1932

Abstract

Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092120-034534
2022-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092120-034534.html?itemId=/content/journals/10.1146/annurev-chembioeng-092120-034534&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Zhang H, Gilbert B, Huang F, Banfield JF. 2003. Water-driven structure transformation in nanoparticles at room temperature. Nature 424:69521025–29
    [Google Scholar]
  2. 2.
    Prabhu N, Sharp K. 2006. Protein-solvent interactions. Chem. Rev. 106:51616–23
    [Google Scholar]
  3. 3.
    de Jonge N, Ross FM. 2011. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6:11695–704
    [Google Scholar]
  4. 4.
    Ross FM 2016. Liquid Cell Electron Microscopy Cambridge, UK: Cambridge Univ. Press
  5. 5.
    Liao HG, Zheng H. 2016. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 67:719–47
    [Google Scholar]
  6. 6.
    Contarato D, Denes P, Doering D, Joseph J, Krieger B 2012. High speed, radiation hard CMOS pixel sensors for transmission electron microscopy. Phys. Procedia 37:1504–10
    [Google Scholar]
  7. 7.
    Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB et al. 2013. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10:6584–90
    [Google Scholar]
  8. 8.
    Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM. 2003. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2:8532–36
    [Google Scholar]
  9. 9.
    Kim BH, Yang J, Lee D, Choi BK, Hyeon T, Park J. 2018. Liquid-phase transmission electron microscopy for studying colloidal inorganic nanoparticles. Adv. Mater. 30:41703316
    [Google Scholar]
  10. 10.
    Parent LR, Gnanasekaran K, Korpanty J, Gianneschi NC. 2021. 100th anniversary of macromolecular science viewpoint: polymeric materials by in situ liquid-phase transmission electron microscopy. ACS Macro Lett 10:114–38
    [Google Scholar]
  11. 11.
    Williams DB, Carter CB. 2009. Transmission Electron Microscopy Boston: Springer
  12. 12.
    de Jonge N, Houben L, Dunin-Borkowski RE, Ross FM 2019. Resolution and aberration correction in liquid cell transmission electron microscopy. Nat. Rev. Mater. 4:161–78
    [Google Scholar]
  13. 13.
    Li M, Knibbe R. 2020. A study of membrane impact on spatial resolution of liquid in situ transmission electron microscope. Microsc. Microanal. 26:126–33
    [Google Scholar]
  14. 14.
    Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ et al. 2012. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:607761–64
    [Google Scholar]
  15. 15.
    Ghodsi SM, Megaridis CM, Shahbazian-Yassar R, Shokuhfar T. 2019. Advances in graphene-based liquid cell electron microscopy: working principles, opportunities, and challenges. Small Methods 3:51900026
    [Google Scholar]
  16. 16.
    Lee C, Wei X, Kysar JW, Hone J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:5887385–88
    [Google Scholar]
  17. 17.
    Koenig SP, Boddeti NG, Dunn ML, Bunch JS. 2011. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6:9543–46
    [Google Scholar]
  18. 18.
    Hauwiller MR, Ondry JC, Alivisatos AP. 2018. Using graphene liquid cell transmission electron microscopy to study in situ nanocrystal etching. J. Vis. Exp. 135:e57665
    [Google Scholar]
  19. 19.
    Koo K, Park J, Ji S, Toleukhanova S, Yuk JM 2021. Liquid-flowing graphene chip-based high-resolution electron microscopy. Adv. Mater. 33:22005468
    [Google Scholar]
  20. 20.
    Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W et al. 2010. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330:60101515–20
    [Google Scholar]
  21. 21.
    Pu S, Gong C, Robertson AW. 2020. Liquid cell transmission electron microscopy and its applications. R. Soc. Open Sci. 7:1191204
    [Google Scholar]
  22. 22.
    Woehl TJ, Moser T, Evans JE, Ross FM. 2020. Electron-beam-driven chemical processes during liquid phase transmission electron microscopy. MRS Bull 45:9746–53
    [Google Scholar]
  23. 23.
    Zheng H, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP. 2009. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:59321309–12
    [Google Scholar]
  24. 24.
    Woehl TJ, Evans JE, Arslan I, Ristenpart WD, Browning ND. 2012. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6:108599–610
    [Google Scholar]
  25. 25.
    Alloyeau D, Dachraoui W, Javed Y, Belkahla H, Wang G et al. 2015. Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Nano Lett 15:42574–81
    [Google Scholar]
  26. 26.
    Park JH, Schneider NM, Grogan JM, Reuter MC, Bau HH et al. 2015. Control of electron beam-induced Au nanocrystal growth kinetics through solution chemistry. Nano Lett 15:85314–20
    [Google Scholar]
  27. 27.
    Loh ND, Sen S, Bosman M, Tan SF, Zhong J et al. 2017. Multistep nucleation of nanocrystals in aqueous solution. Nat. Chem. 9:177–82
    [Google Scholar]
  28. 28.
    Lamer VK, Dinegar RH. 1950. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72:114847–54
    [Google Scholar]
  29. 29.
    Bronstein LM, Huang X, Retrum J, Schmucker A, Pink M et al. 2012. Direction-specific interactions control crystal growth by oriented attachment. Science 336:60841014–18
    [Google Scholar]
  30. 30.
    Liao HG, Cui L, Whitelam S, Zheng H. 2012. Real-time imaging of Pt3Fe nanorod growth in solution. Science 336:60841011–14
    [Google Scholar]
  31. 31.
    Jin B, Sushko ML, Liu Z, Jin C, Tang R 2018. In situ liquid cell TEM reveals bridge-induced contact and fusion of Au nanocrystals in aqueous solution. Nano Lett 18:106551–56
    [Google Scholar]
  32. 32.
    Bae Y, Lim K, Kim S, Kang D, Kim BH et al. 2020. Ligand-dependent coalescence behaviors of gold nanoparticles studied by multichamber graphene liquid cell transmission electron microscopy. Nano Lett 20:128704–10
    [Google Scholar]
  33. 33.
    Aabdin Z, Lu J, Zhu X, Anand U, Loh ND et al. 2014. Bonding pathways of gold nanocrystals in solution. Nano Lett 14:116639–43
    [Google Scholar]
  34. 34.
    Anand U, Lu J, Loh D, Aabdin Z, Mirsaidov U. 2016. Hydration layer-mediated pairwise interaction of nanoparticles. Nano Lett 16:1786–90
    [Google Scholar]
  35. 35.
    Zhu C, Liang S, Song E, Zhou Y, Wang W et al. 2018. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 9:421
    [Google Scholar]
  36. 36.
    Liang WI, Zhang X, Zan Y, Pan M, Czarnik C et al. 2015. In situ study of Fe3Pt-Fe2O3 core-shell nanoparticle formation. J. Am. Chem. Soc. 137:4714850–53
    [Google Scholar]
  37. 37.
    Ma X, Lin F, Chen X, Jin C 2020. Unveiling growth pathways of multiply twinned gold nanoparticles by in situ liquid cell transmission electron microscopy. ACS Nano 14:89594–604
    [Google Scholar]
  38. 38.
    Sutter E, Jungjohann K, Bliznakov S, Courty A, Maisonhaute E et al. 2014. In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun. 5:4946
    [Google Scholar]
  39. 39.
    Wu J, Gao W, Wen J, Miller DJ, Lu P et al. 2015. Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM. Nano Lett. 15:42711–15
    [Google Scholar]
  40. 40.
    Tan SF, Bisht G, Anand U, Bosman M, Yong XE, Mirsaidov U. 2018. In situ kinetic and thermodynamic growth control of Au-Pd core-shell nanoparticles. J. Am. Chem. Soc. 140:3711680–85
    [Google Scholar]
  41. 41.
    Xia Y, Xiong Y, Lim B, Skrabalak SE. 2009. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?. Angew. Chem. Int. Ed. 48:160–103
    [Google Scholar]
  42. 42.
    Sun M, Tian J, Chen Q 2021. The studies on wet chemical etching via in situ liquid cell TEM. Ultramicroscopy 231:113271
    [Google Scholar]
  43. 43.
    Crook MF, Laube C, Moreno-Hernandez IA, Kahnt A, Zahn S et al. 2021. Elucidating the role of halides and iron during radiolysis-driven oxidative etching of gold nanocrystals using liquid cell transmission electron microscopy and pulse radiolysis. J. Am. Chem. Soc. 143:3011703–13
    [Google Scholar]
  44. 44.
    Lu Y, Geng J, Wang K, Zhang W, Ding W et al. 2017. Modifying surface chemistry of metal oxides for boosting dissolution kinetics in water by liquid cell electron microscopy. ACS Nano 11:88018–25
    [Google Scholar]
  45. 45.
    Sung J, Choi BK, Kim B, Kim BH, Kim J et al. 2019. Redox-sensitive facet dependency in etching of ceria nanocrystals directly observed by liquid cell TEM. J. Am. Chem. Soc. 141:4618395–99
    [Google Scholar]
  46. 46.
    Ye X, Jones MR, Frechette LB, Chen Q, Powers AS et al. 2016. Single-particle mapping of nonequilibrium nanocrystal transformations. Science 354:6314874–77
    [Google Scholar]
  47. 47.
    Hauwiller MR, Frechette LB, Jones MR, Ondry JC, Rotskoff GM et al. 2018. Unraveling kinetically-driven mechanisms of gold nanocrystal shape transformations using graphene liquid cell electron microscopy. Nano Lett 18:95731–37
    [Google Scholar]
  48. 48.
    Jiang Y, Zhu G, Lin F, Zhang H, Jin C et al. 2014. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy. Nano Lett 14:73761–65
    [Google Scholar]
  49. 49.
    Wu J, Gao W, Yang H, Zuo JM. 2017. Dissolution kinetics of oxidative etching of cubic and icosahedral platinum nanoparticles revealed by in situ liquid transmission electron microscopy. ACS Nano 11:21696–703
    [Google Scholar]
  50. 50.
    Jiang Y, Zhu G, Dong G, Lin F, Zhang H et al. 2017. Probing the oxidative etching induced dissolution of palladium nanocrystals in solution by liquid cell transmission electron microscopy. Micron 97:22–28
    [Google Scholar]
  51. 51.
    Chen L, Leonardi A, Chen J, Cao M, Li N et al. 2020. Imaging the kinetics of anisotropic dissolution of bimetallic core-shell nanocubes using graphene liquid cells. Nat. Commun. 11:3041
    [Google Scholar]
  52. 52.
    Bocquet L, Charlaix E. 2010. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39:31073–95
    [Google Scholar]
  53. 53.
    Bakalis E, Parent LR, Vratsanos M, Park C, Gianneschi NC, Zerbetto F. 2020. Complex nanoparticle diffusional motion in liquid-cell transmission electron microscopy. J. Phys. Chem. C 124:2714881–90
    [Google Scholar]
  54. 54.
    Parent LR, Bakalis E, Proetto M, Li Y, Park C et al. 2018. Tackling the challenges of dynamic experiments using liquid-cell transmission electron microscopy. Acc. Chem. Res. 51:13–11
    [Google Scholar]
  55. 55.
    Woehl TJ, Prozorov T. 2015. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J. Phys. Chem. C 119:3621261–69
    [Google Scholar]
  56. 56.
    Chee SW, Baraissov Z, Loh ND, Matsudaira PT, Mirsaidov U. 2016. Desorption-mediated motion of nanoparticles at the liquid-solid interface. J. Phys. Chem. C 120:3620462–70
    [Google Scholar]
  57. 57.
    Lu J, Aabdin Z, Loh ND, Bhattacharya D, Mirsaidov U. 2014. Nanoparticle dynamics in a nanodroplet. Nano Lett 14:42111–15
    [Google Scholar]
  58. 58.
    Verch A, Pfaff M, de Jonge N. 2015. Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir 31:256956–64
    [Google Scholar]
  59. 59.
    Chee SW, Anand U, Bisht G, Tan SF, Mirsaidov U. 2019. Direct observations of the rotation and translation of anisotropic nanoparticles adsorbed at a liquid-solid interface. Nano Lett 19:52871–78
    [Google Scholar]
  60. 60.
    Jamali V, Hargus C, Ben-Moshe A, Aghazadeh A, Ha HD et al. 2021. Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis. PNAS 118:10e2018616118
    [Google Scholar]
  61. 61.
    Zheng H, Claridge SA, Minor AM, Alivisatos AP, Dahmen U. 2009. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9:62460–65
    [Google Scholar]
  62. 62.
    Yesibolati MN, Mortensen KI, Sun H, Brostrøm A, Tidemand-Lichtenberg S, Mølhave K. 2020. Unhindered Brownian motion of individual nanoparticles in liquid-phase scanning transmission electron microscopy. Nano Lett 20:107108–15
    [Google Scholar]
  63. 63.
    Park J, Zheng H, Lee WC, Geissler PL, Rabani E, Alivisatos AP. 2012. Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 6:32078–85
    [Google Scholar]
  64. 64.
    Sutter E, Sutter P, Tkachenko AV, Krahne R, de Graaf J et al. 2016. In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 7:11213
    [Google Scholar]
  65. 65.
    Liu Y, Lin XM, Sun Y, Rajh T. 2013. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 135:103764–67
    [Google Scholar]
  66. 66.
    Powers AS, Liao HG, Raja SN, Bronstein ND, Alivisatos AP, Zheng H. 2017. Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett 17:115–20
    [Google Scholar]
  67. 67.
    Chen Q, Yuk JM, Hauwiller MR, Park J, Dae KS et al. 2020. Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy. MRS Bull 45:9713–26
    [Google Scholar]
  68. 68.
    Luo B, Smith JW, Ou Z, Chen Q. 2017. Quantifying the self-assembly behavior of anisotropic nanoparticles using liquid-phase transmission electron microscopy. Acc. Chem. Res. 50:51125–33
    [Google Scholar]
  69. 69.
    Liu C, Ou Z, Guo F, Luo B, Chen W et al. 2020.. “ Colloid-atom duality” in the assembly dynamics of concave gold nanoarrows. J. Am. Chem. Soc. 142:2711669–73
    [Google Scholar]
  70. 70.
    Ou Z, Wang Z, Luo B, Luijten E, Chen Q 2020. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19:4450–55
    [Google Scholar]
  71. 71.
    Cepeda-Perez E, Doblas D, Kraus T, de Jonge N. 2020. Electron microscopy of nanoparticle superlattice formation at a solid-liquid interface in nonpolar liquids. Sci. Adv. 6:20eaba1404
    [Google Scholar]
  72. 72.
    Wang CM, Li X, Wang Z, Xu W, Liu J et al. 2012. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett 12:31624–32
    [Google Scholar]
  73. 73.
    McDowell MT, Ryu I, Lee SW, Wang C, Nix WD, Cui Y. 2012. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24:456034–41
    [Google Scholar]
  74. 74.
    Gu M, Li Y, Li X, Hu S, Zhang X et al. 2012. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6:98439–47
    [Google Scholar]
  75. 75.
    Mehdi BL, Qian J, Nasybulin E, Park C, Welch DA et al. 2015. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett 15:32168–73
    [Google Scholar]
  76. 76.
    Lee SY, Shangguan J, Alvarado J, Betzler S, Harris SJ et al. 2020. Unveiling the mechanisms of lithium dendrite suppression by cationic polymer film induced solid-electrolyte interphase modification. Energy Environ. Sci. 13:61832–42
    [Google Scholar]
  77. 77.
    Gong C, Pu SD, Gao X, Yang S, Liu J et al. 2021. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy. Adv. Energy Mater. 11:102003118
    [Google Scholar]
  78. 78.
    Zeng Z, Liang WI, Chu YH, Zheng H. 2014. In situ TEM study of the Li-Au reaction in an electrochemical liquid cell. Faraday Discuss. 176:95–107
    [Google Scholar]
  79. 79.
    Kushima A, Koido T, Fujiwara Y, Kuriyama N, Kusumi N, Li J. 2015. Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li-oxygen battery. Nano Lett 15:128260–65
    [Google Scholar]
  80. 80.
    Lee D, Park H, Ko Y, Park H, Hyeon T et al. 2019. Direct observation of redox mediator-assisted solution-phase discharging of Li-O2 battery by liquid-phase transmission electron microscopy. J. Am. Chem. Soc. 141:208047–52
    [Google Scholar]
  81. 81.
    Yang Y, Xiong Y, Zeng R, Lu X, Krumov M et al. 2021. Operando methods in electrocatalysis. ACS Catal 11:31136–78
    [Google Scholar]
  82. 82.
    Unocic RR, Sacci RL, Brown GM, Veith GM, Dudney NJ et al. 2014. Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal. 20:2452–61
    [Google Scholar]
  83. 83.
    Stricker EA, Ke X, Wainright JS, Unocic RR, Savinell RF. 2019. Current density distribution in electrochemical cells with small cell heights and coplanar thin electrodes as used in ec-S/TEM cell geometries. J. Electrochem. Soc. 166:4H126–34
    [Google Scholar]
  84. 84.
    Yu S, Jiang Y, Sun Y, Gao F, Zou W et al. 2021. Real time imaging of photocatalytic active site formation during H2 evolution by in-situ TEM. Appl. Catal. B 284:119743
    [Google Scholar]
  85. 85.
    Yin Z-W, Betzler SB, Sheng T, Zhang Q, Peng X et al. 2019. Visualization of facet-dependent pseudo-photocatalytic behavior of TiO2 nanorods for water splitting using in situ liquid cell TEM. Nano Energy 62:507–12
    [Google Scholar]
  86. 86.
    Zhu GZ, Prabhudev S, Yang J, Gabardo CM, Botton GA, Soleymani L. 2014. In situ liquid cell TEM study of morphological evolution and degradation of Pt-Fe nanocatalysts during potential cycling. J. Phys. Chem. C 118:3822111–19
    [Google Scholar]
  87. 87.
    Beermann V, Holtz ME, Padgett E, De Araujo JF, Muller DA, Strasser P. 2019. Real-time imaging of activation and degradation of carbon supported octahedral Pt-Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ. Sci. 12:82476–85
    [Google Scholar]
  88. 88.
    Ortiz Peña N, Ihiawakrim D, Han M, Lassalle-Kaiser B, Carenco S et al. 2019. Morphological and structural evolution of Co3O4 nanoparticles revealed by in situ electrochemical transmission electron microscopy during electrocatalytic water oxidation. ACS Nano 13:1011372–81
    [Google Scholar]
  89. 89.
    Kim D, Kley CS, Li Y, Yang P. 2017. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. PNAS 114:4010560–65
    [Google Scholar]
  90. 90.
    Arán-Ais RM, Rizo R, Grosse P, Algara-Siller G, Dembélé K et al. 2020. Imaging electrochemically synthesized Cu2O cubes and their morphological evolution under conditions relevant to CO2 electroreduction. Nat. Commun. 11:13498
    [Google Scholar]
  91. 91.
    Nagamanasa KH, Wang H, Granick S. 2017. Liquid-cell electron microscopy of adsorbed polymers. Adv. Mater. 29:411703555
    [Google Scholar]
  92. 92.
    Varano AC, Rahimi A, Dukes MJ, Poelzing S, McDonald SM, Kelly DF. 2015. Visualizing virus particle mobility in liquid at the nanoscale. Chem. Commun. 51:9016176–79
    [Google Scholar]
  93. 93.
    Wang H, Li B, Kim YJ, Kwon OH, Granick S. 2020. Intermediate states of molecular self-assembly from liquid-cell electron microscopy. PNAS 117:31283–92
    [Google Scholar]
  94. 94.
    Dearnaley WJ, Schleupner B, Varano AC, Alden NA, Gonzalez F et al. 2019. Liquid-cell electron tomography of biological systems. Nano Lett 19:106734–41
    [Google Scholar]
  95. 95.
    Keskin S, de Jonge N. 2018. Reduced radiation damage in transmission electron microscopy of proteins in graphene liquid cells. Nano Lett 18:127435–40
    [Google Scholar]
  96. 96.
    Wang H, Hima Nagamanasa K, Kim YJ, Kwon OH, Granick S 2018. Longer-lasting electron-based microscopy of single molecules in aqueous medium. ACS Nano 12:88572–78
    [Google Scholar]
  97. 97.
    Kashyap S, Woehl TJ, Liu X, Mallapragada SK, Prozorov T. 2014. Nucleation of iron oxide nanoparticles mediated by Mms6 protein in situ. ACS Nano 8:99097–106
    [Google Scholar]
  98. 98.
    Liu Z, Zhang Z, Wang Z, Jin B, Li D et al. 2020. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. PNAS 117:73397–3404
    [Google Scholar]
  99. 99.
    He K, Sawczyk M, Liu C, Yuan Y, Song B et al. 2020. Revealing nanoscale mineralization pathways of hydroxyapatite using in situ liquid cell transmission electron microscopy. Sci. Adv. 6:47eaaz7524
    [Google Scholar]
  100. 100.
    Touve MA, Figg CA, Wright DB, Park C, Cantlon J et al. 2018. Polymerization-induced self-assembly of micelles observed by liquid cell transmission electron microscopy. ACS Cent. Sci. 4:5543–47
    [Google Scholar]
  101. 101.
    Early JT, Yager KG, Lodge TP. 2020. Direct observation of micelle fragmentation via in situ liquid-phase transmission electron microscopy. ACS Macro Lett 9:5756–61
    [Google Scholar]
  102. 102.
    Ianiro A, Wu H, van Rijt MMJ, Vena MP, Keizer ADA et al. 2019. Liquid-liquid phase separation during amphiphilic self-assembly. Nat. Chem. 11:4320–28
    [Google Scholar]
  103. 103.
    Lyu J, Gong X, Lee SJ, Gnanasekaran K, Zhang X et al. 2020. Phase transitions in metal-organic frameworks directly monitored through in situ variable temperature liquid-cell transmission electron microscopy and in situ X-ray diffraction. J. Am. Chem. Soc. 142:104609–15
    [Google Scholar]
  104. 104.
    Liu X, Chee SW, Raj S, Sawczyk M, Král P, Mirsaidov U. 2021. Three-step nucleation of metal-organic framework nanocrystals. PNAS 118:10e2008880118
    [Google Scholar]
  105. 105.
    Chen Q, Dwyer C, Sheng G, Zhu C, Li X et al. 2020. Imaging beam-sensitive materials by electron microscopy. Adv. Mater. 32:161907619
    [Google Scholar]
  106. 106.
    Egerton RF, Li P, Malac M. 2004. Radiation damage in the TEM and SEM. Micron 35:6399–409
    [Google Scholar]
  107. 107.
    Fritsch B, Hutzler A, Wu M, Khadivianazar S, Vogl L et al. 2021. Accessing local electron-beam induced temperature changes during: in situ liquid-phase transmission electron microscopy. Nanoscale Adv 3:92466–74
    [Google Scholar]
  108. 108.
    Schneider NM, Norton MM, Mendel BJ, Grogan JM, Ross FM, Bau HH. 2014. Electron-water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118:3822373–82
    [Google Scholar]
  109. 109.
    Egerton RF. 2012. Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV. Microsc. Res. Tech. 75:111550–56
    [Google Scholar]
  110. 110.
    Cho H, Jones MR, Nguyen SC, Hauwiller MR, Zettl A, Alivisatos AP. 2017. The use of graphene and its derivatives for liquid-phase transmission electron microscopy of radiation-sensitive specimens. Nano Lett 17:1414–20
    [Google Scholar]
  111. 111.
    Koo K, Dae KS, Hahn YK, Yuk JM 2020. Live cell electron microscopy using graphene veils. Nano Lett 20:64708–13
    [Google Scholar]
  112. 112.
    Narayanan S, Shahbazian-Yassar R, Shokuhfar T. 2020. In situ visualization of ferritin biomineralization via graphene liquid cell-transmission electron microscopy. ACS Biomater. Sci. Eng. 6:53208–16
    [Google Scholar]
  113. 113.
    Korpanty J, Parent LR, Gianneschi NC. 2021. Enhancing and mitigating radiolytic damage to soft matter in aqueous phase liquid-cell transmission electron microscopy in the presence of gold nanoparticle sensitizers or isopropanol scavengers. Nano Lett 21:21141–49
    [Google Scholar]
  114. 114.
    Woehl TJ, Abellan P. 2017. Defining the radiation chemistry during liquid cell electron microscopy to enable visualization of nanomaterial growth and degradation dynamics. J. Microsc. 265:2135–47
    [Google Scholar]
  115. 115.
    Jokisaari JR, Hu X, Mukherjee A, Uskoković V, Klie RF. 2021. Hydroxyapatite as a scavenger of reactive radiolysis species in graphene liquid cells for in situ electron microscopy. Nanotechnology 32:48485707
    [Google Scholar]
  116. 116.
    Wu H, Li T, Maddala SP, Khalil ZJ, Joosten RRM et al. 2021. Studying reaction mechanisms in solution using a distributed electron microscopy method. ACS Nano 15:610296–308
    [Google Scholar]
  117. 117.
    Yamazaki T, Kimura Y, Vekilov PG, Furukawa E, Shirai M et al. 2017. Two types of amorphous protein particles facilitate crystal nucleation. PNAS 114:92154–59
    [Google Scholar]
  118. 118.
    Dissanayake TU, Wang M, Woehl TJ. 2021. Revealing reactions between the electron beam and nanoparticle capping ligands with correlative fluorescence and liquid-phase electron microscopy. ACS Appl. Mater. Interfaces 13:3137553–62
    [Google Scholar]
  119. 119.
    Touve MA, Carlini AS, Gianneschi NC. 2019. Self-assembling peptides imaged by correlated liquid cell transmission electron microscopy and MALDI-imaging mass spectrometry. Nat. Commun. 10:14837
    [Google Scholar]
  120. 120.
    Wang M, Leff AC, Li Y, Woehl TJ. 2021. Visualizing ligand-mediated bimetallic nanocrystal formation pathways with in situ liquid-phase transmission electron microscopy synthesis. ACS Nano 15:22578–88
    [Google Scholar]
  121. 121.
    Abellan P, Mehdi BL, Parent LR, Gu M, Park C et al. 2014. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett 14:31293–99
    [Google Scholar]
  122. 122.
    de Jonge N. 2018. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers. Ultramicroscopy 187:113–25
    [Google Scholar]
  123. 123.
    Keskin S, Kunnas P, de Jonge N. 2019. Liquid-phase electron microscopy with controllable liquid thickness. Nano Lett 19:74608–13
    [Google Scholar]
  124. 124.
    Wu H, Su H, Joosten RRM, Keizer ADA, van Hazendonk LS et al. 2021. Mapping and controlling liquid layer thickness in liquid-phase (scanning) transmission electron microscopy. Small Methods 5:62001287
    [Google Scholar]
  125. 125.
    Liao HG, Zherebetskyy D, Xin H, Czarnik C, Ercius P et al. 2014. Facet development during platinum nanocube growth. Science 345:6199916–19
    [Google Scholar]
  126. 126.
    Yang J, Choi MK, Sheng Y, Jung J, Bustillo K et al. 2019. MoS2 liquid cell electron microscopy through clean and fast polymer-free MoS2 transfer. Nano Lett. 19:31788–95
    [Google Scholar]
  127. 127.
    Holtz ME, Yu Y, Gao J, Abruña HD, Muller DA. 2013. In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal. 19:41027–35
    [Google Scholar]
  128. 128.
    Milazzo AC, Moldovan G, Lanman J, Jin L, Bouwer JC et al. 2010. Characterization of a direct detection device imaging camera for transmission electron microscopy. Ultramicroscopy 110:7741–44
    [Google Scholar]
  129. 129.
    Kühlbrandt W. 2014. The resolution revolution. Science 343:61781443–44
    [Google Scholar]
  130. 130.
    Zaluzec NJ. 2015. The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy. Ultramicroscopy 151:240–49
    [Google Scholar]
  131. 131.
    Yang J, Koo J, Kim S, Jeon S, Choi BK et al. 2019. Amorphous-phase-mediated crystallization of Ni nanocrystals revealed by high-resolution liquid-phase electron microscopy. J. Am. Chem. Soc. 141:2763–68
    [Google Scholar]
  132. 132.
    Jin B, Wang Y, Liu Z, France-Lanord A, Grossman JC et al. 2019. Revealing the cluster-cloud and its role in nanocrystallization. Adv. Mater. 31:161808225
    [Google Scholar]
  133. 133.
    Dachraoui W, Keller D, Henninen TR, Ashton OJ, Erni R. 2021. Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy. Nano Lett 21:72861–69
    [Google Scholar]
  134. 134.
    Song M, Zhou G, Lu N, Lee J, Nakouzi E et al. 2020. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science 367:647340–45
    [Google Scholar]
  135. 135.
    Goris B, Bals S, Van Den Broek W, Carbó-Argibay E, Gómez-Graña S et al. 2012. Atomic-scale determination of surface facets in gold nanorods. Nat. Mater. 11:11930–35
    [Google Scholar]
  136. 136.
    Moody MP, Ceguerra AV, Breen AJ, Cui XY, Gault B et al. 2014. Atomically resolved tomography to directly inform simulations for structure-property relationships. Nat. Commun. 5:15501
    [Google Scholar]
  137. 137.
    Ayyer K, Yefanov OM, Oberthür D, Roy-Chowdhury S, Galli L et al. 2016. Macromolecular diffractive imaging using imperfect crystals. Nature 530:7589202–6
    [Google Scholar]
  138. 138.
    Cheng Y. 2015. Single-particle cryo-EM at crystallographic resolution. Cell 161:3450–57
    [Google Scholar]
  139. 139.
    Kim BH, Heo J, Kim S, Reboul CF, Chun H et al. 2020. Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science 368:648660–67
    [Google Scholar]
  140. 140.
    Reboul CF, Heo J, Machello C, Kiesewetter S, Kim BH et al. 2021. SINGLE: atomic-resolution structure identification of nanocrystals by graphene liquid cell EM. Sci. Adv. 7:5eabe6679
    [Google Scholar]
  141. 141.
    Jonaid GM, Dearnaley WJ, Casasanta MA, Kaylor L, Berry S et al. 2021. High-resolution imaging of human viruses in liquid droplets. Adv. Mater. 33:372103221
    [Google Scholar]
  142. 142.
    van Deursen PMG, Koning RI, Tudor V, Moradi MA, Patterson JP et al. 2020. Graphene liquid cells assembled through loop-assisted transfer method and located with correlated light-electron microscopy. Adv. Funct. Mater. 30:111904468
    [Google Scholar]
  143. 143.
    Rasool H, Dunn G, Fathalizadeh A, Zettl A. 2016. Graphene-sealed Si/SiN cavities for high-resolution in situ electron microscopy of nano-confined solutions. Phys. Status Solidi B 253:122351–54
    [Google Scholar]
  144. 144.
    Wadell C, Inagaki S, Nakamura T, Shi J, Nakamura Y, Sannomiya T. 2017. Nanocuvette: a functional ultrathin liquid container for transmission electron microscopy. ACS Nano 11:21264–72
    [Google Scholar]
  145. 145.
    Hutzler A, Schmutzler T, Jank MPM, Branscheid R, Unruh T et al. 2018. Unravelling the mechanisms of gold-silver core-shell nanostructure formation by in situ TEM using an advanced liquid cell design. Nano Lett 18:117222–29
    [Google Scholar]
  146. 146.
    Kelly DJ, Zhou M, Clark N, Hamer MJ, Lewis EA et al. 2018. Nanometer resolution elemental mapping in graphene-based TEM liquid cells. Nano Lett 18:21168–74
    [Google Scholar]
  147. 147.
    Lim K, Bae Y, Jeon S, Kim K, Kim BH et al. 2020. A large-scale array of ordered graphene-sandwiched chambers for quantitative liquid-phase transmission electron microscopy. Adv. Mater. 32:392002889
    [Google Scholar]
  148. 148.
    Li H, Lin Z, Shen X, Brandt J, Hua G. 2015. A convolutional neural network cascade for face detection. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition5325–34 New York: IEEE
    [Google Scholar]
  149. 149.
    Ziatdinov M, Dyck O, Maksov A, Li X, Sang X et al. 2017. Deep learning of atomically resolved scanning transmission electron microscopy images: chemical identification and tracking local transformations. ACS Nano 11:1212742–52
    [Google Scholar]
  150. 150.
    Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D. 2019. Deep learning for cellular image analysis. Nat. Methods 16:121233–46
    [Google Scholar]
  151. 151.
    Yao L, Ou Z, Luo B, Xu C, Chen Q 2020. Machine learning to reveal nanoparticle dynamics from liquid-phase TEM videos. ACS Cent. Sci. 6:81421–30
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092120-034534
Loading
/content/journals/10.1146/annurev-chembioeng-092120-034534
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error