particle flows. J. Fluid Mech. 742:368–424
    [Google Scholar]
  41. 41.  Capecelatro J, Desjardins O, Fox RO 2016. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics. Phys. Fluids 28:033306
    [Google Scholar]
  42. 42.  Milioli CC, Milioli FE, Holloway W, Agrawal K, Sundaresan S 2013. Filtered two-fluid models of fluidized gas-particle flows: new constitutive relations. AIChE J 59:3265–75
    [Google Scholar]
  43. 43.  Li F, Song F, Benyahia S, Wang W, Li J 2012. MP-PIC simulation of CFB riser with EMMS-based drag model. Chem. Eng. Sci. 82:104–13
    [Google Scholar]
  44. 44.  Benyahia S, Sundaresan S 2012. Do we need sub-grid scale corrections for both continuum and discrete gas-particle flow models?. Powder Technol 220:2–6
    [Google Scholar]
  45. 45.  Batchelor GK 1993. Secondary instability of a gas-fluidized bed. J. Fluid Mech. 257:359–71
    [Google Scholar]
  46. 46.  Rubinstein GJ, Derksen JJ, Sundaresan S 2016. Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force. J. Fluid Mech. 788:576–601
    [Google Scholar]
  47. 47.  Kriebitzsch SHL, van der Hoef MA, Kuipers JAM 2013. Drag force in discrete particle models—continuum scale or single particle scale?. AIChE J 59:316–24
    [Google Scholar]
  48. 48.  Cundall PA, Strack ODL 1979. A discrete numerical model for granular assemblies. Géotechnique 29:47–65
    [Google Scholar]
  49. 49.  Zhang MH, Chu KW, Wei F, Yu AB 2008. A CFD-DEM study of the cluster behavior in riser and downer reactors. Powder Technol 184:151–65
    [Google Scholar]
  50. 50.  Kobayashi T, Tanaka T, Shimada N, Kawaguchi T 2013. DEM-CFD analysis of fluidization behavior of Geldart Group A particles using a dynamic adhesion force model. Powder Technol 248:143–52
    [Google Scholar]
  51. 51.  Gu Y, Ozel A, Sundaresan S 2016. A modified cohesion model for CFD-DEM simulations of fluidization. Powder Technol 296:17–28
    [Google Scholar]
  52. 52.  Gu Y, Ozel A, Sundaresan S 2016. Numerical studies of the effects of fines on fluidization. AIChE J 62:2271–81
    [Google Scholar]
  53. 53.  Tan ML, Goldhirsch I 1998. Rapid granular flows as mesoscopic systems. Phys. Rev. Lett. 81:3022–25
    [Google Scholar]
  54. 54.  Wylie JJ, Koch DL 2000. Particle clustering due to hydrodynamic interactions. Phys. Fluids 12:964–70
    [Google Scholar]
  55. 55.  Goldschmidt MJV, Kuipers JAM, van Swaaij WPM 2001. Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow: effect of coefficient of restitution on bed dynamics. Chem. Eng. Sci. 56:571–78
    [Google Scholar]
  56. 56.  Fullmer WD, Hrenya CM 2017. The clustering instability in rapid granular and gas-solid flows. Annu. Rev. Fluid Mech. 49:485–510
    [Google Scholar]
  57. 57.  Fullmer WD, Hrenya CM 2016. Quantitative assessment of fine-grid kinetic-theory-based predictions of mean-slip in unbounded fluidization. AIChE J 62:11–17
    [Google Scholar]
  58. 58.  Fullmer WD, Liu G, Yin X, Hrenya CM 2017. Clustering instabilities in sedimenting fluid-solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data. J. Fluid Mech. 823:433–69
    [Google Scholar]
  59. 59.  Li T, Gel A, Pannala S, Shahnam M, Syamlal M 2014. CFD simulations of circulating fluidized bed risers, part I: grid study. Powder Technol 254:170–80
    [Google Scholar]
  60. 60.  Sarkar A, Milioli FE, Ozarkar S, Li T, Sun X, Sundaresan S 2016. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations. Chem. Eng. Sci. 152:443–56
    [Google Scholar]
  61. 61.  Schaeffer DG 1987. Instability in the evolution equations describing incompressible granular flow. J. Differ. Equ. 66:19–50
    [Google Scholar]
  62. 62.  van Wachem BGM, Schouten JC, van den Bleek CM, Krishna R, Sinclair JL 2001. Comparative analysis of CFD models of dense gas–solid systems. AIChE J 47:1035–51
    [Google Scholar]
  63. 63.  Srivastava A, Sundaresan S 2003. Analysis of a frictional-kinetic model for gas–particle flow. Powder Technol 129:72–85
    [Google Scholar]
  64. 64.  Schneiderbauer S, Aigner A, Pirker S 2012. A comprehensive frictional-kinetic model for gas-particle flows: Analysis of fluidized and moving bed regimes. Chem. Eng. Sci. 80:279–92
    [Google Scholar]
  65. 65.  Li J, Kwauk M 1994. The Energy-Minimization Multi-Scale Method Beijing: Metall. Ind. Press
  66. 66.  Wang J, Ge W, Li J 2008. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chem. Eng. Sci. 63:1553–71
    [Google Scholar]
  67. 67.  Li J, Huang W 2018. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels. Annu. Rev. Chem. Biomol. Eng. 7:41–60
    [Google Scholar]
  68. 68.  Ozarkar SS, Yan X, Wang S, Milioli CC, Milioli FE, Sundaresan S 2015. Validation of filtered two-fluid models for gas–particle flows against experimental data from bubbling fluidized bed. Powder Technol 284:159–69
    [Google Scholar]
  69. 69.  Snider DM, Clark SM, O'Rourke PJ 2011. Eulerian–Lagrangian method for three-dimensional thermal reacting flow with application to coal gasifiers. Chem. Eng. Sci. 66:1285–95
    [Google Scholar]
  70. 70.  Wen C, Yu Y 1966. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 62:100–11
    [Google Scholar]
  71. 71.  Igci Y, Sundaresan S 2011. Constitutive models for filtered two-fluid models of fluidized gas-particle flows. Ind. Eng. Chem. Res. 50:13190–201
    [Google Scholar]
  72. 72.  Ozel A, Gu Y, Milioli CC, Kolehmainen J, Sundaresan S 2017. Towards filtered drag force model for non-cohesive and cohesive particle-gas flows. Phys. Fluids 29:103308
    [Google Scholar]
  73. 73.  Capecelatro J, Desjardins O, Fox RO 2015. On fluid-particle dynamics in fully developed cluster-induced turbulence. J. Fluid Mech. 780:578–635
    [Google Scholar]
  74. 74.  Schneiderbauer S 2017. A spatially-averaged two-fluid model for dense large-scale gas-solid flows. AIChE J 63:3544–62
    [Google Scholar]
  75. 75.  Boivin M, Simonin O, Squires KD 1998. Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375:235–63
    [Google Scholar]
  76. 76.  Février P, Simonin O, Squires KD 2005. Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533:1–46
    [Google Scholar]
  77. 77.  Smagorinsky J 1963. General circulation experiments with the primitive equations. Mon. Weather Rev. 91:99–164
    [Google Scholar]
  78. 78.  Germano M, Piomelli U, Moin P, Cabot WH 1991. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3:1760–65
    [Google Scholar]
  79. 79.  Jenkins JT, Mancini F 1989. Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1:2050–57
    [Google Scholar]
  80. 80.  Mathiesen V, Solberg T, Arastoopour H, Hjertager BH 1999. Experimental and computational study of multiphase gas/particle flow in a CFB riser. AIChE J 45:2503–18
    [Google Scholar]
  81. 81.  Huilin L, Gidaspow D, Manger E 2001. Kinetic theory of fluidized binary granular mixtures. Phys. Rev. E 64:061301
    [Google Scholar]
  82. 82.  Kim H, Arastoopour H 2002. Extension of kinetic theory to cohesive particle flow. Powder Technol 122:83–94
    [Google Scholar]
  83. 83.  Iddir H, Arastoopour H 2005. Modeling of multitype particle flow using the kinetic theory approach. AIChE J 51:1620–32
    [Google Scholar]
  84. 84.  Garzó V, Dufty JW, Hrenya CM 2007. Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport. Phys. Rev. E 76:031303
    [Google Scholar]
  85. 85.  Hou QF, Zhou ZY, Yu AB 2012. Micromechanical modeling and analysis of different flow regimes in gas fluidization. Chem. Eng. Sci. 84:449–68
    [Google Scholar]
  86. 86.  Galvin JE, Benyahia S 2014. The effect of cohesive forces on the fluidization of aeratable powders. AIChE J 60:473–84
    [Google Scholar]
  87. 87.  Liu P, LaMarche CQ, Kellogg KM, Hrenya CM 2016. Fine-particle defluidization: interaction between cohesion, Young's modulus and static bed height. Chem. Eng. Sci. 145:266–78
    [Google Scholar]
  88. 88.  Kellogg KM, Liu P, LaMarche CQ, Hrenya CM 2017. Continuum theory for rapid, cohesive-particle flows: general balance equations and discrete-element-method-based closure of cohesive-specific quantities. J. Fluid Mech. 832:345–82
    [Google Scholar]
  89. 89.  Girardi M, Radl S, Sundaresan S 2016. Simulating wet gas-solid fluidized beds using coarse-grid CFD-DEM. Chem. Eng. Sci. 144:224–38
    [Google Scholar]
  90. 90.  LaMarche CQ, Miller AW, Liu P, Hrenya CM 2016. Linking micro-scale predictions of capillary forces to macro-scale fluidization experiments in humid environments. AIChE J 62:3585–97
    [Google Scholar]
  91. 91.  Boyce CM, Ozel A, Kolehmainen J, Sundaresan S 2017. Analysis of the effect of small amounts of liquid on gas-solid fluidization using CFD-DEM Simulations. AIChE J 63:5290–302
    [Google Scholar]
  92. 92.  Boyce CM, Ozel A, Kolehmainen J, Sundaresan S, McKnight CA, Wormsbecker M 2017. Growth and breakup of a wet agglomerate in a dry gas-solid fluidized bed. AIChE J 63:2520–27
    [Google Scholar]
  93. 93.  Kolehmainen J, Ozel A, Boyce CM, Sundaresan S 2016. A hybrid approach to computing electrostatic forces in fluidized beds of charged particles. AIChE J 62:2282–95
    [Google Scholar]
  94. 94.  Kolehmainen J, Ozel A, Boyce CM, Sundaresan S 2017. Triboelectric charging of monodisperse particles in fluidized beds. AIChE J 63:1872–91
    [Google Scholar]
  95. 95.  Kolehmainen J, Sippola P, Raitanen O, Ozel A, Boyce CM et al. 2017. Effect of humidity on triboelectric charging in a vertically vibrated granular bed: experiments and modeling. Chem. Eng. Sci. 173:363–73
    [Google Scholar]
  96. 96.  Gu Y, Chialvo S, Sundaresan S 2014. Rheology of cohesive granular materials across multiple dense-flow regimes. Phys. Rev. E 90:032206
    [Google Scholar]
  97. 97.  Cocco R, Arrington Y, Hays R, Findlay J, Karri SBR, Knowlton TM 2010. Jet cup attrition testing. Powder Technol 200:224–33
    [Google Scholar]
  98. 98.  Xu W, DeCroix DS, Sun X 2014. Mechanistic based DEM simulation of particle attrition in a jet cup. Powder Technol 253:385–92
    [Google Scholar]
  99. 99.  Amblard B, Bertholin S, Bobin C, Gauthier T 2015. Development of an attrition evaluation method using a Jet Cup rig. Powder Technol 274:455–65
    [Google Scholar]
  100. 100.  Ling J, Kurzawski A, Templeton J 2016. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807:155–66
    [Google Scholar]
  101. 101.  Kutz JN 2017. Deep learning in fluid dynamics. J. Fluid Mech. 814:1–4
    [Google Scholar]
  102. 102.  McCarty L, Whitesides G 2008. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47:2188–207
    [Google Scholar]
  103. 103.  Matsusaka S, Maruyama H, Matsuyama T, Ghadiri M 2010. Triboelectric charging of powders: a review. Chem. Eng. Sci. 65:5781–807
    [Google Scholar]
  104. 104.  Lacks DJ, Sankaran RM 2011. Contact electrification of insulating materials. J. Phys. D 44:453001
    [Google Scholar]
  105. 105.  Naik S, Mukherjee R, Chaudhuri B 2016. Triboelectrification: a review of experimental and mechanistic modeling approaches with a special focus on pharmaceutical powders. Int. J. Pharm. 510:375–85
    [Google Scholar]
  106. 106.  Jalalinejad F, Bi XT, Grace JR 2016. Comparison of theory with experiment for single bubbles in charged fluidized particles. Powder Technol 290:27–32
    [Google Scholar]
  107. 107.  Fotovat F, Alsmari TA, Grace JR, Bi XT 2017. The relationship between fluidized bed electrostatics and entrainment. Powder Technol 316:157–65
    [Google Scholar]
  108. 108.  Al-Adel MF, Saville DA, Sundaresan S 2002. The effect of static electrification on gas-solid flows in vertical risers. Ind. Eng. Chem. Res. 41:6224–34
    [Google Scholar]
  109. 109.  Rokkam RG, Sowinski A, Fox RO, Mehrani P, Muhle ME 2013. Computational and experimental study of electrostatics in gas-solid polymerization fluidized beds. Chem. Eng. Sci. 92:146–56
    [Google Scholar]
  110. 110.  Schella A, Herminghaus S, Schröter M 2017. Influence of humidity on tribo-electric charging and segregation in shaken granular media. Soft Matter 13:394–401
    [Google Scholar]
  111. 111.  Sowinski A, Mayne A, Mehrani P 2012. Effect of fluidizing particle size on electrostatic charge generation and reactor wall fouling in gas-solid fluidized beds. Chem. Eng. Sci. 71:552–63
    [Google Scholar]
  112. 112.  Hendrickson G 2006. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chem. Eng. Sci. 61:1041–64
    [Google Scholar]
  113. 113.  Waitukaitis SR, Lee V, Pierson JM, Forman SL, Jaeger HM 2014. Size-dependent same-material tribocharging in insulating grains. Phys. Rev. Lett. 112:218001
    [Google Scholar]
  114. 114.  Schella A, Weis S, Schröter M 2017. Charging changes contact composition in binary sphere packings. Phys. Rev. E 95:062903
    [Google Scholar]
  115. 115.  Waitukaitis SR, Jaeger HM 2013. In situ granular charge measurement by free-fall videography. Rev. Sci. Instrum. 84:025104
    [Google Scholar]
  116. 116.  Apodaca M, Wesson P, Bishop K, Ratner M, Grzybowski B 2010. Contact electrification between identical materials. Angew. Chem. Int. Ed. 122:958–61
    [Google Scholar]
  117. 117.  Fang W, Jingdai W, Yongrong Y 2008. Distribution of electrostatic potential in a gas-solid fluidized bed and measurement of bed level. Ind. Eng. Chem. Res. 47:9517–26
    [Google Scholar]
  118. 118.  Hassani MA, Zarghami R, Norouzi HR, Mostoufi N 2013. Numerical investigation of effect of electrostatic forces on the hydrodynamics of gas–solid fluidized beds. Powder Technol 246:16–25
    [Google Scholar]
  119. 119.  Michael D, Hogue CIC 2008. Calculating the trajectories of triboelectrically charged particles using Discrete Element Modeling (DEM). J. Electrostat. 66:32–38
    [Google Scholar]
  120. 120.  Laurentie JC, Traoré P, Dascalescu L 2013. Discrete element modeling of triboelectric charging of insulating materials in vibrated granular beds. J. Electrostat. 71:951–57
    [Google Scholar]
  121. 121.  Korevaar MW, Padding JT, Van der Hoef MA, Kuipers JAM 2014. Integrated DEM-CFD modeling of the contact charging of pneumatically conveyed powders. Powder Technol 258:144–56
    [Google Scholar]
  122. 122.  Naik S, Sarkar S, Gupta V, Hancock BC, Abramov Y et al. 2015. A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly. Int. J. Pharmaceut. 491:58–68
    [Google Scholar]
  123. 123.  Yang Y, Zi C, Huang Z, Wang J, Lungu M et al. 2017. CFD-DEM investigation of particle elutriation with electrostatic effects in gas-solid fluidized beds. Powder Technol 308:422–33
    [Google Scholar]
  124. 124.  Matsusaka S, Ghadiri M, Masuda H 2000. Electrification of an elastic sphere by repeated impacts on a metal plate. J. Phys. D 33:2311
    [Google Scholar]
  125. 125.  Harper WR 1967. Contact and Frictional Electrification Oxford, UK: Clarendon Press
  126. 126.  Jin X, Marshall JS 2017. The role of fluid turbulence on contact electrification of suspended particles. J. Electrostat. 87:217–27
    [Google Scholar]
  127. 127.  Siu T, Cotton J, Mattson G, Shinbrot T 2014. Self-sustaining charging of identical colliding particles. Phys. Rev. E 89:052208
    [Google Scholar]
  128. 128.  Yoshimatsu R, Araújo NAM, Wurm G, Herrmann HJ, Shinbrot T 2017. Self-charging of identical grains in the absence of an external field. Sci. Rep. 7:39996
    [Google Scholar]
  129. 129.  Duff N, Lacks DJ 2008. Particle dynamics simulations of triboelectric charging in granular insulator systems. J. Electrostat. 66:51–57
    [Google Scholar]
  130. 130.  Feng JQ 2000. Electrostatic interaction between two charged dielectric spheres in contact. Phys. Rev. E 62:2891–97
    [Google Scholar]
  131. 131.  Siu T, Pittman W, Cotton J, Shinbrot T 2015. Nonlinear granular electrostatics. Granular Matter 17:165–75
    [Google Scholar]
  132. 132.  Lee V, Waitukaitis SR, Miskin MZ, Jaeger HM 2015. Direct observation of particle interactions and clustering in charged granular streams. Nat. Phys. 11:733–37
    [Google Scholar]
  133. 133.  LaMarche KR, Muzzio FJ, Shinbrot T, Glasser BJ 2010. Granular flow and dielectrophoresis: the effect of electrostatic forces on adhesion and flow of dielectric granular materials. Powder Technol 199:180–88
    [Google Scholar]
  134. 134.  Lu G, Third JR, Müller CR 2015. Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127:425–65
    [Google Scholar]
  135. 135.  Gan J, Zhou Z, Yu A 2016. CFD-DEM modeling of gas fluidization of fine ellipsoidal particles. AIChE J 62:62–77
    [Google Scholar]
  136. 136.  Guo Y, Curtis JS 2015. Discrete element method simulations for complex granular flows. Annu. Rev. Fluid Mech. 47:21–46
    [Google Scholar]
  137. 137.  Marchisio DL, Fox RO 2013. Computational Models for Polydisperse Particulate and Multiphase Systems Cambridge, UK: Cambridge Univ. Press
  138. 138.  Tenneti S, Sun B, Garg R, Subramaniam S 2013. Role of fluid heating in dense gas-solid flow as revealed by particle-resolved direct numerical simulation. Int. J. Heat Mass Transf. 58:471–79
    [Google Scholar]
  139. 139.  Tavassoli H, Kriebitzsch SHL, van der Hoef MA, Peters EAJF, Kuipers JAM 2013. Direct numerical simulation of particulate flow with heat transfer. Int. J. Multiphase Flow 57:29–37
    [Google Scholar]
  140. 140.  Deen NG, Peters EAJF, Padding JT, Kuipers JAM 2014. Review of direct numerical simulation of fluid-particle mass, momentum and heat transfer in dense gas–solid flows. Chem. Eng. Sci. 116:710–24
    [Google Scholar]
  141. 141.  Derksen JJ 2014. Simulations of solid-liquid mass transfer in fixed and fluidized beds. Chem. Eng. J. 255:233–44
    [Google Scholar]
  142. 142.  Sun B, Tenneti S, Subramaniam S 2015. Modeling average gas-solid heat transfer using particle-resolved direct numerical simulation. Int. J. Heat Mass Transf. 86:898–913
    [Google Scholar]
  143. 143.  Municchi F, Radl S 2017. Consistent closures for Euler–Lagrange models of bi-disperse gas-particle suspensions derived from particle-resolved direct numerical simulations. Int. J. Heat Mass Transf. 111:171–90
    [Google Scholar]
  144. 144.  Zhou H, Flamant G, Gauthier D 2004. DEM-LES of coal combustion in a bubbling fluidized bed. Part I: Gas-particle turbulent flow structure. Chem. Eng. Sci. 59:4193–203
    [Google Scholar]
  145. 145.  Zhou H, Flamant G, Gauthier D 2004. DEM-LES simulation of coal combustion in a bubbling fluidized bed. Part II: Coal combustion at the particle level. Chem. Eng. Sci. 59:4205–15
    [Google Scholar]
  146. 146.  Malone KF, Xu BH 2008. Particle-scale simulation of heat transfer in liquid-fluidised beds. Powder Technol 184:189–204
    [Google Scholar]
  147. 147.  Zhou ZY, Yu AB, Zulli P 2009. Particle scale study of heat transfer in packed and bubbling fluidized beds. AIChE J 55:868–84
    [Google Scholar]
  148. 148.  Wu C, Cheng Y, Ding Y, Jin Y 2010. CFD-DEM simulation of gas–solid reacting flows in fluid catalytic cracking (FCC) process. Chem. Eng. Sci. 65:542–49
    [Google Scholar]
  149. 149.  Gunn DJ 1978. Transfer of heat or mass to particles in fixed and fluidised beds. Int. J. Heat Mass Transf. 21:467–76
    [Google Scholar]
  150. 150.  Agrawal K, Holloway W, Milioli CC, Milioli FE, Sundaresan S 2013. Filtered models for scalar transport in gas-particle flows. Chem. Eng. Sci. 95:291–300
    [Google Scholar]
  151. 151.  Holloway W, Sundaresan S 2012. Filtered models for reacting gas-particle flows. Chem. Eng. Sci. 82:132–43
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060817-084025
Loading
/content/journals/10.1146/annurev-chembioeng-060817-084025
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error