1932

Abstract

Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092120-025140
2022-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092120-025140.html?itemId=/content/journals/10.1146/annurev-chembioeng-092120-025140&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Li JS, Barber CC, Zhang W. 2019. Natural products from anaerobes. J. Ind. Microbiol. Biotechnol. 46:3–4375–83
    [Google Scholar]
  2. 2.
    O'Brien J, Wright GD. 2011. An ecological perspective of microbial secondary metabolism. Curr. Opin. Biotechnol. 22:4552–58
    [Google Scholar]
  3. 3.
    Romero D, Traxler MF, López D, Kolter R. 2011. Antibiotics as signal molecules. Chem. Rev. 111:95492–505
    [Google Scholar]
  4. 4.
    Newman DJ, Cragg GM. 2016. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79:3629–61
    [Google Scholar]
  5. 5.
    Ren Y, Bai Y, Zhang Z, Cai W, Del Rio Flores A. 2019. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: a review of recent development. Molecules 24:173122
    [Google Scholar]
  6. 6.
    Skyrud W, Del Rio Flores A, Zhang W. 2020. Biosynthesis of cyclohexanecarboxyl-CoA highlights a promiscuous shikimoyl-CoA synthetase and a FAD-dependent dehydratase. ACS Catal 10:53360–64
    [Google Scholar]
  7. 7.
    Wei L, Hu F, Shen Y, Chen Z, Yu Y, Lin C et al. 2014. Live cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11:4410–12
    [Google Scholar]
  8. 8.
    Zhang X, Evanno L, Poupon E. 2020. Biosynthetic routes to natural isocyanides. Eur. J. Org. Chem. 2020:131919–29
    [Google Scholar]
  9. 9.
    Chen T-Y, Chen J, Tang Y, Zhou J, Guo Y, Chang W-C. 2021. Current understanding toward isonitrile group biosynthesis and mechanism. Chin. J. Chem. 39:2463–72
    [Google Scholar]
  10. 10.
    Li X, Lv J, Hu D, Abe I. 2021. Biosynthesis of alkyne-containing natural products. RSC Chem. Biol. 2:166–80
    [Google Scholar]
  11. 11.
    Haritos VS. 2015. A terminal triple bond toolbox. Nat. Chem. Biol. 11:98–99
    [Google Scholar]
  12. 12.
    Zhu X, Zhang W. 2018. Terminal alkyne biosynthesis in marine microbes. Methods Enzymol. 604:89–112
    [Google Scholar]
  13. 13.
    Minto RE, Blacklock BJ. 2008. Biosynthesis and function of polyacetylenes and allied natural products. Prog. Lipid Res. 47:233–306
    [Google Scholar]
  14. 14.
    Clarke-Pearson MF, Brady SF. 2008. Paerucumarin, a new metabolite produced by the pvc gene cluster from Pseudomonas aeruginosa. J. Bacteriol. 190:206927–30
    [Google Scholar]
  15. 15.
    Crawford JM, Portmann C, Zhang X, Roeffaers MBJ, Clardy J. 2012. Small molecule perimeter defense in entomopathogenic bacteria. PNAS 9:2710821–26
    [Google Scholar]
  16. 16.
    Wang L, Zhu M, Zhang Q, Zhang X, Yang P, Liu Z et al. 2017. Diisonitrile natural product sf2768 functions as a chalkophore that mediates copper acquisition in Streptomyces thioluteus. ACS Chem. Biol. 12:123067–75
    [Google Scholar]
  17. 17.
    Gloer JB, Rinderknecht BL. 1989. Nominine: a new insecticidal indole diterpene from the sclerotia of Aspergillus nomius. J. Org. Chem. 1989:62530–32
    [Google Scholar]
  18. 18.
    Lim FY, Won TH, Raffa N, Baccile JA, Wisecaver J et al. 2018. Fungal isocyanide synthases and xanthocillin biosynthesis in Aspergillus fumigatus. Am. Soc. Microbiol. 9:3e00785–18
    [Google Scholar]
  19. 19.
    Harris NC, Sato M, Herman NA, Twigg F, Cai W, Liu J et al. 2017. Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. PNAS 114:277025–30
    [Google Scholar]
  20. 20.
    Hillwig ML, Zhu Q, Liu X. 2014. Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua. ACS Chem. Biol. 9:2372–77
    [Google Scholar]
  21. 21.
    Soledade MSC, Yaya EE. 2012. The first isocyanide of plant origin expands functional group diversity in cruciferous phytoalexins: synthesis, structure and bioactivity of isocyalexin A. Org. Biomol. Chem. 10:3613–16
    [Google Scholar]
  22. 22.
    Emsermann J, Kauhl U, Opatz T. 2016. Marine isonitriles and their related compounds. Mar. Drugs 14:116
    [Google Scholar]
  23. 23.
    Schnermann MJ, Shenvi RA. 2016. Syntheses and biological studies of marine terpenoids derived from inorganic cyanide. Nat. Prod. Rep. 32:4543–77
    [Google Scholar]
  24. 24.
    Manzo E, Ciavatta ML, Gavagnin M, Mollo E, Guo Y-W, Cimino G. 2004. Isocyanide terpene metabolites of Phyllidiella pustulosa, a nudibranch from the South China Sea. J. Nat. Prod. 2004:1701–4
    [Google Scholar]
  25. 25.
    Karuso P, Scheuer PJ. 1989. Biosynthesis of isocyanoterpenes in sponges. J. Org. Chem. 54:92092–95
    [Google Scholar]
  26. 26.
    Garson MJ, Simpson JS, Flowers AE, Dumdei EJ. 2000. Cyanide and thiocyanate-derived functionality in marine organisms - structures, biosynthesis and ecology. . Stud. Nat. Prod. Chem. 21:329–72
    [Google Scholar]
  27. 27.
    Fookes CJR, Garson MJ, MacLeod JK, Skelton BW, White AH. 1988. Biosynthesis of diisocyanoadociane, a novel diterpene from the marine sponge Amphimedon sp. crystal structure of a monoamide derivative. J. Chem. Soc. Perkins Trans. 1:1003–11
    [Google Scholar]
  28. 28.
    Garson MJ. 1986. Biosynthesis of the novel diterpene isonitrile diisocyanoadociane by a marine sponge of the Amphimedon genus: incorporation studies with sodium [14C]cyanide and sodium [2-14C]acetate. J. Chem. Soc. Chem. Commun. 1986:35–36
    [Google Scholar]
  29. 29.
    Brady SF, Clardy J. 2005. Cloning and heterologous expression of isocyanide biosynthetic genes from environmental DNA. Angew. Chem. 44:437063–65
    [Google Scholar]
  30. 30.
    Harris NC, Born DA, Cai W, Huang Y, Martin J, Khalaf R et al. 2018. Isonitrile formation by a non-heme iron(II)-dependent oxidase/decarboxylase. Angew. Chem. Int. Ed. 57:319707–10
    [Google Scholar]
  31. 31.
    Brady SF, Chao CJ, Handelsman J, Clardy J. 2001. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org. Lett. 3:131981–84
    [Google Scholar]
  32. 32.
    Brady SF, Chao CJ, Clardy J. 2002. New natural product families from an environmental DNA (eDNA) gene cluster. J. Am. Chem. Soc. 124:9968–69
    [Google Scholar]
  33. 33.
    Brady SF, Clardy J. 2004. Palmitoylputrescine, an antibiotic isolated from the heterologous expression of DNA extracted from bromeliad tank water. J. Nat. Prod. 67:1283–86
    [Google Scholar]
  34. 34.
    Brady SF, Chao CJ, Clardy J. 2004. Long-chain N-acyltyrosine synthases from environmental DNA. Appl. Environ. Microbiol. 70:116865–70
    [Google Scholar]
  35. 35.
    Brady SF, Clardy J. 2000. Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J. Am. Chem. Soc. 122:12903–4
    [Google Scholar]
  36. 36.
    Brady SF, Clardy J. 2005. Systematic investigation of the Escherichia coli metabolome for the biosynthetic origin of an isocyanide carbon atom. Angew. Chem. Int. Ed. 44:7045–48
    [Google Scholar]
  37. 37.
    Chang W-c, Sanyal D, Huang J-L, Ittiamornkul K, Zhu Q, Liu X 2017. In vitro stepwise reconstitution of amino acid derived vinyl isocyanide biosynthesis: detection of an elusive intermediate. Org. Lett. 19:1208–11
    [Google Scholar]
  38. 38.
    Drake EJ, Gulick AM 2008. Three-dimensional structures of Pseudomonas aeruginosa PvcA and PvcB, two proteins involved in the synthesis of 2-isocyano-6,7-dihydroxycoumarin. J. Mol. Biol. 384:1193–205
    [Google Scholar]
  39. 39.
    Rothe W. 1954. Das neue Antibiotikum Xanthocillin. Dtsch. Med. Wochenschr. 79:1080–81
    [Google Scholar]
  40. 40.
    Briza P, Eckerstorfer M, Breitenbach M. 1994. The sporulation-specific enzymes encoded by the DITI and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. PNAS 91:4524–28
    [Google Scholar]
  41. 41.
    Qaisar U, Luo L, Haley CL, Brady SF, Carty NL et al. 2013. The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (Cup) genes. PLOS ONE 8:4e62735
    [Google Scholar]
  42. 42.
    Qaisar U, Kruczek CJ, Azeem M, Javaid N, Colmer-Hamood JA, Hamood AN. 2016. The Pseudomonas aeruginosa extracellular secondary metabolite, Paerucumarin, chelates iron and is not localized to extracellular membrane vesicles. J. Microbiol. 54:8573–81
    [Google Scholar]
  43. 43.
    Oh J, Kim NY, Chen H, Palm NW, Crawford JM. 2019. An Ugi-like biosynthetic pathway encodes bombesin receptor subtype-3 agonists. J. Am. Chem. Soc. 141:4116271–78
    [Google Scholar]
  44. 44.
    Dose B, Niehs SP, Scherlach K, Shahda S, Flórez LV et al. 2021. Biosynthesis of sinapigladioside, an antifungal isothiocyanate from Burkholderia symbionts. ChemBioChem 22:111920–24
    [Google Scholar]
  45. 45.
    Raveh A, Carmeli S. 2007. Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J. Nat. Prod. 70:2196–201
    [Google Scholar]
  46. 46.
    Smitka TA, Bonjouklian R, Doolin L, Jones ND, Deeter JB, Yoshida WY et al. 1992. Ambiguine isonitriles, fungicidal hapalindole-type alkaloids from three genera of blue-green algae belonging to the Stigonemataceae. J. Org. Chem. 57:3857–61
    [Google Scholar]
  47. 47.
    Hagmann L, Jüttner F. 1996. Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 37:366539–42
    [Google Scholar]
  48. 48.
    Moore RE, Cheuk C, Patterson GML. 1984. Hapalindoles: new alkaloids from the blue-green alga Hapalosiphon fontinalis. J. Am. Chem. Soc. 106:21645657
    [Google Scholar]
  49. 49.
    Hillwig ML, Fuhrman HA, Ittiamornkul K, Sevco TJ, Kwak DH, Liu X. 2014. Identification and characterization of a welwitindolinone alkaloid biosynthetic gene cluster in the stigonematalean cyanobacterium Hapalosiphon welwitschii. ChemBioChem 15:5665–69
    [Google Scholar]
  50. 50.
    Li S, Lowell AN, Yu F, Raveh A, Newmister SA, Bair N et al. 2015. Hapalindole/ambiguine biogenesis is mediated by a cope rearrangement, C-C bond-forming cascade. J. Am. Chem. Soc. 137:4915366–69
    [Google Scholar]
  51. 51.
    Chen T-Y, Chen J, Tang Y, Zhou J, Guo Y, Chang W. 2020. Pathway from N-alkylglycine to alkylisonitrile catalyzed by iron(II) and 2-oxoglutarate-dependent oxygenases. Angew. Chem. Int. Ed. 132:197437–41
    [Google Scholar]
  52. 52.
    Jonnalagadda R, Del Rio Flores A, Cai W, Mehmood R, Narayanamoorthy M et al. 2021. Biochemical and crystallographic investigations into isonitrile formation by a non-heme iron-dependent oxidase/decarboxylase. J. Biol. Chem. 296:100231
    [Google Scholar]
  53. 53.
    Li H, Liu Y. 2020. Mechanistic investigation of isonitrile formation catalyzed by the nonheme iron/α-KG-dependent decarboxylase (ScoE). ACS Catal 10:52942–57
    [Google Scholar]
  54. 54.
    Ali HS, Ghafoor S, De Visser SP. 2022. Density functional theory study into the reaction mechanism of isonitrile biosynthesis by the nonheme iron enzyme ScoE. Top. Catal. 65:528–43
    [Google Scholar]
  55. 55.
    La Pierre HS, Arnold J, Bergman RG, Toste FD 2012. Carbon monoxide, isocyanide, and nitrile complexes of cationic, d0 vanadium bisimides: π-back bonding derived from the π symmetry, bonding metal bisimido ligand orbitals. Inorg. Chem. 51:2413334–44
    [Google Scholar]
  56. 56.
    Ugi I, Werner B, Domling A 2003. The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules 8:53–66
    [Google Scholar]
  57. 57.
    Zhi S, Ma X, Zhang W 2019. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem. 17:7632–50
    [Google Scholar]
  58. 58.
    Wang Q, Wang D-X, Wang M-X, Zhu J. 2018. Still unconquered: enantioselective Passerini and Ugi multicomponent reactions. Acc. Chem. Res. 51:1290–300
    [Google Scholar]
  59. 59.
    Schäfer RJB, Monaco MR, Li M, Tirla A, Rivera-Fuentes P, Wennemers H. 2019. The bioorthogonal isonitrile−chlorooxime ligation. J. Am. Chem. Soc. 141:18644–48
    [Google Scholar]
  60. 60.
    Stöckmann H, Neves AA, Stairs S, Brindle KM, Leeper FJ. 2011. Exploring isonitrile-based click chemistry for ligation with biomolecules. Org. Biomol. Chem. 9:7303–5
    [Google Scholar]
  61. 61.
    Deb T, Franzini RM 2020. The unique bioorthogonal chemistry of isonitriles. Synlett 31:10938–44
    [Google Scholar]
  62. 62.
    Imming P, Mohr R, Müller E, Overheu W, Seitz G. 1982. [4 + 1]Cycloaddition of isocyanides to 1,2,4,5-tetrazines: a novel synthesis of pyrazole. Angew. Chem. 21:4284
    [Google Scholar]
  63. 63.
    Tu J, Svatunek D, Parvez S, Liu AC, Levandowski BJ et al. 2019. Stable, reactive, and orthogonal tetrazines: dispersion forces promote the cycloaddition with isonitriles. Angew. Chem. 58:279043–48
    [Google Scholar]
  64. 64.
    Wu H, Devaraj NK. 2018. Advances in tetrazine bioorthogonal chemistry driven by the synthesis of novel tetrazines and dienophiles. Acc. Chem. Res. 51:51249–59
    [Google Scholar]
  65. 65.
    Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R 2010. Bioorthogonal turn-on probes for imaging small molecules inside living cells. Angew. Chem. 122:162931–34
    [Google Scholar]
  66. 66.
    Xu M, Tu J, Franzini RM. 2017. Rapid and efficient tetrazine-induced drug release from highly stable benzonorbornadiene derivatives. Chem. Commun. 53:466271–74
    [Google Scholar]
  67. 67.
    Xu M, Galindo-Murillo R, Cheatham TE, Franzini RM. 2017. Dissociative reactions of benzonorbornadienes with tetrazines: scope of leaving groups and mechanistic insights. Org. Biomol. Chem. 15:469855–65
    [Google Scholar]
  68. 68.
    Tu J, Xu M, Parvez S, Peterson RT, Franzini RM. 2018. Bioorthogonal removal of 3-isocyanopropyl groups enables the controlled release of fluorophores and drugs in vivo. J. Am. Chem. Soc. 140:278410–14
    [Google Scholar]
  69. 69.
    Tu J, Svatunek D, Parvez S, Eckvahl HJ, Xu M, Peterson RT et al. 2020. Isonitrile-responsive and bioorthogonally removable tetrazine protecting groups. Chem. Sci. 11:169–79
    [Google Scholar]
  70. 70.
    Huang YB, Cai W, Del Rio Flores A, Twigg FF, Zhang W. 2020. Facile discovery and quantification of isonitrile natural products via tetrazine-based click reactions. Anal. Chem. 92:1599–602
    [Google Scholar]
  71. 71.
    Stairs S, Neves AA, Stöckmann H, Wainman YA. 2013. Metabolic glycan imaging by isonitrile-tetrazine click chemistry. ChemBioChem 14:1063–67
    [Google Scholar]
  72. 72.
    Wainman YA, Neves AA, Stairs S, Stöckmann H, Ireland-Zecchini H et al. 2013. Dual-sugar imaging using isonitrile and azido-based click chemistries. Org. Biomol. Chem. 11:427297–300
    [Google Scholar]
  73. 73.
    Tørring T, Shames SR, Cho W, Roy CR, Crawford JM. 2017. Acyl histidines: new N-acyl amides from Legionella pneumophila. ChemBioChem 18:7638–46
    [Google Scholar]
  74. 74.
    Richards JP, Cai W, Zill NA, Zhang W, Ojha AK. 2019. Adaptation of Mycobacterium tuberculosis to biofilm growth is genetically linked to drug tolerance. Antimicrob. Agents Chemother. 63:11e01213–19
    [Google Scholar]
  75. 75.
    Del Rio Flores A, Twigg FF, Du Y, Cai W, Aguirre DQ et al. 2021. Biosynthesis of triacsin featuring an N-hydroxytriazene pharmacophore. Nat. Chem. Biol. 17:1305–13
    [Google Scholar]
  76. 76.
    Twigg FF, Cai W, Huang W, Liu J, Sato M, Perez TJ et al. 2019. Identifying the biosynthetic gene cluster for triacsins with an N-hydroxytriazene moiety. ChemBioChem 20:91145–49
    [Google Scholar]
  77. 77.
    Kino T, Hatanaka H, Miyata S, Inamura N, Kohsaka M, Aoki H et al. 1987. FK-506, a novel immunosuppressant isolated from a Streptomyces. J. Antibiot. 40:1256–65
    [Google Scholar]
  78. 78.
    Ittiamornkul K, Zhu Q, Gkotsi DS, Smith DRM, Hillwig ML, Nightingale N et al. 2015. Promiscuous indolyl vinyl isonitrile synthases in the biogenesis and diversification of hapalindole-type alkaloids. Chem. Sci. 6:126836–40
    [Google Scholar]
  79. 79.
    Bunn BM, Xu M, Webb CM, Viswanathan R. 2021. Biocatalysts from cyanobacterial hapalindole pathway afford antivirulent isonitriles against MRSA. J. Biosci. 46:37
    [Google Scholar]
  80. 80.
    Liu Z, Ioerger TR, Wang F, Sacchettini JC 2013. Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme. J. Biol. Chem. 288:2518473–83
    [Google Scholar]
  81. 81.
    Chhabra A, Haque AS, Pal RK, Goyal A, Rai R, Joshi S et al. 2012. Nonprocessive [2 + 2]e off-loading reductase domains from mycobacterial nonribosomal peptide synthetases. PNAS 109:155681–86
    [Google Scholar]
  82. 82.
    Lee M, Lenman M, Banaś A, Bafor M, Singh S, Lee M et al. 1998. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280:5365915–18
    [Google Scholar]
  83. 83.
    Chai Q-Y, Yang Z, Lin H-W, Han B-N 2016. Alkynyl-containing peptides of marine origin: a review. Mar. Drugs 14:11216
    [Google Scholar]
  84. 84.
    Zhu X, Liu J, Zhang W. 2015. De novo biosynthesis of terminal alkyne-labeled natural products. Nat. Chem. Biol. 11:2115–20
    [Google Scholar]
  85. 85.
    Marchand JA, Neugebauer ME, Ing MC, Lin CI, Pelton JG, Chang MCY. 2019. Discovery of a pathway for terminal-alkyne amino acid biosynthesis. Nature 567:7748420–24
    [Google Scholar]
  86. 86.
    Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS et al. 2021. Bioorthogonal chemistry. Nat. Rev. Methods Prim. 1:29
    [Google Scholar]
  87. 87.
    Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM 2006. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). PNAS 103:259482–87
    [Google Scholar]
  88. 88.
    Zhu X, Zhang W. 2015. Tagging polyketides/non-ribosomal peptides with a clickable functionality and applications. Front. Chem. 3:11
    [Google Scholar]
  89. 89.
    Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR et al. 2015. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 524:7564252–56
    [Google Scholar]
  90. 90.
    Shen J, Wu G, Tsai AL, Zhou M. 2020. Structure and mechanism of a unique diiron center in mammalian stearoyl-CoA desaturase. J. Mol. Biol. 432:185152–61
    [Google Scholar]
  91. 91.
    Zhu X, Su M, Manickam K, Zhang W. 2015. Bacterial genome mining of enzymatic tools for alkyne biosynthesis. ACS Chem. Biol. 10:122785–93
    [Google Scholar]
  92. 92.
    Potgieter HC, Vermeulen NMJ, Potgieter DJJ, Strauss HF. 1977. A toxic amino acid, 2(S)3(R)-2-amino-3-hydroxypent-4-ynoic acid from the fungus Sclerotium rolfsii. Phytochemistry 16:111757–59
    [Google Scholar]
  93. 93.
    Sanada M, Miyano T, Iwadare S. 1986. β-Ethynylserine, an antimetabolite of l-threonine, from Streptomyces cattleya. J. Antibiot. 39:2304–5
    [Google Scholar]
  94. 94.
    Scannell JP, Pruess DL, Demny TG, Weiss F, Williams T, Stempel A. 1971. Antimetabolites produced by microorganisms. II. L-2-amino-4-pentynoic acid. J. Antibiot. 24:4239–44
    [Google Scholar]
  95. 95.
    Sanada M, Tetsuji M, Iwadare S. 1986. Biosynthesis of fluorothreonine and fluoroacetic acid by the thienamycin producer, Streptomyces cattleya. J. Antibiot. 39:259–64
    [Google Scholar]
  96. 96.
    Neugebauer ME, Sumida KH, Pelton JG, McMurry JL, Marchand JA, Chang MCY. 2019. A family of radical halogenases for the engineering of amino-acid-based products. Nat. Chem. Biol. 15:101009–16
    [Google Scholar]
  97. 97.
    Prescher JA, Bertozzi CR. 2005. Chemistry in living systems. Nat. Chem. Biol. 1:13–21
    [Google Scholar]
  98. 98.
    Grammel M, Hang HC. 2013. Chemical reporters for biological discovery. Nat. Chem. Biol. 9:8475–84
    [Google Scholar]
  99. 99.
    Kolb HC, Finn MG, Sharpless KB. 2001. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. 40:112004–21
    [Google Scholar]
  100. 100.
    Zhu X, Shieh P, Su M, Bertozzi CR, Zhang W. 2016. A fluorogenic screening platform enables directed evolution of an alkyne biosynthetic tool. Chem. Commun. 52:7511239–42
    [Google Scholar]
  101. 101.
    Moss NA, Seiler G, Leão TF, Castro-Falcón G, Gerwick L et al. 2019. Nature's combinatorial biosynthesis produces vatiamides A–F. Angew. Chem. 131:279125–29
    [Google Scholar]
  102. 102.
    Murata K, Suenaga M, Kai K. 2021. Genome mining discovery of protegenins A–D, bacterial polyynes involved in the antioomycete and biocontrol activities of Pseudomonas protegens. ACS Chem. Biol. In press
    [Google Scholar]
  103. 103.
    Kai K, Sogame M, Sakurai F, Nasu N, Fujita M. 2018. Collimonins A-D, unstable polyynes with antifungal or pigmentation activities from the fungus-feeding bacterium Collimonas fungivorans Ter331. Org. Lett. 20:123536–40
    [Google Scholar]
  104. 104.
    Ross C, Scherlach K, Kloss F, Hertweck C 2014. The molecular basis of conjugated polyyne biosynthesis in phytopathogenic bacteria. Angew. Chem. 53:307794–98
    [Google Scholar]
  105. 105.
    Zhang J, Liang L, Guan X, Deng R, Qu H et al. 2018. In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe. Anal. Bioanal. Chem. 410:2585–94
    [Google Scholar]
  106. 106.
    Jamieson LE, Greaves J, McLellan JA, Munro KR, Tomkinson NCO et al. 2018. Tracking intracellular uptake and localisation of alkyne tagged fatty acids using Raman spectroscopy. Spectrochim. Acta A 197:30–36
    [Google Scholar]
  107. 107.
    Yamaguchi S, Matsushita T, Izuta S, Katada S, Ura M, Ikeda T et al. 2017. Chemically-activatable alkyne-tagged probe for imaging microdomains in lipid bilayer membranes. Sci. Rep. 7:41007
    [Google Scholar]
  108. 108.
    Seidel J, Miao Y, Porterfield W, Cai W, Zhu X et al. 2019. Structure-activity-distribution relationship study of anti-cancer antimycin-type depsipeptides. Chem. Commun. 55:9379–82
    [Google Scholar]
  109. 109.
    Moliner F, Knox K, Gordon D, Lee M, Tipping WJ, Geddis A et al. 2021. A palette of minimally tagged sucrose analogues for real-time Raman imaging of intracellular plant metabolism. Angew. Chem. 133:147715–20
    [Google Scholar]
  110. 110.
    Hu F, Chen Z, Zhang L, Shen Y, Wei L, Min W 2015. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew. Chem. 54:349821–25
    [Google Scholar]
  111. 111.
    Yan Y, Chen J, Zhang L, Zheng Q, Han Y, Zhang H et al. 2013. Multiplexing of combinatorial chemistry in antimycin biosynthesis: expansion of molecular diversity and utility. Angew Chem 125:4712534–38
    [Google Scholar]
  112. 112.
    Sandy M, Rui Z, Gallagher J, Zhang W 2012. Enzymatic synthesis of dilactone scaffold of antimycins. ACS Chem. Biol. 7:121956–61
    [Google Scholar]
  113. 113.
    Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. 2020. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol. 18:4241–56
    [Google Scholar]
  114. 114.
    Johnson JA, Lu YY, Van Deventer JA, Tirrell DA. 2010. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr. Opin. Chem. Biol. 14:6774–80
    [Google Scholar]
  115. 115.
    Horwich AL, Farr GW, Fenton WA. 2006. GroEL−GroES-mediated protein folding. Chem. Rev. 106:51917–30
    [Google Scholar]
  116. 116.
    Truong F, Yoo TH, Lampo TJ, Tirrell DA. 2012. Two-strain, cell-selective protein labeling in mixed bacterial cultures. J. Am. Chem. Soc. 134:208551–56
    [Google Scholar]
  117. 117.
    Morita H, Yamashita M, Shi SP, Wakimoto T, Kondo S et al. 2011. Synthesis of unnatural alkaloid scaffolds by exploiting plant polyketide synthase. PNAS 108:3313504–9
    [Google Scholar]
  118. 118.
    Williams GJ. 2013. Engineering polyketide synthases and nonribosomal peptide synthetases. Curr. Opin. Struct. Biol. 23:4603–12
    [Google Scholar]
  119. 119.
    Su M, Zhu X, Zhang W. 2018. Probing the acyl carrier protein-enzyme interactions within terminal alkyne biosynthetic machinery. AIChE J 64:124255–62
    [Google Scholar]
  120. 120.
    Porterfield WB, Poenateetai N, Zhang W. 2020. Engineered biosynthesis of alkyne-tagged polyketides by type I PKSs. iScience 23:3100938
    [Google Scholar]
  121. 121.
    Bihlmaier C, Welle E, Hofmann C, Welzel K, Vente A et al. 2006. Biosynthetic gene cluster for the polyenoyltetramic acid α-lipomycin. Antimicrob. Agents Chemother. 50:62113–21
    [Google Scholar]
  122. 122.
    Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH et al. 2013. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem. Biol. 20:111340–51
    [Google Scholar]
  123. 123.
    Fischbach MA, Walsh CT. 2006. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic machinery, and mechanisms. Chem. Rev. 106:83468–96
    [Google Scholar]
  124. 124.
    Liu J, Zhu X, Kim SJ, Zhang W. 2016. Antimycin-type depsipeptides: discovery, biosynthesis, chemical synthesis, and bioactivities. Nat. Prod. Rep. 33:101146–65
    [Google Scholar]
  125. 125.
    Awakawa T, Fujioka T, Zhang L, Hoshino S, Hu Z et al. 2018. Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution. Nat. Commun. 9:3534
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092120-025140
Loading
/content/journals/10.1146/annurev-chembioeng-092120-025140
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error