1932

Abstract

Detailed analysis of textural properties, e.g., pore size and connectivity, of nanoporous materials is essential to identify correlations of these properties with the performance of gas storage, separation, and catalysis processes. The advances in developing nanoporous materials with uniform, tailor-made pore structures, including the introduction of hierarchical pore systems, offer huge potential for these applications. Within this context, major progress has been made in understanding the adsorption and phase behavior of confined fluids and consequently in physisorption characterization. This enables reliable pore size, volume, and network connectivity analysis using advanced, high-resolution experimental protocols coupled with advanced methods based on statistical mechanics, such as methods based on density functional theory and molecular simulation. If macro-pores are present, a combination of adsorption and mercury porosimetry can be useful. Hence, some important recent advances in understanding the mercury intrusion/extrusion mechanism are discussed. Additionally, some promising complementary techniques for characterization of porous materials immersed in a liquid phase are introduced.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-061720-081242
2021-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-061720-081242.html?itemId=/content/journals/10.1146/annurev-chembioeng-061720-081242&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Zanco S, Joss L, Hefti M, Gazzani M, Mazzotti M. 2017. Addressing the criticalities for the deployment of adsorption-based CO2 capture processes. Energy Procedia 114:2497–505
    [Google Scholar]
  2. 2. 
    Brandani S. 2017. Determining the properties of novel nanoporous materials for the evaluation of process performance in carbon capture applications. Adv. Sci. Lett. 23:6012–14
    [Google Scholar]
  3. 3. 
    Pullumbi P, Brandani F, Brandani S. 2019. Gas separation by adsorption: technological drivers and opportunities for improvement. Curr. Opin. Chem. Eng. 24:131–42
    [Google Scholar]
  4. 4. 
    Brandani S, Mangano E, Brandani F, Pullumbi P. 2020. Carbon dioxide mass transport in commercial carbon molecular sieves using a volumetric apparatus. Sep. Purif. Technol. 245:116862
    [Google Scholar]
  5. 5. 
    Chen Z, Li P, Anderson R, Wang X, Zhang X et al. 2020. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368:297–303
    [Google Scholar]
  6. 6. 
    Zhao D, Wan Y. 2007. The synthesis of mesoporous molecular sieves. Stud. Surf. Sci. Catal. 168:241–300
    [Google Scholar]
  7. 7. 
    Kleitz F 2008. Ordered mesoporous materials. Handbook of Heterogeneous Catalysis G Ertl, H Knözinger, F Schüth, J Weitkamp 178–219 Atlanta: Am. Cancer Soc.
    [Google Scholar]
  8. 8. 
    Kresge CT, Roth WJ. 2013. The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev. 42:3663–70
    [Google Scholar]
  9. 9. 
    Li H, Eddaoudi M, O'Keeffe M, Yaghi OM. 1999. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–79
    [Google Scholar]
  10. 10. 
    Férey G. 2007. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37:191–214
    [Google Scholar]
  11. 11. 
    Serrano DP, Aguado J, Morales G, Rodríguez JM, Peral A et al. 2009. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem. Mater. 21:641–54
    [Google Scholar]
  12. 12. 
    Pérez-Ramírez J, Mitchell S, Verboekend D, Milina M, Michels NL et al. 2011. Expanding the horizons of hierarchical zeolites: beyond laboratory curiosity towards industrial realization. ChemCatChem 3:1731–34
    [Google Scholar]
  13. 13. 
    Zhang X, Liu D, Xu D, Asahina S, Cychosz KA et al. 2012. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 336:1684–87
    [Google Scholar]
  14. 14. 
    Li K, Valla J, Garcia-Martinez J. 2014. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem 6:46–66
    [Google Scholar]
  15. 15. 
    Schwieger W, Machoke AG, Weissenberger T, Inayat A, Selvam T et al. 2016. Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45:3353–76
    [Google Scholar]
  16. 16. 
    Hartmann M, Schwieger W. 2016. Hierarchically-structured porous materials: from basic understanding to applications. Chem. Soc. Rev. 45:3311–12
    [Google Scholar]
  17. 17. 
    Hasan FA, Xiao P, Singh RK, Webley PA. 2013. Zeolite monoliths with hierarchical designed pore network structure: synthesis and performance. Chem. Eng. J. 223:48–58
    [Google Scholar]
  18. 18. 
    Liu J, Yang X, Wang C, Ye L, Sun H 2019. Synthesis of hierarchical 5A zeolites to improve the separation efficiency of n-paraffins. Adsorpt. Sci. Technol. 37:530–44
    [Google Scholar]
  19. 19. 
    Chanut N, Ghoufi A, Coulet MV, Bourrelly S, Kuchta B et al. 2020. Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure. Nat. Commun. 11:1216
    [Google Scholar]
  20. 20. 
    Seidel-Morgenstern A. 2020. Schnelle Abschätzung des Durchbruchsverhaltens von konkurrierend adsorbierenden Komponenten. Chem. Ing. Tech. 92:323–30
    [Google Scholar]
  21. 21. 
    Ashourirad B, Arab P, Islamoglu T, Cychosz KA, Thommes M, El-Kaderi HM. 2016. A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO2 sorbents. J. Mater. Chem. A 4:14693–702
    [Google Scholar]
  22. 22. 
    Sevilla M, Sangchoom W, Balahmar N, Fuertes AB, Mokaya R. 2016. Highly porous renewable carbons for enhanced storage of energy-related gases (H2 and CO2) at high pressures. ACS Sustain. Chem. Eng. 4:4710–16
    [Google Scholar]
  23. 23. 
    Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A. 2007. Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45:293–303
    [Google Scholar]
  24. 24. 
    Hu X, Radosz M, Cychosz KA, Thommes M. 2011. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ. Sci. Technol. 45:7068–74
    [Google Scholar]
  25. 25. 
    Bae YS, Snurr RQ. 2011. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50:11586–96
    [Google Scholar]
  26. 26. 
    Wilmer CE, Farha OK, Bae YS, Hupp JT, Snurr RQ. 2012. Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy Environ. Sci. 5:9849–56
    [Google Scholar]
  27. 27. 
    First EL, Hasan MMF, Floudas CA. 2014. Discovery of novel zeolites for natural gas purification through combined material screening and process optimization. AIChE J 60:1767–85
    [Google Scholar]
  28. 28. 
    Farmahini AH, Krishnamurthy S, Friedrich D, Brandani S, Sarkisov L. 2018. From crystal to adsorption column: challenges in multiscale computational screening of materials for adsorption separation processes. Ind. Eng. Chem. Res. 57:15491–511
    [Google Scholar]
  29. 29. 
    Farmahini A, Friedrich D, Brandani S, Sarkisov L. 2020. Exploring new sources of efficiency in process-driven materials screening for post-combustion carbon capture. Energy Environ. Sci. 13:1018–37
    [Google Scholar]
  30. 30. 
    Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM et al. 1994. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 66:1739–5831
    [Google Scholar]
  31. 31. 
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F et al. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87: https://doi.org/10.1515/pac-2014-1117
    [Crossref] [Google Scholar]
  32. 32. 
    Gregg SJ, Sing KSW. 1982. Adsorption, Surface Area, and Porosity London/New York: Academic
  33. 33. 
    Woo HJ, Sarkisov L, Monson P. 2002. Understanding adsorption hysteresis in porous glasses and other mesoporous materials. Stud. Surf. Sci. Catal. 144:155–62
    [Google Scholar]
  34. 34. 
    Lowell S, Shields JE, Thomas MA, Thommes M. 2004. Characterisation of Porous Solids and Powders: Surface Area, Pore Size and Density Dordrecht, Neth: Kluwer Acad. Publ.
  35. 35. 
    Thommes M 2004. Physical adsorption characterization of ordered and amorphous mesoporous materials. Nanoporous Materials: Science and Engineering GQ Lu, XS Zhao 317–64 Ser. Chem. Eng. 4 London: World Sci. Publ.
    [Google Scholar]
  36. 36. 
    Thommes M, Cychosz KA. 2014. Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20:233–50
    [Google Scholar]
  37. 37. 
    Monson P. 2012. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater 160:47–66
    [Google Scholar]
  38. 38. 
    Thommes M. 2010. Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82:1059–73
    [Google Scholar]
  39. 39. 
    Kaneko K, Itoh T, Fujimori T. 2012. Collective interactions of molecules with an interfacial solid. Chem. Lett. 41:466–75
    [Google Scholar]
  40. 40. 
    Thommes M, Cychosz KA, Neimark AV. 2012. Advanced physical adsorption characterization of nanoporous carbons. Novel Carbon Adsorbents JMD Tascón 107–45 Oxford, UK: Elsevier
    [Google Scholar]
  41. 41. 
    Rouquerol F, Rouqerol J, Llewellyn P, Maurin G 2013. Adsorption by Powders and Porous Solids London: Academic, 2nd ed..
  42. 42. 
    Cychosz KA, Guillet-Nicolas R, García-Martínez J, Thommes M. 2017. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem. Soc. Rev. 46:389–414
    [Google Scholar]
  43. 43. 
    Ball PC, Evans R. 1989. Temperature dependence of gas adsorption on a mesoporous solid: capillary criticality and hysteresis. Langmuir 5:714–23
    [Google Scholar]
  44. 44. 
    Thommes M, Findenegg GH. 1994. Pore condensation and critical-point shift of a fluid in controlled-pore glass. Langmuir 10:4270–77
    [Google Scholar]
  45. 45. 
    Morishige K, Fujii H, Uga M, Kinukawa D. 1997. Capillary critical point of argon, nitrogen, oxygen, ethylene, and carbon dioxide in MCM-41. Langmuir 13:3494–98
    [Google Scholar]
  46. 46. 
    Gelb LD, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M. 1999. Phase separation in confined systems. Rep. Progress Phys. 62:1573–659
    [Google Scholar]
  47. 47. 
    Burgess CGV, Everett DH, Nuttall S. 1989. Adsorption hysteresis in porous materials. Pure Appl. Chem. 61:1845–52
    [Google Scholar]
  48. 48. 
    de Keizer A, Michalski T, Findenegg GH. 1991. Fluids in pores: experimental and computer simulation studies of multilayer adsorption, pore condensation and critical-point shifts. Pure Appl. Chem. 63:1495–502
    [Google Scholar]
  49. 49. 
    Duffy JA, Wilkinson NJ, Fretwell HM, Alam MA, Evans R. 1995. Phase transitions of CO2 confined in nanometer pores as revealed by positronium annihilation. J. Phys. 7:L713–17
    [Google Scholar]
  50. 50. 
    Thommes M, Köhn R, Fröba M. 2002. Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point. Appl. Surf. Sci. 196:239–49
    [Google Scholar]
  51. 51. 
    Barsotti E, Tan SP, Piri M, Chen JH. 2018. Phenomenological study of confined criticality: insights from the capillary condensation of propane, n-butane, and n-pentane in nanopores. Langmuir 34:4473–83
    [Google Scholar]
  52. 52. 
    Dantas S, Struckhoff KC, Thommes M, Neimark AV. 2019. Phase behavior and capillary condensation hysteresis of carbon dioxide in mesopores. Langmuir 35:11291–98
    [Google Scholar]
  53. 53. 
    Neimark AV, Ravikovitch PI. 2001. Capillary condensation in MMS and pore structure characterization. Microporous Mesoporous Mater. 44:–45697–707
    [Google Scholar]
  54. 54. 
    Neimark AV, Ravikovitch PI, Vishnyakov A. 2000. Adsorption hysteresis in nanopores. Phys. Rev. E 62:R1493–96
    [Google Scholar]
  55. 55. 
    Landers J, Gor GY, Neimark AV. 2013. Density functional theory methods for characterization of porous materials. Colloids Surf. A 437:3–32
    [Google Scholar]
  56. 56. 
    Qiu X, Tan SP, Dejam M, Adidharma H. 2019. Simple and accurate isochoric differential scanning calorimetry measurements: phase transitions for pure fluids and mixtures in nanopores. Phys. Chem. Chem. Phys. 21:224–31
    [Google Scholar]
  57. 57. 
    Thommes M, Köhn R, Fröba M. 2000. Sorption and pore condensation behavior of nitrogen, argon, and krypton in mesoporous MCM-48 silica materials. J. Phys. Chem. B 104:7932–43
    [Google Scholar]
  58. 58. 
    Sarkisov L, Monson PA. 2001. Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17:7600–4
    [Google Scholar]
  59. 59. 
    Ravikovitch PI, Neimark AV. 2002. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 18:1550–60
    [Google Scholar]
  60. 60. 
    Ravikovitch PI, Neimark AV. 2002. Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir 18:9830–37
    [Google Scholar]
  61. 61. 
    Thommes M, Smarsly B, Groenewolt M, Ravikovitch PI, Neimark AV. 2006. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22:756–64
    [Google Scholar]
  62. 62. 
    Morishige K, Tateishi M, Hirose F, Aramaki K. 2006. Change in desorption mechanism from pore blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores. Langmuir 22:9220–24
    [Google Scholar]
  63. 63. 
    Cychosz KA, Guo X, Fan W, Cimino R, Gor GY et al. 2012. Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption. Langmuir 28:12647–54
    [Google Scholar]
  64. 64. 
    Rasmussen CJ, Vishnyakov A, Thommes M, Smarsly BM, Kleitz F, Neimark AV. 2010. Cavitation in metastable liquid nitrogen confined to nanoscale pores. Langmuir 26:10147–57
    [Google Scholar]
  65. 65. 
    Lässig D, Lincke J, Moellmer J, Reichenbach C, Moeller A et al. 2011. A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angew. Chem. Int. Ed. 50:10344–48
    [Google Scholar]
  66. 66. 
    Silvestre-Albero J, Silvestre-Albero A, Rodríguez-Reinoso F, Thommes M. 2012. Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4K), carbon dioxide (273K) and argon (87.3K) adsorption in combination with immersion calorimetry. Carbon 50:3128–33
    [Google Scholar]
  67. 67. 
    Garrido J, Linares-Solano A, Martin-Martinez JM, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. 1987. Use of N2 vs. CO2 in the characterization of activated carbons. Langmuir 3:76–81
    [Google Scholar]
  68. 68. 
    Cazorla-Amorós D, Alcañiz-Monge J, Linares-Solano A. 1996. Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12:2820–24
    [Google Scholar]
  69. 69. 
    Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W et al. 2011. Carbon-based supercapacitors produced by activation of graphene. Science 332:1537–41
    [Google Scholar]
  70. 70. 
    Brunauer S, Emmett PH, Teller E. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60:309–19
    [Google Scholar]
  71. 71. 
    Rouquerol J, Llewellyn P, Rouquerol F. 2007. Is the bet equation applicable to microporous adsorbents?. Stud. Surf. Sci. Catal. 160:49–56
    [Google Scholar]
  72. 72. 
    Keii T, Takagi T, Kanetaka S. 1961. A new plotting of the BET method. Anal. Chem. 33:1965
    [Google Scholar]
  73. 73. 
    Neimark AV, Ravikovitch PI, Vishnyakov A. 2003. Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores. J. Phys. 15:347–65
    [Google Scholar]
  74. 74. 
    Kruk M, Jaroniec M, Sayari A. 1997. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13:6267–73
    [Google Scholar]
  75. 75. 
    Jaroniec M, Solovyov LA. 2006. Improvement of the Kruk-Jaroniec-Sayari method for pore size analysis of ordered silicas with cylindrical mesopores. Langmuir 22:6757–60
    [Google Scholar]
  76. 76. 
    Sing KS, Rouquerol F, Llewellyn P, Rouquerol J. 2013. Assessment of microporosity. See Reference 41:219–36
    [Google Scholar]
  77. 77. 
    Horváth G, Kawazoe K. 1983. Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Jpn. 16:470–75
    [Google Scholar]
  78. 78. 
    Saito A, Foley HC. 1991. Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J 37:429–36
    [Google Scholar]
  79. 79. 
    Cheng LS, Yang RT. 1994. Improved Horvath–Kawazoe equations including spherical pore models for calculating micropore size distribution. Chem. Eng. Sci. 49:2599–609
    [Google Scholar]
  80. 80. 
    Monson P. 2011. Fluids confined in porous materials: towards a unified understanding of thermodynamics and dynamics. Chem. Ing. Tech. 83:143–51
    [Google Scholar]
  81. 81. 
    Seaton NA, Walton JPRB, Quirke N. 1989. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27:853–61
    [Google Scholar]
  82. 82. 
    Lastoskie C, Gubbins KE, Quirke N. 1993. Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97:4786–96
    [Google Scholar]
  83. 83. 
    Jagiello J, Olivier JP. 2009. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C 113:19382–85
    [Google Scholar]
  84. 84. 
    Jagiello J, Ania C, Parra JB, Cook C. 2015. Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon 91:330–37
    [Google Scholar]
  85. 85. 
    Jagiello J, Kenvin J, Celzard A, Fierro V. 2019. Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon 144:206–15
    [Google Scholar]
  86. 86. 
    Ravikovitch PI, Neimark AV. 2006. Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir 22:11171–79
    [Google Scholar]
  87. 87. 
    Olivier JP. 1998. Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon 36:1469–72
    [Google Scholar]
  88. 88. 
    Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV. 2000. Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16:2311–20
    [Google Scholar]
  89. 89. 
    Ravikovitch PI, Neimark AV. 2001. Characterization of nanoporous materials from adsorption and desorption isotherms. Colloids Surf. A 187:–18811–21
    [Google Scholar]
  90. 90. 
    Thommes M, Guillet-Nicolas R, Cychosz KA 2015. Physical adsorption characterization of mesoporous zeolites. Mesoporous Zeolites: Preparation, Characterization and Applications J García-Martínez, K Li, 349–84 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  91. 91. 
    Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE et al. 2003. Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2:591–94
    [Google Scholar]
  92. 92. 
    Oschatz M, Borchardt L, Thommes M, Cychosz KA, Senkovska Iet al 2012. Carbide-derived carbon monoliths with hierarchical pore architectures. Angew. Chem. Int. Ed 51:7577–80
    [Google Scholar]
  93. 93. 
    Thomas A, Schlaad H, Smarsly B, Antonietti M. 2003. Replication of lyotropic block copolymer mesophases into porous silica by nanocasting: learning about finer details of polymer self-assembly. Langmuir 19:4455–59
    [Google Scholar]
  94. 94. 
    Everett DH. 1967. Adsorption hysteresis. The Solid-Gas Interface EA Flood 1055–113 New York: Dekker
    [Google Scholar]
  95. 95. 
    Cimino R, Cychosz KA, Thommes M, Neimark AV. 2013. Experimental and theoretical studies of scanning adsorption-desorption isotherms. Colloids Surf. A 437:76–89
    [Google Scholar]
  96. 96. 
    Schneider D, Valiullin R. 2019. Capillary condensation and evaporation in irregular channels: sorption isotherm for serially connected pore model. J. Phys. Chem. C 123:2616239–49
    [Google Scholar]
  97. 97. 
    Kikkinides ES, Monson PA, Valiullin R. 2020. Sorption isotherm reconstruction and extraction of pore size distributions for serially connected pore model (SCPM) structures employing algorithmic and statistical models. J. Phys. Chem. C 124:3921591–607
    [Google Scholar]
  98. 98. 
    Garcia-Martinez J, Xiao C, Cychosz KA, Li K, Wan W et al. 2014. Evidence of intracrystalline mesostructured porosity in zeolites by advanced gas sorption, electron tomography and rotation electron diffraction. ChemCatChem 6:3110–15
    [Google Scholar]
  99. 99. 
    Rouquerol J, Baron G, Denoyel R, Giesche H, Groen J et al. 2012. IUPAC Technical Report: liquid intrusion and alternative methods for the characterization of macroporous materials. Pure Appl. Chem. 84:107–36
    [Google Scholar]
  100. 100. 
    Giesche H. 2006. Mercury porosimetry: a general (practical) overview. Part. Part. Syst. Charact. 23:9–19
    [Google Scholar]
  101. 101. 
    Porcheron F, Monson PA, Thommes M. 2004. Modeling mercury porosimetry using statistical mechanics. Langmuir 20:6482–89
    [Google Scholar]
  102. 102. 
    Porcheron F, Monson PA. 2005. Dynamic aspects of mercury porosimetry: a lattice model study. Langmuir 21:3179–86
    [Google Scholar]
  103. 103. 
    Porcheron F, Thommes M, Ahmad R, Monson PA 2007. Mercury porosimetry in mesoporous glasses: a comparison of experiments with results from a molecular model. Langmuir 23:3372–80
    [Google Scholar]
  104. 104. 
    Thommes M, Skudas R, Unger KK, Lubda D. 2008. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption. J. Chromatogr. A 1191:57–66
    [Google Scholar]
  105. 105. 
    Guillet-Nicolas R, Ahmad R, Cychosz KA, Kleitz F, Thommes M 2016. Insights into the pore structure of KIT-6 and SBA-15 ordered mesoporous silica—recent advances by combining physical adsorption with mercury porosimetry. N. J. Chem. 40:4351–60
    [Google Scholar]
  106. 106. 
    Galarneau A, Lefèvre B, Cambon H, Coasne B, Valange S et al. 2008. Pore-shape effects in determination of pore size of ordered mesoporous silicas by mercury intrusion. J. Phys. Chem. C 112:12921–27
    [Google Scholar]
  107. 107. 
    Rockmann R, Kalies G. 2007. Liquid adsorption of n-octane/octanol/ethanol on SBA-16 silica. J. Colloid Interface Sci. 315:1–7
    [Google Scholar]
  108. 108. 
    Heuchel M, Jaroniec M. 1995. Comparison of energy distributions calculated for active carbons from benzene gas/solid and liquid/solid adsorption data. Langmuir 11:1297–303
    [Google Scholar]
  109. 109. 
    Jaroniec M, Choma J, Burakiewicz-Mortka W. 1991. Correlation between adsorption of benzene from dilute aqueous solutions and benzene vapor adsorption on microporous active carbons. Carbon 29:1294–96
    [Google Scholar]
  110. 110. 
    Ismadji S, Bhatia SK. 2000. Investigation of network connectivity in activated carbons by liquid phase adsorption. Langmuir 16:9303–13
    [Google Scholar]
  111. 111. 
    Silvestre-Albero J, Gómez de Salazar C, Sepúlveda-Escribano A, Rodríguez-Reinoso F 2001. Characterization of microporous solids by immersion calorimetry. Colloids Surf. A 187:–188151–65
    [Google Scholar]
  112. 112. 
    Rouquerol F, Rouquerol J, Sing K. 1999. Adsorption at the liquid–solid interface: thermodynamics and methodology. See Reference 41:117–63
    [Google Scholar]
  113. 113. 
    Halász I, Martin K. 1978. Pore sizes of solids. Angew. Chem. Int. Ed. 17:901–8
    [Google Scholar]
  114. 114. 
    Knox JH, Scott HP. 1984. Theoretical models for size-exclusion chromatography and calculation of pore size distribution from size-exclusion chromatography data. J. Chromatogr. A 316:311–32
    [Google Scholar]
  115. 115. 
    Knox JH, Ritchie HJ. 1987. Determination of pore size distribution curves by size-exclusion chromatography. J. Chromatogr. A 387:65–84
    [Google Scholar]
  116. 116. 
    Goto M, McCoy BJ. 2000. Inverse size-exclusion chromatography for distributed pore and solute sizes. Chem. Eng. Sci. 55:723–32
    [Google Scholar]
  117. 117. 
    Yao Y, Lenhoff AM. 2004. Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography. J. Chromatogr. A 1037:273–82
    [Google Scholar]
  118. 118. 
    Bacskay I, Sepsey A, Felinger A. 2014. The pore size distribution of the first and the second generation of silica monolithic stationary phases. J. Chromatogr. A 1359:112–16
    [Google Scholar]
  119. 119. 
    Sepsey A, Bacskay I, Felinger A 2018. Inverse size-exclusion chromatography. Advances in Chromatography N Grinberg, PW Carr 205–27 Boca Raton, FL: CRC Press
    [Google Scholar]
  120. 120. 
    Grimes BA, Skudas R, Unger KK, Lubda D. 2007. Pore structural characterization of monolithic silica columns by inverse size-exclusion chromatography. J. Chromatogr. A 1144:14–29
    [Google Scholar]
  121. 121. 
    Bayram-Hahn Z, Grimes BA, Lind AM, Skudas R, Unger KK et al. 2007. Pore structural characteristics, size exclusion properties and column performance of two mesoporous amorphous silicas and their pseudomorphically transformed MCM-41 type derivatives. J. Sep. Sci. 30:3089–103
    [Google Scholar]
  122. 122. 
    Sepsey A, Bacskay I, Felinger A. 2014. Molecular theory of size exclusion chromatography for wide pore size distributions. J. Chromatogr. A 1331:52–60
    [Google Scholar]
  123. 123. 
    Brownstein KR, Tarr CE. 1979. Importance of classical diffusion in NMR studies of water in biological cells. Phys. Rev. A 19:2446–53
    [Google Scholar]
  124. 124. 
    Gallegos DP, Munn K, Smith DM, Stermer DL. 1987. A NMR technique for the analysis of pore structure: application to materials with well-defined pore structure. J. Colloid Interface Sci. 119:127–40
    [Google Scholar]
  125. 125. 
    Gallegos DP, Smith DM. 1988. A NMR technique for the analysis of pore structure: determination of continuous pore size distributions. J. Colloid Interface Sci. 122:143–53
    [Google Scholar]
  126. 126. 
    Gallegos DP, Smith DM, Brinker CJ. 1988. An NMR technique for the analysis of pore structure: application to mesopores and micropores. J. Colloid Interface Sci. 124:186–98
    [Google Scholar]
  127. 127. 
    Li X, Li Y, Chen C, Zhao D, Wang X et al. 2015. Pore size analysis from low field NMR spin–spin relaxation measurements of porous microspheres. J. Porous Mater. 22:11–20
    [Google Scholar]
  128. 128. 
    Thoma SB, Smith DM, Boughton J, Davies R. 1993. On-line surface area measurement of concentrated slurries using low field spin-lattice relaxation NMR. Part. Part. Syst. Charact. 10:246–51
    [Google Scholar]
  129. 129. 
    Davis PJ, Gallegos DP, Smith DM. 1987. Rapid surface area determination via NMR spin-lattice relaxation measurements. Powder Technol 53:39–47
    [Google Scholar]
  130. 130. 
    Munn K, Smith DM. 1987. A NMR technique for the analysis of pore structure: numerical inversion of relaxation measurements. J. Colloid Interface Sci. 119:117–26
    [Google Scholar]
  131. 131. 
    Davies S, Kalam MZ, Packer KJ, Zelaya FO. 1990. Pore-size distributions from nuclear magnetic resonance spin-lattice relaxation measurements of fluid-saturated porous solids. II. Applications to reservoir core samples. J. Appl. Phys. 67:3171–76
    [Google Scholar]
  132. 132. 
    Meyer M, Buchmann C, Schaumann GE. 2018. Determination of quantitative pore-size distribution of soils with 1H NMR relaxometry. Eur. J. Soil Sci. 69:393–406
    [Google Scholar]
  133. 133. 
    Kinn BE, Myers TR, Allgeier AM. 2019. Surface enhanced nuclear magnetic resonance relaxation mechanisms and their significance in chemical engineering applications. Curr. Opin. Chem. Eng. 24:115–21
    [Google Scholar]
  134. 134. 
    Chen JJ, Kong X, Sumida K, Manumpil MA, Long JR, Reimer JA. 2013. Ex situ NMR relaxometry of metalorganic frameworks for rapid surface-area screening. Angew. Chem. Int. Ed. 52:12043–46
    [Google Scholar]
  135. 135. 
    Chen JJ, Mason JA, Bloch ED, Gygi D, Long JR, Reimer JA. 2015. NMR relaxation and exchange in metalorganic frameworks for surface area screening. Microporous Mesoporous Mater 205:65–69
    [Google Scholar]
  136. 136. 
    Fairhurst D, Cosgrove T, Prescott SW. 2016. Relaxation NMR as a tool to study the dispersion and formulation behavior of nanostructured carbon materials. Magn. Reson. Chem. 54:521–26
    [Google Scholar]
  137. 137. 
    Elliott LN, Bourne RA, Hassanpour A, Edwards JL, Sutcliffe S, Hunter TN. 2018. Salt enhanced solvent relaxation and particle surface area determination via rapid spin-lattice NMR. Powder Technol 333:458–67
    [Google Scholar]
  138. 138. 
    Davies S, Packer KJ, Roberts DR, Zelaya FO. 1991. Pore-size distributions from NMR spin-lattice relaxation data. Magn. Reson. Imaging 9:681–85
    [Google Scholar]
  139. 139. 
    Jaeger F, Bowe S, As HV, Schaumann GE. 2009. Evaluation of 1H NMR relaxometry for the assessment of pore-size distribution in soil samples. Eur. J. Soil Sci. 60:1052–64
    [Google Scholar]
  140. 140. 
    Kube SA, Turke K, Ellinghaus R, Wallacher D, Thommes M, Smarsly BM. 2020. Pore size gradient effect in monolithic silica mesopore networks revealed by in-situ SAXS physisorption. Langmuir 36:4011996–99
    [Google Scholar]
  141. 141. 
    Mitchell S, Pinar AB, Kenvin J, Crivelli P, Kärger J, Pérez-Ramírez J. 2015. Structural analysis of hierarchically organized zeolites. Nat. Commun. 6:8633
    [Google Scholar]
  142. 142. 
    Müllner T, Unger KK, Tallarek U. 2016. Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors. New J. Chem. 40:53993–4015
    [Google Scholar]
  143. 143. 
    Svidrytski A, Rathi A, Hlushkou D, Ford DM, Monson PA, Tallarek U. 2018. Morphology of fluids confined in physically reconstructed mesoporous silica: experiment and mean field density functional theory. Langmuir 34:349936–45
    [Google Scholar]
  144. 144. 
    Neimark AV, Coudert FX, Boutin A, Fuchs AH. 2010. Stress-based model for the breathing of metal-organic frameworks. J. Phys. Chem. Lett. 1:445–49
    [Google Scholar]
  145. 145. 
    Dantas S, Sarkisov L, Neimark AV. 2019. Deciphering the relations between pore structure and adsorption behavior in metal–organic frameworks: unexpected lessons from argon adsorption on copper-benzene-1,3,5-tricarboxylate. J. Am. Chem. Soc. 141:8397–401
    [Google Scholar]
  146. 146. 
    Cychosz Struckhoff K, Thommes M, Sarkisov L 2020. On the universality of capillary condensation and adsorption hysteresis phenomena in ordered and crystalline mesoporous materials. Adv. Mater. Interfaces 7:12 https://doi.org/10.1002/admi.202000184
    [Crossref] [Google Scholar]
  147. 147. 
    Bon V, Brunner E, Pöppl A, Kaskel S. 2020. Unraveling structure and dynamics in porous frameworks via advanced in situ characterization techniques. Adv. Funct. Mater. 30:41 https://doi.org/10.1002/adfm.202070272
    [Crossref] [Google Scholar]
  148. 148. 
    Schwieger W, Machoke AG, Reiprich B, Weissenberger T, Selvam T, Hartmann M 2017. Hierarchical zeolites. Zeolites in Catalysis J Čejka, RE Morris, P Nachtigall 103–45 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  149. 149. 
    García-Martínez J, Li K, Krishnaiah G 2012. A mesostructured Y zeolite as a superior FCC catalyst—from lab to refinery. Chem. Commun. 48:9711841–43
    [Google Scholar]
  150. 150. 
    Blakeman PG, Burkholder EM, Chen H-Y, Collier JE, Fedeyko JM et al. 2014. The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts. Catal. Today 231:56–63
    [Google Scholar]
  151. 151. 
    Michels N-L, Mitchell S, Pérez-Ramírez J. 2014. Effects of binders on the performance of shaped hierarchical MFI zeolites in methanol-to-hydrocarbons. ACS Catal 4:82409–17
    [Google Scholar]
  152. 152. 
    Vogt ETC, Weckhuysen BM. 2015. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44:207342–70
    [Google Scholar]
  153. 153. 
    Caldeira VPS, Peral A, Linares M, Araujo AS, Garcia-Muñoz RA, Serrano DP. 2017. Properties of hierarchical Beta zeolites prepared from protozeolitic nanounits for the catalytic cracking of high density polyethylene. Appl. Catal. A 531:187–96
    [Google Scholar]
  154. 154. 
    Ren S, Meng B, Sui X, Duan H, Gao X et al. 2019. Preparation of mesoporous zeolite Y by fluorine–alkaline treatment for hydrocracking reaction of naphthalene. Ind. Eng. Chem. Res. 58:197886–91
    [Google Scholar]
  155. 155. 
    Kerstens D, Smeyers B, Waeyenberg JV, Zhang Q, Yu J, Sels BF 2020. State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis. Adv. Mater. 32:442004690
    [Google Scholar]
  156. 156. 
    Al-Jubouri SM, Curry NA, Holmes SM 2016. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste. J. Hazard. Mater. 320:241–51
    [Google Scholar]
  157. 157. 
    Liu Q, He P, Qian X, Fei Z, Zhang Z et al. 2017. Enhanced CO2 adsorption performance on hierarchical porous ZSM 5 zeolite. Energy Fuels 31:1213933–41
    [Google Scholar]
  158. 158. 
    Besser B, Tajiri HA, Mikolajczyk G, Mo J, Odenbach S, Glas R. 2016. Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS Appl. Mater. Interfaces 8:53277–86
    [Google Scholar]
  159. 159. 
    Titinchi SJJ, Piet M, Abbo HS, Bolland O, Schwieger W. 2014. Chemically modified solid adsorbents for CO2 capture. Energy Procedia 63:8153–60
    [Google Scholar]
  160. 160. 
    Yu W, Deng L, Yuan P, Liu D, Yuan W, Chen F 2015. Preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance for benzene adsorption: the effects of desilication. Chem. Eng. J. 270:450–58
    [Google Scholar]
  161. 161. 
    Li R, Chong S, Altaf N, Gao Y, Louis B, Wang Q 2019. Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds. Front Chem 7:505
    [Google Scholar]
  162. 162. 
    Lee KX, Valla JA. 2019. Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review. React. Chem. Eng. 4:81357–86
    [Google Scholar]
  163. 163. 
    Skudas R, Grimes BA, Thommes M, Unger KK. 2009. Flow-through pore characteristics of monolithic silicas and their impact on column performance in high-performance liquid chromatography. J. Chromatogr. A 1216:132625–36
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-061720-081242
Loading
/content/journals/10.1146/annurev-chembioeng-061720-081242
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error