1932

Abstract

Microfluidic devices and systems have entered many areas of chemical engineering, and the rate of their adoption is only increasing. As we approach and adapt to the critical global challenges we face in the near future, it is important to consider the capabilities of flow chemistry and its applications in next-generation technologies for sustainability, energy production, and tailor-made specialty chemicals. We present the introduction of microfluidics into the fundamental unit operations of chemical engineering. We discuss the traits and advantages of microfluidic approaches to different reactive systems, both well-established and emerging, with a focus on the integration of modular microfluidic devices into high-efficiency experimental platforms for accelerated process optimization and intensified continuous manufacturing. Finally, we discuss the current state and new horizons in self-driven experimentation in flow chemistry for both intelligent exploration through the chemical universe and distributed manufacturing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092120-024449
2022-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092120-024449.html?itemId=/content/journals/10.1146/annurev-chembioeng-092120-024449&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gurvich VJ, Hussain AS. 2020. In and beyond COVID-19: US academic pharmaceutical science and engineering community must engage to meet critical national needs. AAPS PharmSciTech 21:153
    [Google Scholar]
  2. 2.
    Remko VH. 2020. Research opportunities for a more resilient post-COVID-19 supply chain - closing the gap between research findings and industry practice. Int. J. Oper. Prod. Manag. 40:4341–55
    [Google Scholar]
  3. 3.
    Bennett JA, Campbell ZS, Abolhasani M. 2019. Role of continuous flow processes in green manufacturing of pharmaceuticals and specialty chemicals. Curr. Opin. Chem. Eng. 26:9–19
    [Google Scholar]
  4. 4.
    Stone HA, Stroock AD, Ajdari A. 2004. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36:381–411
    [Google Scholar]
  5. 5.
    Roberto MF, Dearing TI, Branham CW, Bleie O, Marquardt BJ. 2014. Rapid determination of optimal conditions in a continuous flow reactor using process analytical technology. Processes 2:124–33
    [Google Scholar]
  6. 6.
    Ramsey RS, Ramsey JM. 1997. Generating electrospray from microchip devices using electroosmotic pumping. Anal. Chem. 69:61174–78
    [Google Scholar]
  7. 7.
    Gallignani M, Garrigues S, De La Guardia M. 1994. Simultaneous flow analysis Fourier transform infrared determination of benzene, toluene, and methyl t-butyl ether in petrol. Analyst 119:4653–57
    [Google Scholar]
  8. 8.
    Manz A, Graber N, Widmer HM. 1990a. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B 1:244–48
    [Google Scholar]
  9. 9.
    Hou W, Bubliauskas A, Kitson PJ, Francoia JP, Powell-Davies H et al. 2021. Automatic generation of 3D-printed reactionware for chemical synthesis digitization using ChemSCAD. ACS Cent. Sci. 7:2212–18
    [Google Scholar]
  10. 10.
    Lignos I, Ow H, Lopez JP, McCollum D, Zhang H et al. 2020. Continuous multistage synthesis and functionalization of sub-100 nm silica nanoparticles in 3D-printed continuous stirred-tank reactor cascades. ACS Appl. Mater. Interfaces 12:56699–706
    [Google Scholar]
  11. 11.
    Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L. 2012. Configurable 3D-printed millifluidic and microfluidic “lab on a chip” reactionware devices. Lab Chip 12:183267–71
    [Google Scholar]
  12. 12.
    Lee CC, Sui G, Elizarov A, Shu CJ, Shin YS et al. 2005. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310:57551793–96
    [Google Scholar]
  13. 13.
    Zheng B, Ismagilov RF. 2005. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew. Chem. Int. Ed. 44:172520–23
    [Google Scholar]
  14. 14.
    Burns JR, Ramshaw C. 2001. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 1:110–15
    [Google Scholar]
  15. 15.
    Anna SL, Bontoux N, Stone HA. 2003. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82:3364
    [Google Scholar]
  16. 16.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM. 1998. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70:234974–84
    [Google Scholar]
  17. 17.
    Gañán-Calvo AM. 1998. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80:2285–88
    [Google Scholar]
  18. 18.
    Wang K, Zhang H, Shen Y, Adamo A, Jensen KF. 2018. Thermoformed fluoropolymer tubing for in-line mixing. React. Chem. Eng. 3:5707–13
    [Google Scholar]
  19. 19.
    Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM. 2002. Chaotic mixer for microchannels. Science 295:5555647–51
    [Google Scholar]
  20. 20.
    Wang H, Iovenitti P, Harvey E, Masood S 2002. Optimizing layout of obstacles for enhanced mixing in microchannels. Smart Mater. Struct. 11:662–67
    [Google Scholar]
  21. 21.
    Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG et al. 2000. Passive mixing in a three-dimensional serpentine microchannel. J. Microelectromech. Syst. 9:2190–97
    [Google Scholar]
  22. 22.
    Schwesinger N, Frank T, Wurmus H. 1996. A modular microfluid system with an integrated micromixer. J. Micromech. Microeng. 6:99–102
    [Google Scholar]
  23. 23.
    Ould El Moctar A, Aubry N, Batton J 2003. Electro-hydrodynamic micro-fluidic mixer. Lab Chip 3:4273–80
    [Google Scholar]
  24. 24.
    Deshmukh AA, Liepmann D, Pisano AP, Sensor B, Center A. 2000. Continuous micromixer with pulsatile micropumps Presented at the 2000 Solid-State, Actuators, and Microsystems Workshop Hilton Head Island, SC: June 4–8
  25. 25.
    Moroney RM, White RM, Howe RT. 1991. Microtransport induced by ultrasonic Lamb waves. Appl. Phys. Lett. 59:7774
    [Google Scholar]
  26. 26.
    de Mas N, Günther A, Schmidt MA, Jensen KF. 2003. Microfabricated multiphase reactors for the selective direct fluorination of aromatics. Ind. Eng. Chem. Res. 42:4698–710
    [Google Scholar]
  27. 27.
    Zhang Y, Kato S, Anazawa T. 2009. Vacuum membrane distillation on a microfluidic chip. Chem. Commun. 2009:2750–52
    [Google Scholar]
  28. 28.
    Bannock JH, Phillips TW, Nightingale AM, Demello JC. 2013. Microscale separation of immiscible liquids using a porous capillary. Anal. Methods 5:194991–98
    [Google Scholar]
  29. 29.
    Fukushi K, Hiiro K. 1988. Determination of ammonium ion in sea-water by capillary isotachophoresis. Talanta 35:10799–802
    [Google Scholar]
  30. 30.
    Hereijgers J, van Oeteren N, Denayer JFM, Breugelmans T, De Malsche W. 2015. Multistage counter-current solvent extraction in a flat membrane microcontactor. Chem. Eng. J. 273:138–46
    [Google Scholar]
  31. 31.
    Adamo A, Heider PL, Weeranoppanant N, Jensen KF 2013. Membrane-based, liquid–liquid separator with integrated pressure control. Ind. Eng. Chem. Res. 52:3110802–8
    [Google Scholar]
  32. 32.
    Nord L, Karlberg B 1980. Extraction based on the flow-injection principle: part 5. Assessment with a membrane phase separator for different organic solvents. Anal. Chim. Acta 118:2285–92
    [Google Scholar]
  33. 33.
    Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K 1990b. Design of an open-tubular column liquid chromatograph using silicon chip technology. Sens. Actuators B 1:1–6249–55
    [Google Scholar]
  34. 34.
    Terry SC, Herman JH, Angell JB 1979. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 26:121880–86
    [Google Scholar]
  35. 35.
    Yuen PK. 2008. SmartBuild—a truly plug-n-play modular microfluidic system. Lab Chip 8:81374–78
    [Google Scholar]
  36. 36.
    Ji Q, Zhang JM, Liu Y, Li X, Lv P et al. 2018. A modular microfluidic device via multimaterial 3D printing for emulsion generation. Sci. Rep. 8:4791
    [Google Scholar]
  37. 37.
    Chen X, Mo D, Gong M. 2020. 3D printed reconfigurable modular microfluidic system for generating gel microspheres. Micromachines 11:2224
    [Google Scholar]
  38. 38.
    Han T, Zhang L, Xu H, Xuan J 2017. Factory-on-chip: modularised microfluidic reactors for continuous mass production of functional materials. Chem. Eng. J. 326:765–73
    [Google Scholar]
  39. 39.
    Coley CW, Abolhasani M, Lin H, Jensen KF. 2017. Material-efficient microfluidic platform for exploratory studies of visible-light photoredox catalysis. Angew. Chem. 56:339847–50
    [Google Scholar]
  40. 40.
    Baumgartner LM, Dennis JM, White NA, Buchwald SL, Jensen KF. 2019. Use of a droplet platform to optimize Pd-catalyzed C−N coupling reactions promoted by organic bases. Org. Process Res. Dev. 23:81594–601
    [Google Scholar]
  41. 41.
    Zhu C, Raghuvanshi K, Coley CW, Mason D, Rodgers J et al. 2018. Flow chemistry-enabled studies of rhodium-catalyzed hydroformylation reactions. Chem. Commun. 54:628567–70
    [Google Scholar]
  42. 42.
    Gielen F, van Vliet L, Koprowski BT, Devenish SRA, Fischlechner M et al. 2013. A fully unsupervised compartment-on-demand platform for precise nanoliter assays of time-dependent steady-state enzyme kinetics and inhibition. Anal. Chem. 85:94761–69
    [Google Scholar]
  43. 43.
    Cao L, Russo D, Lapkin AA. 2021. Automated robotic platforms in design and development of formulations. AIChE J 67:5e17248
    [Google Scholar]
  44. 44.
    Perera D, Tucker JW, Brahmbhatt S, Helal CJ, Chong A et al. 2018. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow. Science 359:6374429–34
    [Google Scholar]
  45. 45.
    Kotz F, Risch P, Helmer D, Rapp BE. 2019. High-performance materials for 3D printing in chemical synthesis applications. Adv. Mater. 31:261805982
    [Google Scholar]
  46. 46.
    Zhang H, Kopfmüller T, Achermann R, Zhang J, Teixeira A et al. 2020. Accessing multidimensional mixing via 3D printing and showerhead micromixer design. AIChE J 66:4e16873
    [Google Scholar]
  47. 47.
    Günther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF et al. 2005. Micromixing of miscible liquids in segmented gas−liquid flow. Langmuir 21:41547–55
    [Google Scholar]
  48. 48.
    Volk AA, Epps RW, Yonemoto D, Castellano FN, Abolhasani M. 2021a. Continuous biphasic chemical processes in a four-phase segmented flow reactor. React. Chem. Eng. 6:81367–75
    [Google Scholar]
  49. 49.
    Nightingale AM, Phillips TW, Bannock JH, deMello JC 2014. Controlled multistep synthesis in a three-phase droplet reactor. Nat. Commun. 5:3777
    [Google Scholar]
  50. 50.
    Dong Z, Wen Z, Zhao F, Kuhn S, Noël T. 2021. Scale-up of micro- and milli-reactors: an overview of strategies, design principles and applications. Chem. Eng. Sci. 10:100097
    [Google Scholar]
  51. 51.
    Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G. 2017. Design and scaling up of microchemical systems: a review. Annu. Rev. Chem. Biomol. Eng. 8:285–305
    [Google Scholar]
  52. 52.
    Pollet P, Cope ED, Kassner MK, Charney R, Terett SH et al. 2009. Production of (S)-1-benzyl-3-diazo-2-oxopropylcarbamic acid tert-butyl ester, a diazoketone pharmaceutical intermediate, employing a small scale continuous reactor. Ind. Eng. Chem. Res. 48:157032–36
    [Google Scholar]
  53. 53.
    Su Y, Kuijpers K, Hessel V, Noël T. 2016. A convenient numbering-up strategy for the scale-up of gas-liquid photoredox catalysis in flow. React. Chem. Eng. 1:73–81
    [Google Scholar]
  54. 54.
    Ahn G-N, Sharma BM, Lahore S, Yim S-J, Vidyacharan S, Kim D-P. 2021. Flow parallel synthesizer for multiplex synthesis of aryl diazonium libraries via efficient parameter screening. Commun. Chem. 4:53
    [Google Scholar]
  55. 55.
    Shallan AI, Priest C. 2019. Microfluidic process intensification for synthesis and formulation in the pharmaceutical industry. Chem. Eng. Process. 142:107559
    [Google Scholar]
  56. 56.
    Sambiagio C, Noël T. 2020. Flow photochemistry: Shine some light on those tubes!. Trends Chem. 2:292–106
    [Google Scholar]
  57. 57.
    Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. 2021. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem. Rev. 122:22752–906
    [Google Scholar]
  58. 58.
    Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. 2016. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116:1710276–341
    [Google Scholar]
  59. 59.
    Mo Y, Lu Z, Rughoobur G, Patil P, Gershenfeld N et al. 2020. Microfluidic electrochemistry for single-electron transfer redox-neutral reactions. Science 368:64971352–57
    [Google Scholar]
  60. 60.
    Laudadio G, Bartolomeu AdA, Verwijlen LMHM, Cao Y, Oliveira KT de, Noël T. 2019. Sulfonyl fluoride synthesis through electrochemical oxidative coupling of thiols and potassium fluoride. J. Am. Chem. Soc. 141:3011832–36
    [Google Scholar]
  61. 61.
    Noël T, Cao Y, Laudadio G. 2019. The fundamentals behind the use of flow reactors in electrochemistry. Acc. Chem. Res. 52:102858–69
    [Google Scholar]
  62. 62.
    Yan M, Kawamata Y, Baran PS. 2017. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117:2113230–319
    [Google Scholar]
  63. 63.
    Wei M, Zhang J, Liu C, He W, Wang T et al. 2021. Microfluidic synthesis of pyrrolidin-2-ones via photoinduced organocatalyzed cyclization of styrene, α-bromoalkyl esters and primary amines. Org. Biomol. Chem. 19:296468–72
    [Google Scholar]
  64. 64.
    Straathof NJW, Su Y, Hessel V, Noël T. 2015. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors. Nat. Protoc. 11:110–21
    [Google Scholar]
  65. 65.
    Jud W, Kappe CO, Cantillo D 2020. A continuous flow cell for high-temperature/high-pressure electroorganic synthesis. ChemElectroChem 7:132777–83
    [Google Scholar]
  66. 66.
    Brzozowski M, O'Brien M, Ley SV, Polyzos A. 2015. Flow chemistry: intelligent processing of gas–liquid transformations using a tube-in-tube reactor. Acc. Chem. Res. 48:2349–62
    [Google Scholar]
  67. 67.
    O'Brien M, Taylor N, Polyzos A, Baxendale IR, Ley SV. 2011. Hydrogenation in flow: Homogeneous and heterogeneous catalysis using Teflon AF-2400 to effect gas-liquid contact at elevated pressure. Chem. Sci. 2:71250–57
    [Google Scholar]
  68. 68.
    Dallinger D, Gutmann B, Kappe CO. 2020. The concept of chemical generators: on-site on-demand production of hazardous reagents in continuous flow. Acc. Chem. Res. 53:71330–41
    [Google Scholar]
  69. 69.
    Raghuvanshi K, Zhu C, Ramezani M, Menegatti S, Santiso EE et al. 2020. Highly efficient 1-octene hydroformylation at low syngas pressure: from single-droplet screening to continuous flow synthesis. ACS Catal 10:147535–42
    [Google Scholar]
  70. 70.
    Han S, Kashfipour MA, Ramezani M, Abolhasani M. 2020. Accelerating gas-liquid chemical reactions in flow. Chem. Commun. 56:7310593–606
    [Google Scholar]
  71. 71.
    Han S, Ramezani M, TomHon P, Abdel-Latif K, Epps RW et al. 2021. Intensified continuous extraction of switchable hydrophilicity solvents triggered by carbon dioxide. Green Chem 23:82900–6
    [Google Scholar]
  72. 72.
    Han S, Raghuvanshi K, Abolhasani M. 2020. Accelerated material-efficient investigation of switchable hydrophilicity solvents for energy-efficient solvent recovery. ACS Sustain. Chem. Eng. 8:83347–56
    [Google Scholar]
  73. 73.
    Bourne SL, O'Brien M, Kasinathan S, Koos P, Tolstoy P et al. 2013. Flow chemistry syntheses of styrenes, unsymmetrical stilbenes and branched aldehydes. ChemCatChem 5:1159–72
    [Google Scholar]
  74. 74.
    Zhang P, Russell MG, Jamison TF. 2014. Continuous flow total synthesis of rufinamide. Org. Process Res. Dev. 18:111567–70
    [Google Scholar]
  75. 75.
    Haywood T, Miller PW. 2014. Microfluidic hydrogenation reactions by using a channel-supported rhodium catalyst. ChemCatChem 6:51199–203
    [Google Scholar]
  76. 76.
    Noël T, Kuhn S, Musacchio AJ, Jensen KF, Buchwald SL. 2011. Suzuki-Miyaura cross-coupling reactions in flow: multistep synthesis enabled by a microfluidic extraction. Angew. Chem. Int. Ed. 50:265943–46
    [Google Scholar]
  77. 77.
    Glotz G, Lebl R, Dallinger D, Kappe CO. 2017. Integration of bromine and cyanogen bromide generators for the continuous-flow synthesis of cyclic guanidines. Angew. Chem. Int. Ed. 56:4413786–89
    [Google Scholar]
  78. 78.
    Bianchi P, Williams JD, Kappe CO. 2020. Oscillatory flow reactors for synthetic chemistry applications. J. Flow Chem. 10:3475–90
    [Google Scholar]
  79. 79.
    Law R, Ramshaw C, Reay D. 2017. Process intensification—overcoming impediments to heat and mass transfer enhancement when solids are present, via the IbD project. Therm. Sci. Eng. Prog. 1:53–58
    [Google Scholar]
  80. 80.
    Sharma MK, Suru A, Joshi A, Kulkarni AA. 2020. A novel flow reactor for handling suspensions: hydrodynamics and performance evaluation. Ind. Eng. Chem. Res. 59:3716462–72
    [Google Scholar]
  81. 81.
    Mo Y, Jensen KF. 2016. A miniature CSTR cascade for continuous flow of reactions containing solids. React. Chem. Eng. 1:5501–7
    [Google Scholar]
  82. 82.
    Sharma BM, Atapalkar RS, Kulkarni AA. 2019. Continuous flow solvent free organic synthesis involving solids (reactants/products) using a screw reactor. Green Chem 21:205639–46
    [Google Scholar]
  83. 83.
    Fernandez Rivas D, Kuhn S. 2016. Synergy of microfluidics and ultrasound. Top. Curr. Chem. 374:70
    [Google Scholar]
  84. 84.
    Hartman RL. 2012. Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org. Process Res. Dev. 16:5870–87
    [Google Scholar]
  85. 85.
    Giri G, Yang L, Mo Y, Jensen KF. 2018. Adding crystals to minimize clogging in continuous flow synthesis. Cryst. Growth Des. 19:198–105
    [Google Scholar]
  86. 86.
    Campbell ZS, Abolhasani M. 2020. Facile synthesis of anhydrous microparticles using plug-and-play microfluidic reactors. React. Chem. Eng. 5:71198–211
    [Google Scholar]
  87. 87.
    Macioszczyk J, Rac-Rumijowska O, Słobodzian P, Teterycz H, Malecha K 2017. Microfluidical microwave reactor for synthesis of gold nanoparticles. Micromachines 8:11318
    [Google Scholar]
  88. 88.
    Gioria E, Signorini C, Wisniewski F, Gutierrez L. 2020. Green synthesis of time-stable palladium nanoparticles using microfluidic devices. J. Environ. Chem. Eng. 8:5104096
    [Google Scholar]
  89. 89.
    Bailey T, Pinto M, Hondow N, Wu K-J 2021. Continuous microfluidic synthesis of zirconium-based UiO-67 using a coiled flow invertor reactor. MethodsX 8:101246
    [Google Scholar]
  90. 90.
    Taddei M, Steitz DA, van Bokhoven JA, Ranocchiari M. 2016. Continuous-flow microwave synthesis of metal-organic frameworks: a highly efficient method for large-scale production. Chemistry 22:103245–49
    [Google Scholar]
  91. 91.
    Amreen K, Goel S. 2021. Review—miniaturized and microfluidic devices for automated nanoparticle synthesis. ECS J. Solid State Sci. Technol. 10:1017002
    [Google Scholar]
  92. 92.
    Niculescu A-G, Chircov C, Bîrcă AC, Grumezescu AM. 2021. Nanomaterials synthesis through microfluidic methods: an updated overview. Nanomaterials 11:4864
    [Google Scholar]
  93. 93.
    Volk AA, Epps RW, Abolhasani M 2021b. Accelerated development of colloidal nanomaterials enabled by modular microfluidic reactors: toward autonomous robotic experimentation. Adv. Mater. 33:42004495
    [Google Scholar]
  94. 94.
    Campbell ZS, Bateni F, Volk AA, Abdel-Latif K, Abolhasani M et al. 2020. Microfluidic synthesis of semiconductor materials: toward accelerated materials development in flow. Part. Part. Syst. Charact. 37:122000256
    [Google Scholar]
  95. 95.
    Abolhasani M, Coley CW, Xie L, Chen O, Bawendi MG, Jensen KF. 2015. Oscillatory microprocessor for growth and in situ characterization of semiconductor nanocrystals. Chem. Mater. 27:176131–38
    [Google Scholar]
  96. 96.
    Nette J, Howes PD, deMello AJ. 2020. Microfluidic synthesis of luminescent and plasmonic nanoparticles: fast, efficient, and data-rich. Adv. Mater. Technol. 5:2000060
    [Google Scholar]
  97. 97.
    Li S, Hsiao JC, Howes PD, deMello AJ 2019. Microfluidic tools for the synthesis of bespoke quantum dots. Nanotechnology and Microfluidics X Jiang, C Bai, M Liu 109–48 Weinheim, Ger: Wiley VCH
    [Google Scholar]
  98. 98.
    Sui J, Yan J, Liu D, Wang K, Luo G 2020. Continuous synthesis of nanocrystals via flow chemistry technology. Small 16:151902828
    [Google Scholar]
  99. 99.
    Yen BKH, Günther A, Schmidt MA, Jensen KF, Bawendi MG. 2005. A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. Angew. Chem. Int. Ed. 44:345447–51
    [Google Scholar]
  100. 100.
    Naughton MS, Kumar V, Bonita Y, Deshpande K, Kenis PJAA. 2015. High temperature continuous flow synthesis of CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS nanocrystals. Nanoscale 7:3815895–903
    [Google Scholar]
  101. 101.
    Baek J, Allen PM, Bawendi MG, Jensen KF. 2011. Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. Angew. Chem. Int. Ed. 50:3627–30
    [Google Scholar]
  102. 102.
    Lignos I, Protesescu L, Stavrakis S, Piveteau L, Speirs MJ et al. 2014. Facile droplet-based microfluidic synthesis of monodisperse IV-VI semiconductor nanocrystals with coupled in-line NIR fluorescence detection. Chem. Mater. 26:92975–82
    [Google Scholar]
  103. 103.
    Epps RW, Felton KC, Coley CW, Abolhasani M. 2017. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing. Lab Chip 17:234040–47
    [Google Scholar]
  104. 104.
    Epps RW, Volk AA, Abdel-Latif K, Abolhasani M 2020a. An automated flow chemistry platform to decouple mixing and reaction times. React. Chem. Eng. 5:71212–17
    [Google Scholar]
  105. 105.
    Bateni F, Epps RW, Abdel-Latif K, Dargis R, Han S et al. 2021. Ultrafast cation doping of perovskite quantum dots in flow. Matter 4:2429–47
    [Google Scholar]
  106. 106.
    Abdel-Latif K, Epps RW, Kerr CB, Papa CM, Castellano FN et al. 2019. Facile room-temperature anion exchange reactions of inorganic perovskite quantum dots enabled by a modular microfluidic platform. Adv. Funct. Mater. 29:231900712
    [Google Scholar]
  107. 107.
    Li S, Baker RW, Lignos I, Yang Z, Stavrakis S et al. 2020. Automated microfluidic screening of ligand interactions during the synthesis of cesium lead bromide nanocrystals. Mol. Syst. Des. Eng. 5:1118–30
    [Google Scholar]
  108. 108.
    Lignos I, Stavrakis S, Nedelcu G, Protesescu L, deMello AJ, Kovalenko MV. 2016. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Lett 16:31869–77
    [Google Scholar]
  109. 109.
    Lignos I, Protesescu L, Emiroglu DB, MacEiczyk R, Schneider S et al. 2018. Unveiling the shape evolution and halide-ion-segregation in blue-emitting formamidinium lead halide perovskite nanocrystals using an automated microfluidic platform. Nano Lett 18:21246–52
    [Google Scholar]
  110. 110.
    Bezinge L, Maceiczyk RM, Lignos I, Kovalenko MV, deMello AJ. 2018. Pick a color MARIA: adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions with defined emission characteristics. ACS Appl. Mater. Interfaces 10:2218869–78
    [Google Scholar]
  111. 111.
    Liang X, Baker RW, Wu K, Deng W, Ferdani D et al. 2018. Continuous low temperature synthesis of MAPbX3 perovskite nanocrystals in a flow reactor. React. Chem. Eng. 3:5640–44
    [Google Scholar]
  112. 112.
    Pan J, El-Ballouli AO, Rollny L, Voznyy O, Burlakov VM et al. 2013. Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages. ACS Nano 7:1110158–66
    [Google Scholar]
  113. 113.
    Uson L, Sebastian V, Arruebo M, Santamaria J. 2016. Continuous microfluidic synthesis and functionalization of gold nanorods. Chem. Eng. J. 285:286–92
    [Google Scholar]
  114. 114.
    Abdel-Latif K, Epps RW, Bateni F, Han S, Reyes KG, Abolhasani M 2020. Self-driven multistep quantum dot synthesis enabled by autonomous robotic experimentation in flow. Adv. Intell. Syst. 3:22000245
    [Google Scholar]
  115. 115.
    Shen J, Shafiq M, Ma M, Chen H 2020. Synthesis and surface engineering of inorganic nanomaterials based on microfluidic technology. Nanomaterials 10:61177
    [Google Scholar]
  116. 116.
    Wang J, Song Y. 2017. Microfluidic synthesis of nanohybrids. Small 13:181604084
    [Google Scholar]
  117. 117.
    Baek J, Shen Y, Lignos I, Bawendi MG, Jensen KF. 2018. Multistage microfluidic platform for the continuous synthesis of III-V core/shell quantum dots. Angew. Chem. Int. Ed. 57:3410915–18
    [Google Scholar]
  118. 118.
    Hassan N, Cabuil V, Abou-Hassan A. 2013. Continuous multistep microfluidic assisted assembly of fluorescent, plasmonic, and magnetic nanostructures. Angew. Chem. Int. Ed. 52:71994–97
    [Google Scholar]
  119. 119.
    Timmer BH, Van Delft KM, Olthuis W, Bergveld P, Van den Berg A. 2003. Micro-evaporation electrolyte concentrator. Sens. Actuators B 91:1–3342–46
    [Google Scholar]
  120. 120.
    Yang RJ, Liu CC, Wang YN, Hou HH, Fu LM. 2017. A comprehensive review of micro-distillation methods. Chem. Eng. J. 313:1509–20
    [Google Scholar]
  121. 121.
    Bao B, Wang Z, Thushara D, Liyanage A, Gunawardena S et al. 2020. Recent advances in microfluidics-based chromatography—a mini review. 813
  122. 122.
    Salafi T, Zeming K, Zhang Y. 2016. Advancements in microfluidics for nanoparticle separation. Lab Chip 17:111–33
    [Google Scholar]
  123. 123.
    Wootton RCR, deMello AJ 2004. Continuous laminar evaporation: micron-scale distillation. Chem. Commun. 4:3266–67
    [Google Scholar]
  124. 124.
    Lam KF, Sorensen E, Gavriilidis A. 2013. Review on gas-liquid separations in microchannel devices. Chem. Eng. Res. Des. 91:101941–53
    [Google Scholar]
  125. 125.
    Hartman RL, Sahoo HR, Yen BC, Jensen KF. 2009. Distillation in microchemical systems using capillary forces and segmented flow. Lab Chip 9:131843–49
    [Google Scholar]
  126. 126.
    Hibara A, Toshin K, Tsukahara T, Mawatari K, Kitamori T. 2008. Microfluidic distillation utilizing micro–nano combined structure. Chem. Lett. 37:101064–65
    [Google Scholar]
  127. 127.
    Hibara A, Iwayama S, Matsuoka S, Ueno M, Kikutani Y et al. 2004. Surface modification method of microchannels for gas−liquid two-phase flow in microchips. Anal. Chem. 77:3943–47
    [Google Scholar]
  128. 128.
    Lam KF, Cao E, Sorensen E, Gavriilidis A. 2011. Development of multistage distillation in a microfluidic chip. Lab Chip 11:71311–17
    [Google Scholar]
  129. 129.
    Seok DR, Hwang S-T. 1985. Zero-gravity distillation utilizing the heat pipe principle (micro-distillation). AIChE J 31:122059–65
    [Google Scholar]
  130. 130.
    Kralj JG, Sahoo HR, Jensen KF. 2007. Integrated continuous microfluidic liquid-liquid extraction. Lab Chip 7:2256–63
    [Google Scholar]
  131. 131.
    Sahoo HR, Kralj JG, Jensen KF. 2007. Multistep continuous-flow microchemical synthesis involving multiple reactions and separations. Angew. Chem. Int. Ed. 46:305704–8
    [Google Scholar]
  132. 132.
    Pollet P, Eckert CA, Liotta CL. 2011. Switchable solvents. Chem. Sci. 2:4609–14
    [Google Scholar]
  133. 133.
    Lestari G, Alizadehgiashi M, Abolhasani M, Kumacheva E. 2017. Study of extraction and recycling of switchable hydrophilicity solvents in an oscillatory microfluidic platform. ACS Sustain. Chem. Eng. 5:54304–10
    [Google Scholar]
  134. 134.
    Broyles BS, Jacobson SC, Ramsey JM. 2003. Sample filtration, concentration, and separation integrated on microfluidic devices. Anal. Chem. 75:112761–67
    [Google Scholar]
  135. 135.
    Prodromou R, Day KN, Saberi-Bosari S, Schneible JD, Mabe MD et al. 2021. Engineering next generation cyclized peptide ligands for light-controlled capture and release of therapeutic proteins. Adv. Funct. Mater. 31:272101410
    [Google Scholar]
  136. 136.
    Bédard AC, Adamo A, Aroh KC, Russell MG, Bedermann AA et al. 2018. Reconfigurable system for automated optimization of diverse chemical reactions. Science 361:64081220–25
    [Google Scholar]
  137. 137.
    Abolhasani M, Coley CW, Jensen KF. 2015. Multiphase oscillatory flow strategy for in situ measurement and screening of partition coefficients. Anal. Chem. 87:2111130–36
    [Google Scholar]
  138. 138.
    Phillips TW, Lignos IG, Maceiczyk RM, deMello AJ, deMello JC et al. 2014. Nanocrystal synthesis in microfluidic reactors: Where next?. Lab Chip 14:173172–80
    [Google Scholar]
  139. 139.
    Lignos I, Maceiczyk RM, Kovalenko MV, Stavrakis S. 2019. Tracking the fluorescence lifetimes of cesium lead halide perovskite nanocrystals during their synthesis using a fully automated optofluidic platform. Chem. Mater. 32:127–37
    [Google Scholar]
  140. 140.
    Perro A, Lebourdon G, Henry S, Lecomte S, Servant L, Marre S. 2016. Combining microfluidics and FT-IR spectroscopy: towards spatially resolved information on chemical processes. React. Chem. Eng. 1:6577–94
    [Google Scholar]
  141. 141.
    Ashok PC, Singh GP, Rendall HA, Krauss TF, Dholakia K. 2011. Waveguide confined Raman spectroscopy for microfluidic interrogation. Lab Chip 11:71262–70
    [Google Scholar]
  142. 142.
    Chan EM, Marcus MA, Fakra S, Elnaggar M, Mathies RA, Alivisatos AP. 2007. Millisecond kinetics of nanocrystal cation exchange using microfluidic X-ray absorption spectroscopy. J. Phys. Chem. A 111:4912210–15
    [Google Scholar]
  143. 143.
    Sui S, Wang Y, Dimitrakopoulos C, Perry SL. 2018. A graphene-based microfluidic platform for electrocrystallization and in situ X-ray diffraction. Crystal 8:276
    [Google Scholar]
  144. 144.
    Stehle R, Goerigk G, Wallacher D, Ballauff M, Seiffert S. 2013. Small-angle X-ray scattering in droplet-based microfluidics. Lab Chip 13:81529–37
    [Google Scholar]
  145. 145.
    Martel A, Burghammer M, Davies R, DiCola E, Panine P et al. 2008. A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small- and wide-angle X-ray scattering. Biomicrofluidics 2:2024104
    [Google Scholar]
  146. 146.
    Bart J, Kolkman AJ, Vries AJO, Koch K, Nieuwland PJ et al. 2009. A microfluidic high-resolution NMR flow probe. J. Am. Chem. Soc. 131:145014–15
    [Google Scholar]
  147. 147.
    Besenhard MO, Jiang D, Pankhurst QA, Southern P, Damilos S et al. 2021. Development of an in-line magnetometer for flow chemistry and its demonstration for magnetic nanoparticle synthesis. Lab Chip 21:3775–83
    [Google Scholar]
  148. 148.
    Destremaut F, Salmon JB, Qi L, Chapel JP, Destremaut F et al. 2009. Microfluidics with on-line dynamic light scattering for size measurements. Lab Chip 9:223289–96
    [Google Scholar]
  149. 149.
    Pang X, Lewis AC. 2012. A microfluidic lab-on-chip derivatisation technique for the measurement of gas phase formaldehyde. Anal. Methods 4:72013–20
    [Google Scholar]
  150. 150.
    Sagmeister P, Williams JD, Hone CA, Kappe OC. 2019. Laboratory of the future: a modular flow platform with multiple integrated PAT tools for multistep reactions. React. Chem. Eng. 4:91571–78
    [Google Scholar]
  151. 151.
    Sagmeister P, Lebl R, Castillo I, Rehrl J, Kruisz J et al. 2021. Advanced real-time process analytics for multistep synthesis in continuous flow. Angew. Chem. Int. Ed. 60:158139–48
    [Google Scholar]
  152. 152.
    Volk AA, Abolhasani M. 2021. Autonomous flow reactors for discovery and invention. Trends Chem 3:7519–22
    [Google Scholar]
  153. 153.
    Epps RW, Volk AA, Ibrahim MYS, Abolhasani M. 2021. Universal self-driving laboratory for accelerated discovery of materials and molecules. Chem 7:2541–45
    [Google Scholar]
  154. 154.
    Epps RW, Abolhasani M. 2021. Modern nanoscience: convergence of AI, robotics, and colloidal synthesis. Appl. Phys. Rev. 8:041316
    [Google Scholar]
  155. 155.
    Tao H, Wu T, Kheiri S, Aldeghi M, Aspuru-Guzik A, Kumacheva E. 2021. Self-driving platform for metal nanoparticle synthesis: combining microfluidics and machine learning. Adv. Funct. Mater. 31:512106725
    [Google Scholar]
  156. 156.
    Vikram A, Brudnak K, Zahid A, Shim M, Kenis PJA. 2021. Accelerated screening of colloidal nanocrystals using artificial neural network-assisted autonomous flow reactor technology. Nanoscale 13:17028–39
    [Google Scholar]
  157. 157.
    Coley CW, Thomas DA, Lummiss JAM, Jaworski JN, Breen CP et al. 2019. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365:6453eaax1566
    [Google Scholar]
  158. 158.
    Zhou Z, Li X, Zare RN. 2017. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3:121337–44
    [Google Scholar]
  159. 159.
    Huyer W, Neumaier A. 2008. SNOBFIT—Stable Noisy Optimization by Branch and Fit. ACM Trans. Math. Softw. 35:29
    [Google Scholar]
  160. 160.
    Krishnadasan S, Brown RJC, deMello AJ, deMello JC 2007. Intelligent routes to the controlled synthesis of nanoparticles.. Lab Chip 7:111434–41
    [Google Scholar]
  161. 161.
    Li J, Li J, Liu R, Tu Y, Li Y et al. 2020. Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab. Nat. Commun. 11:2046
    [Google Scholar]
  162. 162.
    Epps RW, Bowen MS, Volk AA, Abdel-Latif K, Han S et al. 2020b. Artificial chemist: an autonomous quantum dot synthesis bot. Adv. Mater. 32:302001626
    [Google Scholar]
  163. 163.
    Epps RW, Volk AA, Reyes KG, Abolhasani M. 2021. Accelerated AI development for autonomous materials synthesis in flow. Chem. Sci. 12:176025–36
    [Google Scholar]
  164. 164.
    Mekki-Berrada F, Ren Z, Huang T, Wong WK, Zheng F et al. 2021. Two-step machine learning enables optimized nanoparticle synthesis. NPJ Comput. Mater. 7:55
    [Google Scholar]
  165. 165.
    Chaudhuri A, Kuijpers KPL, Hendrix RBJ, Shivaprasad P, Hacking JA et al. 2020. Process intensification of a photochemical oxidation reaction using a Rotor-Stator Spinning Disk Reactor: a strategy for scale up. Chem. Eng. J. 400:125875
    [Google Scholar]
  166. 166.
    Lee DS, Sharabi M, Jefferson-Loveday R, Pickering SJ, Poliakoff M, George MW. 2020. Scalable continuous vortex reactor for gram to kilo scale for UV and visible photochemistry. Org. Process Res. Dev. 24:2201–6
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092120-024449
Loading
/content/journals/10.1146/annurev-chembioeng-092120-024449
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error