1932

Abstract

Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe–host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092120-092340
2022-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-092120-092340.html?itemId=/content/journals/10.1146/annurev-chembioeng-092120-092340&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Boyden ES. 2011. A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol. Rep. 3:11
    [Google Scholar]
  2. 2.
    Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ. 2006. Mini-symposium: next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26:4110380–86
    [Google Scholar]
  3. 3.
    Rost BR, Schneider-Warme F, Schmitz D, Hegemann P. 2017. Optogenetic tools for subcellular applications in neuroscience. Neuron 96:3572–603
    [Google Scholar]
  4. 4.
    Goglia AG, Toettcher JE. 2019. A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr. Opin. Chem. Biol. 48:106–13
    [Google Scholar]
  5. 5.
    Baumschlager A, Khammash M. 2021. Synthetic biological approaches for optogenetics and tools for transcriptional light-control in bacteria. Adv. Biol. 5:52000256
    [Google Scholar]
  6. 6.
    Manoilov KY, Verkhusha VV, Shcherbakova DM. 2021. A guide to the optogenetic regulation of endogenous molecules. Nat. Methods 18:1027–37
    [Google Scholar]
  7. 7.
    Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA et al. 2005. Engineering Escherichia coli to see light. Nature 438:7067441–42
    [Google Scholar]
  8. 8.
    Castillo-Hair SM, Baerman EA, Fujita M, Igoshin OA, Tabor JJ. 2019. Optogenetic control of Bacillus subtilis gene expression. Nat. Commun. 10:3099
    [Google Scholar]
  9. 9.
    Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. 2002. A light-switchable gene promoter system. Nat. Biotechnol. 20:101041–44
    [Google Scholar]
  10. 10.
    Carrasco-López C, García-Echauri SA, Kichuk T, Avalos JL. 2020. Optogenetics and biosensors set the stage for metabolic cybergenetics. Curr. Opin. Biotechnol. 65:296–309
    [Google Scholar]
  11. 11.
    Kichuk TC, Carrasco-López C, Avalos JL. 2021. Lights up on organelles: optogenetic tools to control subcellular structure and organization. WIREs Mech. Dis. 13:1e1500
    [Google Scholar]
  12. 12.
    Shcherbakova DM, Stepanenko OV, Turoverov KK, Verkhusha VV. 2018. Near-infrared fluorescent proteins: multiplexing and optogenetics across scales. Trends Biotechnol. 36:121230–43
    [Google Scholar]
  13. 13.
    Hoffmann MD, Bubeck F, Eils R, Niopek D. 2018. Controlling cells with light and LOV. Adv. Biosyst. 2:91800098
    [Google Scholar]
  14. 14.
    Liu Z, Zhang J, Jin J, Geng Z, Qi Q, Liang Q 2018. Programming bacteria with light—sensors and applications in synthetic biology. Front. Microbiol. 9:2692
    [Google Scholar]
  15. 15.
    Salinas F, Rojas V, Delgado V, Agosin E, Larrondo LF. 2017. Optogenetic switches for light-controlled gene expression in yeast. Appl. Microbiol. Biotechnol. 101:72629–40
    [Google Scholar]
  16. 16.
    Figueroa D, Rojas V, Romero A, Larrondo LF, Salinas F. 2021. The rise and shine of yeast optogenetics. Yeast 38:2131–46
    [Google Scholar]
  17. 17.
    Repina NA, Rosenbloom A, Mukherjee A, Schaffer DV, Kane RS. 2017. At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu. Rev. Chem. Biomol. Eng. 8:13–39
    [Google Scholar]
  18. 18.
    Binder D, Bier C, Grünberger A, Drobietz D, Hage-Hülsmann J et al. 2016. Photocaged arabinose: a novel optogenetic switch for rapid and gradual control of microbial gene expression. ChemBioChem 17:4296–99
    [Google Scholar]
  19. 19.
    Burmeister A, Akhtar Q, Hollmann L, Tenhaef N, Hilgers F et al. 2021. (Optochemical) control of synthetic microbial coculture interactions on a microcolony level. ACS Synth. Biol. 10:1308–19
    [Google Scholar]
  20. 20.
    Binder D, Grünberger A, Loeschcke A, Probst C, Bier C et al. 2014. Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG. Integr. Biol. 6:8755–65
    [Google Scholar]
  21. 21.
    Motta-Mena LB, Reade A, Mallory MJ, Glantz S, Weiner OD et al. 2014. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10:3196–202
    [Google Scholar]
  22. 22.
    Jayaraman P, Devarajan K, Chua TK, Zhang H, Gunawan E, Poh CL. 2016. Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic Acids Res 44:146994–7005
    [Google Scholar]
  23. 23.
    Kaberniuk AA, Baloban M, Monakhov MV, Shcherbakova DM, Verkhusha VV. 2021. Single-component near-infrared optogenetic systems for gene transcription regulation. Nat. Commun. 12:3859
    [Google Scholar]
  24. 24.
    Raghavan AR, Salim K, Yadav VG. 2020. Optogenetic control of heterologous metabolism in E. coli. ACS Synth. Biol. 9:92291–300
    [Google Scholar]
  25. 25.
    An-adirekkun J, Stewart CJ, Geller SH, Patel MT, Melendez J et al. 2020. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae. Biotechnol. Bioeng. 117:3886–93
    [Google Scholar]
  26. 26.
    Kawano F, Suzuki H, Furuya A, Sato M. 2015. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6:6256
    [Google Scholar]
  27. 27.
    Salinas F, Rojas V, Delgado V, López J, Agosin E, Larrondo LF. 2018. Fungal light-oxygen-voltage domains for optogenetic control of gene expression and flocculation in yeast. mBio 9:4e00626–18
    [Google Scholar]
  28. 28.
    Ohlendorf R, Vidavski RR, Eldar A, Moffat K, Möglich A. 2012. From dusk till dawn: one-plasmid systems for light-regulated gene expression. J. Mol. Biol. 416:4534–42
    [Google Scholar]
  29. 29.
    Schmidl SR, Sheth RU, Wu A, Tabor JJ. 2014. Refactoring and optimization of light-switchable Escherichia coli two-component systems. ACS Synth. Biol. 3:11820–31
    [Google Scholar]
  30. 30.
    Tandar ST, Senoo S, Toya Y, Shimizu H 2019. Optogenetic switch for controlling the central metabolic flux of Escherichia coli. Metab. Eng. 55:68–75
    [Google Scholar]
  31. 31.
    Ramakrishnan P, Tabor JJ. 2016. Repurposing Synechocystis PCC6803 UirS-UirR as a UV-violet/green photoreversible transcriptional regulatory tool in E. coli. ACS Synth. Biol. 5:7733–40
    [Google Scholar]
  32. 32.
    Yang X, Jost AP-T, Weiner OD, Tang C. 2013. A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Mol. Biol. Cell 24:152419–30
    [Google Scholar]
  33. 33.
    Niopek D, Benzinger D, Roensch J, Draebing T, Wehler P et al. 2014. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat. Commun. 5:4404
    [Google Scholar]
  34. 34.
    Yumerefendi H, Dickinson DJ, Wang H, Zimmerman SP, Bear JE et al. 2015. Control of protein activity and cell fate specification via light-mediated nuclear translocation. PLOS ONE 10:6e0128443
    [Google Scholar]
  35. 35.
    Geller SH, Antwi EB, di Ventura B, McClean MN. 2019. Optogenetic repressors of gene expression in yeasts using light-controlled nuclear localization. Cell. Mol. Bioeng. 12:5511–28
    [Google Scholar]
  36. 36.
    Chen SY, Osimiri LC, Chevalier M, Bugaj LJ, Nguyen TH et al. 2020. Optogenetic control reveals differential promoter interpretation of transcription factor nuclear translocation dynamics. Cell Syst 11:4336–53.e24
    [Google Scholar]
  37. 37.
    Strickland D, Lin Y, Wagner E, Hope CM, Zayner J et al. 2012. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9:4379–84
    [Google Scholar]
  38. 38.
    Zhao EM, Suek N, Wilson MZ, Dine E, Pannucci NL et al. 2019. Light-based control of metabolic flux through assembly of synthetic organelles. Nat. Chem. Biol. 15:6589–97
    [Google Scholar]
  39. 39.
    Garabedian MV, Wang W, Dabdoub JB, Tong M, Caldwell RM et al. 2021. Designer membraneless organelles sequester native factors for control of cell behavior. Nat. Chem. Biol. 17:9998–1007
    [Google Scholar]
  40. 40.
    Bracha D, Walls MT, Wei MT, Zhu L, Kurian M et al. 2018. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 175:61467–80.e13
    [Google Scholar]
  41. 41.
    Stewart-Ornstein J, Chen S, Bhatnagar R, Weissman JS, El-Samad H. 2016. Model-guided optogenetic study of PKA signaling in budding yeast. Mol. Biol. Cell 28:1221–27
    [Google Scholar]
  42. 42.
    Ryu M-H, Moskvin OV, Siltberg-Liberles J, Gomelsky M. 2010. Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J. Biol. Chem. 285:5341501–8
    [Google Scholar]
  43. 43.
    Mukherjee M, Hu Y, Tan CH, Rice SA, Cao B. 2018. Engineering a light-responsive, quorum quenching biofilm to mitigate biofouling on water purification membranes. Sci. Adv. 4:12eaau1459
    [Google Scholar]
  44. 44.
    Hu Y, Liu X, Ren ATM, Gu J-D, Cao B. 2019. Optogenetic modulation of a catalytic biofilm for the biotransformation of indole into tryptophan. ChemSusChem 12:235142–48
    [Google Scholar]
  45. 45.
    Sheets MB, Wong WW, Dunlop MJ. 2020. Light-inducible recombinases for bacterial optogenetics. ACS Synth. Biol. 9:2227–35
    [Google Scholar]
  46. 46.
    Hochrein L, Mitchell LA, Schulz K, Messerschmidt K, Mueller-Roeber B. 2018. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nat. Commun. 9:1931
    [Google Scholar]
  47. 47.
    Duplus-Bottin H, Spichty M, Triqueneaux G, Place C, Mangeot PE et al. 2021. A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch. eLife 10:e61268
    [Google Scholar]
  48. 48.
    Venayak N, Anesiadis N, Cluett WR, Mahadevan R. 2015. Engineering metabolism through dynamic control. Curr. Opin. Biotechnol. 34:142–52
    [Google Scholar]
  49. 49.
    Paradise EM, Kirby J, Chan R, Keasling JD 2008. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase. Biotechnol. Bioeng. 100:2371–78
    [Google Scholar]
  50. 50.
    Xie W, Ye L, Lv X, Xu H, Yu H. 2015. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab. Eng. 28:8–18
    [Google Scholar]
  51. 51.
    Lyu X, Ng KR, Lee JL, Mark R, Chen WN. 2017. Enhancement of naringenin biosynthesis from tyrosine by metabolic engineering of Saccharomyces cerevisiae. J. Agric. Food Chem. 65:316638–46
    [Google Scholar]
  52. 52.
    Ye Z, Moreb EA, Li S, Lebeau J, Menacho-Melgar R et al. 2020. Escherichia coli Cas1/2 endonuclease complex modifies self-targeting CRISPR/cascade spacers reducing silencing guide stability. ACS Synth. Biol. 10:129–37
    [Google Scholar]
  53. 53.
    Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:7086940–43
    [Google Scholar]
  54. 54.
    Tan SZ, Manchester S, Prather KLJ. 2015. Controlling central carbon metabolism for improved pathway yields in Saccharomyces cerevisiae. ACS Synth. Biol. 5:2116–24
    [Google Scholar]
  55. 55.
    Steiger MG, Punt PJ, Ram AFJ, Mattanovich D, Sauer M. 2016. Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metab. Eng. 35:95–104
    [Google Scholar]
  56. 56.
    Park SY, Binkley RM, Kim WJ, Lee MH, Lee SY. 2018. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab. Eng. 49:105–15
    [Google Scholar]
  57. 57.
    Wang C, Yoon SH, Jang HJ, Chung YR, Kim JY et al. 2011. Metabolic engineering of Escherichia coli for α-farnesene production. Metab. Eng. 13:6648–55
    [Google Scholar]
  58. 58.
    Dvorak P, Chrast L, Nikel PI, Fedr R, Soucek K et al. 2015. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb. Cell Factor 14:201
    [Google Scholar]
  59. 59.
    Zhao EM, Zhang Y, Mehl J, Park H, Lalwani MA et al. 2018. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 555:7698683–87
    [Google Scholar]
  60. 60.
    Zhao EM, Lalwani MA, Lovelett RJ, García-Echauri SA, Hoffman SM et al. 2020. Design and characterization of rapid optogenetic circuits for dynamic control in yeast metabolic engineering. ACS Synth. Biol. 9:123254–66
    [Google Scholar]
  61. 61.
    Zhao EM, Lalwani MA, Chen J-M, Orillac P, Toettcher JE, Avalos JL. 2021. Optogenetic amplification circuits for light-induced metabolic control. ACS Synth. Biol. 10:51143–54
    [Google Scholar]
  62. 62.
    Lalwani MA, Zhao EM, Wegner SA, Avalos JL. 2021. The Neurospora crassa inducible Q system enables simultaneous optogenetic amplification and inversion in Saccharomyces cerevisiae for bidirectional control of gene expression. ACS Synth. Biol. 10:82060–75
    [Google Scholar]
  63. 63.
    Wu P, Chen Y, Liu M, Xiao G, Yuan J 2020. Engineering an optogenetic CRISPRi platform for improved chemical production. ACS Synth. Biol. 10:1125–31
    [Google Scholar]
  64. 64.
    Lalwani MA, Ip SS, Carrasco-López C, Day C, Zhao EM et al. 2020. Optogenetic control of the lac operon for bacterial chemical and protein production. Nat. Chem. Biol. 17:71–79
    [Google Scholar]
  65. 65.
    Senoo S, Tandar ST, Kitamura S, Toya Y, Shimizu H 2019. Light-inducible flux control of triosephosphate isomerase on glycolysis in Escherichia coli. Biotechnol. Bioeng. 116:123292–300
    [Google Scholar]
  66. 66.
    Fernandez-Rodriguez J, Moser F, Song M, Voigt CA. 2017. Engineering RGB color vision into Escherichia coli. Nat. Chem. Biol. 13:7706–8
    [Google Scholar]
  67. 67.
    Ding Q, Ma D, Liu G-Q, Li Y, Guo L et al. 2020. Light-powered Escherichia coli cell division for chemical production. Nat. Commun. 11:2262
    [Google Scholar]
  68. 68.
    Mukherjee M, Cao B. 2021. Engineering controllable biofilms for biotechnological applications. Microb. Biotechnol. 14:174–78
    [Google Scholar]
  69. 69.
    Fetzner S. 2015. Quorum quenching enzymes. J. Biotechnol. 201:2–14
    [Google Scholar]
  70. 70.
    Wu Y, Ding Y, Cohen Y, Cao B. 2014. Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline. Appl. Microbiol. Biotechnol. 99:41967–76
    [Google Scholar]
  71. 71.
    Kasai T, Tomioka Y, Kouzuma A, Watanabe K. 2019. Overexpression of the adenylate cyclase gene cyaC facilitates current generation by Shewanella oneidensis in bioelectrochemical systems. Bioelectrochemistry 129:100–5
    [Google Scholar]
  72. 72.
    Botyanszki Z, Tay PKR, Nguyen PQ, Nussbaumer MG, Joshi NS. 2015. Engineered catalytic biofilms: site-specific enzyme immobilization onto E. coli curli nanofibers. Biotechnol. Bioeng. 112:102016–24
    [Google Scholar]
  73. 73.
    Hee C-S, Habazettl J, Schmutz C, Schirmer T, Jenal U, Grzesiek S. 2020. Intercepting second-messenger signaling by rationally designed peptides sequestering c-di-GMP. PNAS 117:2917211–20
    [Google Scholar]
  74. 74.
    Pu L, Yang S, Xia A, Jin F 2017. Optogenetics manipulation enables prevention of biofilm formation of engineered Pseudomonas aeruginosa on surfaces. ACS Synth. Biol. 7:1200–8
    [Google Scholar]
  75. 75.
    Ryu M-H, Gomelsky M. 2014. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth. Biol. 3:11802–10
    [Google Scholar]
  76. 76.
    Halan B, Buehler K, Schmid A. 2012. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:9453–65
    [Google Scholar]
  77. 77.
    Pirhanov A, Bridges CM, Goodwin RA, Guo Y-S, Furrer J et al. 2021. Optogenetics in Sinorhizobium meliloti enables spatial control of exopolysaccharide production and biofilm structure. ACS Synth. Biol. 10:2345–56
    [Google Scholar]
  78. 78.
    Chen F, Wegner SV. 2020. Blue-light-switchable bacterial cell-cell adhesions enable the control of multicellular bacterial communities. ACS Synth. Biol. 9:51169–80
    [Google Scholar]
  79. 79.
    Chen F, Warnock RL, van der Meer JR, Wegner SV. 2020. Bioluminescence-triggered photoswitchable bacterial adhesions enable higher sensitivity and dual-readout bacterial biosensors for mercury. ACS Sens 5:72205–10
    [Google Scholar]
  80. 80.
    Huang Y, Xia A, Yang G, Jin F 2018. Bioprinting living biofilms through optogenetic manipulation. ACS Synth. Biol. 7:51195–200
    [Google Scholar]
  81. 81.
    Jin X, Riedel-Kruse IH. 2018. Biofilm lithography enables high-resolution cell patterning via optogenetic adhesin expression. PNAS 115:143698–703
    [Google Scholar]
  82. 82.
    Moser F, Tham E, González LM, Lu TK, Voigt CA. 2019. Light-controlled, high-resolution patterning of living engineered bacteria onto textiles, ceramics, and plastic. Adv. Funct. Mater. 29:301901788
    [Google Scholar]
  83. 83.
    Manson MD, Tedesco P, Berg HC, Harold FM, van der Drift C et al. 1977. A protonmotive force drives bacterial flagella. PNAS 74:73060–64
    [Google Scholar]
  84. 84.
    Arlt J, Martinez VA, Dawson A, Pilizota T, Poon WCK. 2018. Painting with light-powered bacteria. Nat. Commun. 9:768
    [Google Scholar]
  85. 85.
    Frangipane G, Dell'Arciprete D, Petracchini S, Maggi C, Saglimbeni F et al. 2018. Dynamic density shaping of photokinetic E. coli. eLife 7:e36608
    [Google Scholar]
  86. 86.
    Zhang J, Luo Y, Poh CL. 2020. Blue light-directed cell migration, aggregation, and patterning. J. Mol. Biol. 432:103137–48
    [Google Scholar]
  87. 87.
    Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A et al. 2009. A synthetic genetic edge detection program. Cell 137:71272–81
    [Google Scholar]
  88. 88.
    Lindemann SR, Bernstein HC, Song H-S, Fredrickson JK, Fields MW et al. 2016. Engineering microbial consortia for controllable outputs. ISME J 10:92077–84
    [Google Scholar]
  89. 89.
    Minty JJ, Singer ME, Scholz SA, Bae C-H, Ahn J-H et al. 2013. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. PNAS 110:3614592–97
    [Google Scholar]
  90. 90.
    Zhou K, Qiao K, Edgar S, Stephanopoulos G. 2015. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33:377–83
    [Google Scholar]
  91. 91.
    Lalwani MA, Kawabe H, Mays RL, Hoffman SM, Avalos JL. 2021. Optogenetic control of microbial consortia populations for chemical production. ACS Synth. Biol. 10:82015–29
    [Google Scholar]
  92. 92.
    Aditya C, Bertaux F, Batt G, Ruess J. 2021. A light tunable differentiation system for the creation and control of consortia in yeast. Nat. Commun. 12:5829
    [Google Scholar]
  93. 93.
    Kendall MM, Sperandio V. 2014. Cell-to-cell signaling in Escherichia coli and Salmonella. EcoSal Plus 6:1 https://doi.org/10.1128/ecosalplus.ESP-0002-2013
    [Crossref] [Google Scholar]
  94. 94.
    Cai L, Dalal CK, Elowitz MB. 2008. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455:7212485–90
    [Google Scholar]
  95. 95.
    Defoirdt T, Brackman G, Coenye T. 2013. Quorum sensing inhibitors: How strong is the evidence?. Trends Microbiol 21:12619–24
    [Google Scholar]
  96. 96.
    Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R et al. 2011. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J. Biol. Chem. 286:21181–88
    [Google Scholar]
  97. 97.
    Yumerefendi H, Lerner AM, Zimmerman SP, Hahn K, Bear JE et al. 2016. Light-induced nuclear export reveals rapid dynamics of epigenetic modifications. Nat. Chem. Biol. 12:6399–401
    [Google Scholar]
  98. 98.
    Henry KW, Wyce A, Lo W-S, Duggan LJ, Emre NCT et al. 2003. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:212648–63
    [Google Scholar]
  99. 99.
    Suzuki T, Mioka T, Tanaka K, Nagatani A. 2020. An optogenetic system to control membrane phospholipid asymmetry through flippase activation in budding yeast. Sci. Rep. 10:12474
    [Google Scholar]
  100. 100.
    Rullan M, Benzinger D, Schmidt GW, Milias-Argeitis A, Khammash M. 2018. An optogenetic platform for real-time, single-cell interrogation of stochastic transcriptional regulation. Mol. Cell 70:4745–56.e6
    [Google Scholar]
  101. 101.
    Benzinger D, Khammash M. 2018. Pulsatile inputs achieve tunable attenuation of gene expression variability and graded multi-gene regulation. Nat. Commun. 9:3521
    [Google Scholar]
  102. 102.
    Lu H, Mazumder M, Jaikaran ASI, Kumar A, Leis EK et al. 2019. A yeast system for discovering optogenetic inhibitors of eukaryotic translation initiation. ACS Synth. Biol. 8:4744–57
    [Google Scholar]
  103. 103.
    Usherenko S, Stibbe H, Muscó M, Essen L-O, Kostina EA, Taxis C. 2014. Photo-sensitive degron variants for tuning protein stability by light. BMC Syst. Biol. 8:128
    [Google Scholar]
  104. 104.
    Scheffer J, Hasenjäger S, Taxis C. 2019. Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum-associated degradation pathway. Mol. Biol. Cell 30:202558–70
    [Google Scholar]
  105. 105.
    Barberis M, Linke C, Adrover MA, González-Novo A, Lehrach H et al. 2012. Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins. Biotechnol. Adv. 30:1108–30
    [Google Scholar]
  106. 106.
    Xu X, Du Z, Liu R, Li T, Zhao Y et al. 2018. A single-component optogenetic system allows stringent switch of gene expression in yeast cells. ACS Synth. Biol. 7:92045–53
    [Google Scholar]
  107. 107.
    Renicke C, Schuster D, Usherenko S, Essen L-O, Taxis C. 2013. A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem. Biol. 20:4619–26
    [Google Scholar]
  108. 108.
    Sorg RA, Gallay C, van Maele L, Sirard J-C, Veening J-W. 2020. Synthetic gene-regulatory networks in the opportunistic human pathogen Streptococcus pneumoniae. PNAS 117:4427608–19
    [Google Scholar]
  109. 109.
    Dancz CE, Haraga A, Portnoy DA, Higgins DE. 2002. Inducible control of virulence gene expression in Listeria monocytogenes: temporal requirement of listeriolysin O during intracellular infection. J. Bacteriol. 184:215935–45
    [Google Scholar]
  110. 110.
    Xu L, Zhou J, Qu G, Lin Z, Fan Q et al. 2020. Recombinant lactobacillin PlnK adjusts the gut microbiome distribution in broilers. Br. Poult. Sci. 61:4390–99
    [Google Scholar]
  111. 111.
    Mimee M, Tucker AC, Voigt CA, Lu TK. 2015. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst 1:162–71
    [Google Scholar]
  112. 112.
    de Vos WM, de Vos EA. 2012. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr. Rev. 70:Suppl. 1S45–56
    [Google Scholar]
  113. 113.
    Hartsough LA, Park M, Kotlajich MV, Lazar JT, Han B et al. 2020. Optogenetic control of gut bacterial metabolism to promote longevity. eLife 9:e56849
    [Google Scholar]
  114. 114.
    Yang C, Cui M, Zhang Y, Pan H, Liu J et al. 2020. Upconversion optogenetic micro-nanosystem optically controls the secretion of light-responsive bacteria for systemic immunity regulation. Commun. Biol. 3:561
    [Google Scholar]
  115. 115.
    Cui M, Pang G, Zhang T, Sun T, Zhang L et al. 2021. Optotheranostic nanosystem with phone visual diagnosis and optogenetic microbial therapy for ulcerative colitis at-home care. ACS Nano 15:47040–52
    [Google Scholar]
  116. 116.
    Pan H, Li L, Pang G, Han C, Liu B et al. 2021. Engineered NIR light-responsive bacteria as anti-tumor agent for targeted and precise cancer therapy. Chem. Eng. J. 426:130842
    [Google Scholar]
  117. 117.
    Cheng X, Pu L, Fu S, Xia A, Huang S et al. 2021. Engineering Gac/Rsm signaling cascade for optogenetic induction of the pathogenicity switch in Pseudomonas aeruginosa. ACS Synth. Biol. 10:61520–30
    [Google Scholar]
  118. 118.
    Xia A, Qian M, Wang C, Huang Y, Liu Z et al. 2021. Optogenetic modification of Pseudomonas aeruginosa enables controllable twitching motility and host infection. ACS Synth. Biol. 10:3531–41
    [Google Scholar]
  119. 119.
    Kaushik MS, Pati SR, Soni S, Mishra A, Sushmita K, Kateriya S. 2020. Establishment of optogenetic modulation of cAMP for analyzing growth, biofilm formation, and virulence pathways of bacteria using a light-gated cyclase. Appl. Sci. 10:165535
    [Google Scholar]
  120. 120.
    Lei P, Feng J, Zhang H. 2020. Emerging biomaterials: taking full advantage of the intrinsic properties of rare earth elements. Nano Today 35:100952
    [Google Scholar]
  121. 121.
    Del Rosal B, Jaque D. 2019. Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl. Fluoresc. 7:2022001
    [Google Scholar]
  122. 122.
    Uhlendorf J, Miermont A, Delaveau T, Charvin G, Fages F et al. 2012. Long-term model predictive control of gene expression at the population and single-cell levels. PNAS 109:3514271–76
    [Google Scholar]
  123. 123.
    Lugagne J-B, Sosa Carrillo S, Kirch M, Köhler A, Batt G, Hersen P 2017. Balancing a genetic toggle switch by real-time feedback control and periodic forcing. Nat. Commun. 8:1671
    [Google Scholar]
  124. 124.
    Fiore G, Perrino G, di Bernardo M, di Bernardo D. 2015. In vivo real-time control of gene expression: a comparative analysis of feedback control strategies in yeast. ACS Synth. Biol. 5:2154–62
    [Google Scholar]
  125. 125.
    Menolascina F, Fiore G, Orabona E, de Stefano L, Ferry M et al. 2014. In-vivo real-time control of protein expression from endogenous and synthetic gene networks. PLOS Comput. Biol. 10:5e1003625
    [Google Scholar]
  126. 126.
    Melendez J, Patel M, Oakes BL, Xu P, Morton P, McClean MN 2014. Real-time optogenetic control of intracellular protein concentration in microbial cell cultures. Integr. Biol. 6:3366–72
    [Google Scholar]
  127. 127.
    Milias-Argeitis A, Summers S, Stewart-Ornstein J, Zuleta I, Pincus D et al. 2011. In silico feedback for in vivo regulation of a gene expression circuit. Nat. Biotechnol. 29:121114–16
    [Google Scholar]
  128. 128.
    Milias-Argeitis A, Rullan M, Aoki SK, Buchmann P, Khammash M. 2016. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat. Commun. 7:12546
    [Google Scholar]
  129. 129.
    Chait R, Ruess J, Bergmiller T, Tkačik G, Guet CC. 2017. Shaping bacterial population behavior through computer-interfaced control of individual cells. Nat. Commun. 8:1535
    [Google Scholar]
  130. 130.
    Lovelett RJ, Zhao EM, Lalwani MA, Toettcher JE, Kevrekidis IG, Avalos JL. 2021. Dynamical modeling of optogenetic circuits in yeast for metabolic engineering applications. ACS Synth. Biol. 10:2219–27
    [Google Scholar]
  131. 131.
    Harrigan P, Madhani HD, El-Samad H. 2018. Real-time genetic compensation defines the dynamic demands of feedback control. Cell 175:3877–86.e10
    [Google Scholar]
  132. 132.
    Perkins ML, Benzinger D, Arcak M, Khammash M. 2020. Cell-in-the-loop pattern formation with optogenetically emulated cell-to-cell signaling. Nat. Commun. 11:1355
    [Google Scholar]
  133. 133.
    Lovelett RJ, Avalos JL, Kevrekidis IG. 2019. Partial observations and conservation laws: gray-box modeling in biotechnology and optogenetics. Ind. Eng. Chem. Res. 59:62611–20
    [Google Scholar]
  134. 134.
    Yu D, Lee H, Hong J, Jung H, Jo Y et al. 2019. Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins. Nat. Methods 16:111095–100
    [Google Scholar]
  135. 135.
    Carrasco-López C, Zhao EM, Gil AA, Alam N, Toettcher JE, Avalos JL. 2020. Development of light-responsive protein binding in the monobody non-immunoglobulin scaffold. Nat. Commun. 11:14045
    [Google Scholar]
  136. 136.
    Gil AA, Carrasco-López C, Zhu L, Zhao EM, Ravindran PT et al. 2020. Optogenetic control of protein binding using light-switchable nanobodies. Nat. Commun. 11:4044
    [Google Scholar]
  137. 137.
    He L, Tan P, Huang Y, Zhou Y. 2021. Design of smart antibody mimetics with photosensitive switches. Adv. Biol. 5:2000541
    [Google Scholar]
  138. 138.
    Heistinger L, Gasser B, Mattanovich D. 2020. Microbe profile: Komagataella phaffii: a methanol devouring biotech yeast formerly known as Pichia pastoris. Microbiology 166:7614–16
    [Google Scholar]
  139. 139.
    Fernández FJ, Vega MC. 2016. Choose a suitable expression host: a survey of available protein production platforms. Adv. Exp. Med. Biol. 896:15–24
    [Google Scholar]
  140. 140.
    Casas-Mollano JA, Zinselmeier MH, Erickson SE, Smanski MJ. 2020. CRISPR-Cas activators for engineering gene expression in higher eukaryotes. CRISPR J 3:5350–64
    [Google Scholar]
  141. 141.
    Nihongaki Y, Kawano F, Nakajima T, Sato M. 2015. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33:7755–60
    [Google Scholar]
  142. 142.
    Rizzini L, Favory J-J, Cloix C, Faggionato D, O'Hara A et al. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:6025103–6
    [Google Scholar]
  143. 143.
    Wang H, Vilela M, Winkler A, Tarnawski M, Schlichting I et al. 2016. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13:9755–58
    [Google Scholar]
  144. 144.
    Guntas G, Hallett RA, Zimmerman SP, Williams T, Yumerefendi H et al. 2015. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. PNAS 112:1112–17
    [Google Scholar]
  145. 145.
    Baumschlager A, Aoki SK, Khammash M. 2017. Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control. ACS Synth. Biol. 6:112157–67
    [Google Scholar]
  146. 146.
    Romero A, Rojas V, Delgado V, Salinas F, Larrondo LF. 2021. Modular and molecular optimization of a LOV (light-oxygen-voltage)-based optogenetic switch in yeast. Int. J. Mol. Sci. 22:168538
    [Google Scholar]
  147. 147.
    Dine E, Gil AA, Uribe G, Brangwynne CP, Toettcher JE. 2018. Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst 6:6655–63.e5
    [Google Scholar]
  148. 148.
    Weber AM, Kaiser J, Ziegler T, Pilsl S, Renzl C et al. 2019. A blue light receptor that mediates RNA binding and translational regulation. Nat. Chem. Biol. 15:111085–92
    [Google Scholar]
  149. 149.
    Hartmann A, Arroyo-Olarte RD, Imkeller K, Hegemann P, Lucius R, Gupta N 2013. Optogenetic modulation of an adenylate cyclase in Toxoplasma gondii demonstrates a requirement of the parasite cAMP for host-cell invasion and stage differentiation. J. Biol. Chem. 288:1913705–17
    [Google Scholar]
  150. 150.
    Ong NT, Tabor JJ. 2018. A miniaturized Escherichia coli green light sensor with high dynamic range. ChemBioChem 19:121255–58
    [Google Scholar]
  151. 151.
    Tabor JJ, Levskaya A, Voigt CA. 2011. Multichromatic control of gene expression in Escherichia coli. J. Mol. Biol. 405:2315–24
    [Google Scholar]
  152. 152.
    Olson EJ, Hartsough LA, Landry BP, Shroff R, Tabor JJ. 2014. Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat. Methods 11:4449–55
    [Google Scholar]
  153. 153.
    Hochrein L, Machens F, Messerschmidt K, Mueller-Roeber B. 2017. PhiReX: a programmable and red light-regulated protein expression switch for yeast. Nucleic Acids Res 45:159193–205
    [Google Scholar]
  154. 154.
    Jost AP-T, Weiner OD. 2015. Probing yeast polarity with acute, reversible, optogenetic inhibition of protein function. ACS Synth. Biol. 4:101077–85
    [Google Scholar]
  155. 155.
    Tyszkiewicz AB, Muir TW. 2008. Activation of protein splicing with light in yeast. Nat. Methods 5:4303–5
    [Google Scholar]
  156. 156.
    Allard CAH, Decker F, Weiner OD, Toettcher JE, Graziano BR. 2018. A size-invariant bud-duration timer enables robustness in yeast cell size control. PLOS ONE 13:12e0209301
    [Google Scholar]
  157. 157.
    Ong NT, Olson EJ, Tabor JJ. 2017. Engineering an E. coli near-infrared light sensor. ACS Synth. Biol. 7:1240–48
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092120-092340
Loading
/content/journals/10.1146/annurev-chembioeng-092120-092340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error