1932

Abstract

This review article discusses the solution of population balance equations, for the simulation of disperse multiphase systems, tightly coupled with computational fluid dynamics. Although several methods are discussed, the focus is on quadrature-based moment methods (QBMMs) with particular attention to the quadrature method of moments, the conditional quadrature method of moments, and the direct quadrature method of moments. The relationship between the population balance equation, in its generalized form, and the Euler-Euler multiphase flow models, notably the two-fluid model, is thoroughly discussed. Then the closure problem and the use of Gaussian quadratures to overcome it are analyzed. The review concludes with the presentation of numerical issues and guidelines for users of these modeling approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092319-075814
2020-06-07
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-092319-075814.html?itemId=/content/journals/10.1146/annurev-chembioeng-092319-075814&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ramkrishna D 2000. Population Balances: Theory and Applications to Particulate Systems in Engineering San Diego: Academic. 1st ed.
  2. 2. 
    Marchisio DL, Fox RO 2013. Computational Models for Polydisperse Particulate and Multiphase Systems Cambridge Sser. Chem. Eng. Cambridge, UK: Cambridge Univ. Press
  3. 3. 
    Laurent F, Massot M 2001. Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods. Combust. Theory Model. 5:537–72
    [Google Scholar]
  4. 4. 
    Laurent F, Massot M, Villedieu P 2004. Eulerian multi-fluid modeling for the numerical simulation of coalescence in polydisperse dense liquid sprays. J. Comput. Phys. 194:505–43
    [Google Scholar]
  5. 5. 
    Fan R, Marchisio DL, Fox RO 2004. Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds. Powder Technol. 139:7–20
    [Google Scholar]
  6. 6. 
    Fox RO, Laurent F, Massot M 2008. Numerical simulation of spray coalescence in an Eulerian framework: direct quadrature method of moments and multi-fluid method. J. Comput. Phys. 227:3058–88
    [Google Scholar]
  7. 7. 
    De Chaisemartin S, Fréret L, Kah D, Laurent F, Fox R et al. 2009. Eulerian models for turbulent spray combustion with polydispersity and droplet crossing. C. R. Mécan. 337:438–48
    [Google Scholar]
  8. 8. 
    Mazzei L, Marchisio DL, Lettieri P 2012. New quadrature-based moment method for the mixing of inert polydisperse fluidized powders in commercial CFD codes. AIChE J. 58:3054–69
    [Google Scholar]
  9. 9. 
    Drew DA 2001. A turbulent dispersion model for particles or bubbles. J. Eng. Math. 41:259–74
    [Google Scholar]
  10. 10. 
    Zaichik L, Simonin O, Alipchenkov V 2009. An Eulerian approach for large eddy simulation of particle transport in turbulent flows. J. Turbulence 10:1–21
    [Google Scholar]
  11. 11. 
    Fox RO 2012. Large-eddy-simulation tools for multiphase flows. Annu. Rev. Fluid Mech. 44:47–76
    [Google Scholar]
  12. 12. 
    Balachandar S, Eaton JK 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33
    [Google Scholar]
  13. 13. 
    Ferry J, Balachandar S 2001. A fast Eulerian method for disperse two-phase flow. Int. J. Multiphase Flow 27:1199–226
    [Google Scholar]
  14. 14. 
    Manninen M, Taivassalo V, Kallio S 1996. On the Mixture Model for Multiphase Flow VTT Publication 288. Espoo: Tech. Res. Cent. Finland (VTT)
  15. 15. 
    Sanyal J, Vásquez S, Roy S, Dudukovic M 1999. Numerical simulation of gas–liquid dynamics in cylindrical bubble column reactors. Chem. Eng. Sci. 54:5071–83
    [Google Scholar]
  16. 16. 
    Buffo A, Marchisio DL 2014. Modeling and simulation of turbulent polydisperse gas-liquid systems via the generalized population balance equation. Rev. Chem. Eng. 30:73–126
    [Google Scholar]
  17. 17. 
    Kataoka I, Serizawa A 1989. Basic equations of turbulence in gas-liquid two-phase flow. Int. J. Multiphase Flow 15:843–55
    [Google Scholar]
  18. 18. 
    Lopez de Bertodano MA, Saif AA 1997. Modified k − ε model for two-phase turbulent jets. Nuclear Eng. Des. 172:187–96
    [Google Scholar]
  19. 19. 
    Peirano E, Leckner B 1998. Fundamentals of turbulent gas-solid flows applied to circulating fluidized bed combustion. Progress Energy Combust. Sci. 24:259–96
    [Google Scholar]
  20. 20. 
    Troshko A, Hassan Y 2001. A two-equation turbulence model of turbulent bubbly flows. Int. J. Multiphase Flow 27:1965–2000
    [Google Scholar]
  21. 21. 
    Kumar S, Ramkrishna D 1996. On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem. Eng. Sci. 51:1311–32
    [Google Scholar]
  22. 22. 
    Gelbard F, Tambour Y, Seinfeld JH 1980. Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci. 76:541–56
    [Google Scholar]
  23. 23. 
    Alopaeus V, Laakkonen M, Aittamaa J 2006. Solution of population balances with breakage and agglomeration by high-order moment-conserving method of classes. Chem. Eng. Sci. 61:6732–52
    [Google Scholar]
  24. 24. 
    Vanni M 2000. Approximate population balance equations for aggregation-breakage processes. J. Colloid Interface Sci. 221:143–60
    [Google Scholar]
  25. 25. 
    Kumar J, Peglow M, Warnecke G, Heinrich S, Mörl L 2006. Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique. Chem. Eng. Sci. 61:3327–42
    [Google Scholar]
  26. 26. 
    Kumar S, Ramkrishna D 1997. On the solution of population balance equations by discretization—III. Nucleation, growth and aggregation of particles. Chem. Eng. Sci. 52:4659–79
    [Google Scholar]
  27. 27. 
    Marchal P, David R, Klein J, Villermaux J 1988. Crystallization and precipitation engineering—I. An efficient method for solving population balance in crystallization with agglomeration. Chem. Eng. Sci. 43:59–67
    [Google Scholar]
  28. 28. 
    David R, Villermaux J, Marchal P, Klein JP 1991. Crystallization and precipitation engineering—IV. Kinetic model of adipic acid crystallization. Chem. Eng. Sci. 46:1129–36
    [Google Scholar]
  29. 29. 
    Hounslow M, Ryall R, Marshall V 1988. A discretized population balance for nucleation, growth, and aggregation. AIChE J. 34:1821–32
    [Google Scholar]
  30. 30. 
    Kumar J, Peglow M, Warnecke G, Heinrich S 2008. The cell average technique for solving multi-dimensional aggregation population balance equations. Comput. Chem. Eng. 32:1810–30
    [Google Scholar]
  31. 31. 
    Buffo A, Alopaeus V 2016. Solution of bivariate population balance equations with high-order moment-conserving method of classes. Comput. Chem. Eng. 87:111–24
    [Google Scholar]
  32. 32. 
    Buffo A, Vanni M, Marchisio DL, Fox RO 2013. Multivariate quadrature-based moments methods for turbulent polydisperse gas-liquid systems. Int. J. Multiphase Flow 50:41–57
    [Google Scholar]
  33. 33. 
    Buffo A, Marchisio DL, Vanni M, Renze P 2013. Simulation of polydisperse multiphase systems using population balances and example application to bubbly flows. Chem. Eng. Res. Des. 91:1859–75
    [Google Scholar]
  34. 34. 
    Hulburt HM, Katz S 1964. Some problems in particle technology: a statistical mechanical formulation. Chem. Eng. Sci. 19:555–74
    [Google Scholar]
  35. 35. 
    Fox RO 2007. Introduction and fundamentals of modeling approaches for polydisperse multiphase flows. Multiphase Reacting Flows: Modelling and Simulation. CISM International Centre for Mechanical Sciences, ed. DL Marchisio, RO Fox, Vol. 492, pp. 1–40. Vienna:: Springer
    [Google Scholar]
  36. 36. 
    Frenklach M 2002. Method of moments with interpolative closure. Chem. Eng. Sci. 57:2229–39
    [Google Scholar]
  37. 37. 
    Lee K 1983. Change of particle size distribution during Brownian coagulation. J. Colloid Interface Sci. 92:315–25
    [Google Scholar]
  38. 38. 
    Kruis FE, Kusters KA, Pratsinis SE, Scarlett B 1993. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sci. Technol. 19:514–26
    [Google Scholar]
  39. 39. 
    Strumendo M, Arastoopour H 2008. Solution of PBE by MOM in finite size domains. Chem. Eng. Sci. 63:2624–40
    [Google Scholar]
  40. 40. 
    McGraw R 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27:255–65
    [Google Scholar]
  41. 41. 
    Marchisio DL, Vigil RD, Fox RO 2003. Quadrature method of moments for aggregation-breakage processes. J. Colloid Interface Sci. 258:322–34
    [Google Scholar]
  42. 42. 
    Marchisio DL, Fox RO 2005. Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36:43–73
    [Google Scholar]
  43. 43. 
    Diemer R, Olson J 2002. A moment methodology for coagulation and breakage problems: Part 2—moment models and distribution reconstruction. Chem. Eng. Sci. 57:2211–28
    [Google Scholar]
  44. 44. 
    Gordon RG 1968. Error bounds in equilibrium statistical mechanics. J. Math. Phys. 9:655–63
    [Google Scholar]
  45. 45. 
    Wheeler JC 1974. Modified moments and Gaussian quadratures. Rocky Mt. J. Math. 4:287–96
    [Google Scholar]
  46. 46. 
    Massot M, Laurent F, Kah D, De Chaisemartin S 2010. A robust moment method for evaluation of the disappearance rate of evaporating sprays. SIAM J. Appl. Math. 70:3203–34
    [Google Scholar]
  47. 47. 
    Yuan C, Laurent F, Fox RO 2012. An extended quadrature method of moments for population balance equations. J. Aerosol Sci. 51:1–23
    [Google Scholar]
  48. 48. 
    Desjardins O, Fox RO, Villedieu P 2008. A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys. 227:2514–39
    [Google Scholar]
  49. 49. 
    Vikas V, Wang ZJ, Passalacqua A, Fox RO 2011. Realizable high-order finite-volume schemes for quadrature-based moment methods. J. Comput. Phys. 230:5328–52
    [Google Scholar]
  50. 50. 
    Kah D, Laurent F, Massot M, Jay S 2012. A high order moment method simulating evaporation and advection of a polydisperse liquid spray. J. Comput. Phys. 231:394–422
    [Google Scholar]
  51. 51. 
    Laurent F, Nguyen TT 2017. Realizable second-order finite-volume schemes for the advection of moment sets of the particle size distribution. J. Comput. Phys. 337:309–38
    [Google Scholar]
  52. 52. 
    Shiea M, Buffo A, Vanni M, Marchisio D 2018. A novel finite-volume TVD scheme to overcome non-realizability problem in quadrature-based moment methods. J. Comput. Phys. 409:109337
    [Google Scholar]
  53. 53. 
    Marchisio DL, Soos M, Sefcik J, Morbidelli M 2006. Role of turbulent shear rate distribution in aggregation and breakage processes. AIChE J. 52:158–73
    [Google Scholar]
  54. 54. 
    Wright DL Jr., McGraw R, Rosner DE 2001. Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interface Sci. 236:242–51
    [Google Scholar]
  55. 55. 
    Yoon C, McGraw R 2004. Representation of generally mixed multivariate aerosols by the quadrature method of moments: I. Statistical foundation. J. Aerosol Sci. 35:561–76
    [Google Scholar]
  56. 56. 
    Yoon C, McGraw R 2004. Representation of generally mixed multivariate aerosols by the quadrature method of moments: II. Aerosol dynamics. J. Aerosol Sci. 35:577–98
    [Google Scholar]
  57. 57. 
    Fox RO 2008. A quadrature-based third-order moment method for dilute gas-particle flows. J. Comput. Phys. 227:6313–50
    [Google Scholar]
  58. 58. 
    Fox RO 2009. Higher-order quadrature-based moment methods for kinetic equations. J. Comput. Phys. 228:7771–91
    [Google Scholar]
  59. 59. 
    Cheng JC, Fox RO 2010. Kinetic modeling of nanoprecipitation using CFD coupled with a population balance. Ind. Eng. Chem. Res. 49:10651–62
    [Google Scholar]
  60. 60. 
    Yuan C, Fox RO 2011. Conditional quadrature method of moments for kinetic equations. J. Comput. Phys. 230:8216–46
    [Google Scholar]
  61. 61. 
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP 2007. Numerical Recipes: The Art of Scientific Computing New York: Cambridge Univ. Press. 3rd ed.
  62. 62. 
    Fox RO 2009. Optimal moment sets for multivariate direct quadrature method of moments. Ind. Eng. Chem. Res. 48:9686–96
    [Google Scholar]
  63. 63. 
    Grosch R, Briesen H, Marquardt W, Wulkow M 2007. Generalization and numerical investigation of QMOM. AIChE J. 53:207–27
    [Google Scholar]
  64. 64. 
    Sanyal J, Marchisio DL, Fox RO, Dhanasekharan K 2005. On the comparison between population balance models for CFD simulation of bubble columns. Ind. Eng. Chem. Res. 44:5063–72
    [Google Scholar]
  65. 65. 
    Chen P, Duduković M, Sanyal J 2005. Three-dimensional simulation of bubble column flows with bubble coalescence and breakup. AIChE J. 51:696–712
    [Google Scholar]
  66. 66. 
    Zucca A, Marchisio DL, Barresi AA, Fox RO 2006. Implementation of the population balance equation in CFD codes for modelling soot formation in turbulent flames. Chem. Eng. Sci. 61:87–95
    [Google Scholar]
  67. 67. 
    Bannari R, Kerdouss F, Selma B, Bannari A, Proulx P 2008. Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns. Comput. Chem. Eng. 32:3224–37
    [Google Scholar]
  68. 68. 
    Petitti M, Nasuti A, Marchisio DL, Vanni M, Baldi G et al. 2010. Bubble size distribution modeling in stirred gas-liquid reactors with QMOM augmented by a new correction algorithm. AIChE J. 56:36–53
    [Google Scholar]
  69. 69. 
    Buffo A, Vanni M, Marchisio DL 2012. Multidimensional population balance model for the simulation of turbulent gas-liquid systems in stirred tank reactors. Chem. Eng. Sci. 70:31–44
    [Google Scholar]
  70. 70. 
    Buffo A, Vanni M, Marchisio D 2017. Simulation of a reacting gas–liquid bubbly flow with CFD and PBM: validation with experiments. Appl. Math. Model. 44:43–60
    [Google Scholar]
  71. 71. 
    Li D, Gao Z, Buffo A, Podgorska W, Marchisio DL 2017. Droplet breakage and coalescence in liquid–liquid dispersions: comparison of different kernels with EQMOM and QMOM. AIChE J. 63:2293–311
    [Google Scholar]
  72. 72. 
    Marble FE 1970. Dynamics of dusty gases. Annu. Rev. Fluid Mech. 2:397–446
    [Google Scholar]
  73. 73. 
    Krepper E, Lucas D, Frank T, Prasser HM, Zwart PJ 2008. The inhomogeneous MUSIG model for the simulation of polydispersed flows. Nuclear Eng. Des. 238:1690–702
    [Google Scholar]
  74. 74. 
    Bhole M, Joshi J, Ramkrishna D 2008. CFD simulation of bubble columns incorporating population balance modeling. Chem. Eng. Sci. 63:2267–82
    [Google Scholar]
  75. 75. 
    Selma B, Bannari R, Proulx P 2010. Simulation of bubbly flows: comparison between direct quadrature method of moments (DQMOM) and method of classes (CM). Chem. Eng. Sci. 65:1925–41
    [Google Scholar]
  76. 76. 
    Silva LFLR, Lage PLC 2011. Development and implementation of a polydispersed multiphase flow model in OpenFOAM. Comput. Chem. Eng. 35:2653–66
    [Google Scholar]
  77. 77. 
    Icardi M, Ronco G, Marchisio DL, Labois M 2014. Efficient simulation of gas–liquid pipe flows using a generalized population balance equation coupled with the algebraic slip model. Appl. Math. Model. 38:4277–90
    [Google Scholar]
  78. 78. 
    Passalacqua A, Vedula P, Fox RO 2011. Quadrature-based moment methods for polydisperse gas-solids flows. . In Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice, ed. S Pannala, M Syamlal, TJ O'Brien, pp. 221–44. Hershey, PA:: IGI Global
    [Google Scholar]
  79. 79. 
    Passalacqua A, Fox R, Garg R, Subramaniam S 2010. A fully coupled quadrature-based moment method for dilute to moderately dilute fluid–particle flows. Chem. Eng. Sci. 65:2267–83
    [Google Scholar]
  80. 80. 
    Fox RO, Vedula P 2009. Quadrature-based moment model for moderately dense polydisperse gas-particle flows. Ind. Eng. Chem. Res. 49:5174–87
    [Google Scholar]
  81. 81. 
    Spalding D 1980. Numerical computation of multi-phase fluid flow and heat transfer. . In Recent Advances in Numerical Methods in Fluids, ed. C Taylor, K Morgan, pp. 139–67. Swansea, UK:: Pineridge
    [Google Scholar]
  82. 82. 
    Wright DL Jr 2007. Numerical advection of moments of the particle size distribution in Eulerian models. J. Aerosol Sci. 38:352–69
    [Google Scholar]
  83. 83. 
    Harten A 1983. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49:357–93
    [Google Scholar]
  84. 84. 
    LeVeque RJ 2002. Finite Volume Methods for Hyperbolic Problems Cambridge, UK: Cambridge Univ. Press. 1st ed.
  85. 85. 
    Passalacqua A, Laurent F, Fox RO 2020. A second-order realizable scheme for moment advection on unstructured grids. Comput. Phys. Commun. 248:106993
    [Google Scholar]
  86. 86. 
    Buffo A, Vanni M, Marchisio DL 2016. On the implementation of moment transport equations in OpenFOAM: boundedness and realizability. Int. J. Multiphase Flow 85:223–35
    [Google Scholar]
  87. 87. 
    Pigou M, Morchain J, Fede P, Penet MI, Laronze G 2018. New developments of the extended quadrature method of moments to solve population balance equations. J. Comput. Phys. 365:243–68
    [Google Scholar]
  88. 88. 
    Venneker BC, Derksen JJ, Van den Akker HE 2002. Population balance modeling of aerated stirred vessels based on CFD. AIChE J. 48:673–85
    [Google Scholar]
  89. 89. 
    Wang T, Wang J 2007. Numerical simulations of gas–liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chem. Eng. Sci. 62:7107–18
    [Google Scholar]
  90. 90. 
    Petitti M, Nasuti A, Marchisio DL, Vanni M, Baldi G et al. 2010. Bubble size distribution modeling in stirred gas–liquid reactors with QMOM augmented by a new correction algorithm. AIChE J. 56:36–53
    [Google Scholar]
  91. 91. 
    Peña-Monferrer C, Passalacqua A, Chiva S, Muñoz-Cobo JL 2016. CFD modelling and validation of upward bubbly flow in an adiabatic vertical pipe using the quadrature method of moments. Nucl. Eng. Des. 301:320–32
    [Google Scholar]
  92. 92. 
    Renze P, Buffo A, Marchisio DL, Vanni M 2014. Simulation of coalescence, breakup, and mass transfer in polydisperse multiphase flows. Chem. Ing. Tech. 86:1088–98
    [Google Scholar]
  93. 93. 
    Gemello L, Plais C, Augier F, Marchisio DL 2019. Population balance modelling of bubble columns under the heterogeneous flow regime. Chem. Eng. J. 372:590–604
    [Google Scholar]
  94. 94. 
    Yuan C, Kong B, Passalacqua A, Fox RO 2014. An extended quadrature-based mass-velocity moment model for polydisperse bubbly flows. Can. J. Chem. Eng. 92:2053–66
    [Google Scholar]
  95. 95. 
    Heylmun JC, Kong B, Passalacqua A, Fox RO 2019. A quadrature-based moment method for polydisperse bubbly flows. Comput. Phys. Commun. 244:187–204
    [Google Scholar]
  96. 96. 
    Petitti M, Vanni M, Marchisio DL, Buffo A, Podenzani F 2013. Simulation of coalescence, break-up and mass transfer in a gas-liquid stirred tank with CQMOM. Chem. Eng. J. 228:1182–94
    [Google Scholar]
  97. 97. 
    Yeoh G, Tu J 2004. Population balance modelling for bubbly flows with heat and mass transfer. Chem. Eng. Sci. 59:3125–39
    [Google Scholar]
  98. 98. 
    Cheung SC, Yeoh G, Tu J 2008. Population balance modeling of bubbly flows considering the hydrodynamics and thermomechanical processes. AIChE J. 54:1689–710
    [Google Scholar]
  99. 99. 
    Krepper E, Rzehak R, Lifante C, Frank T 2013. CFD for subcooled flow boiling: coupling wall boiling and population balance models. Nucl. Eng. Des. 255:330–46
    [Google Scholar]
  100. 100. 
    Mazzei L, Marchisio DL, Lettieri P 2010. Direct quadrature method of moments for the mixing of inert polydisperse fluidized powders and the role of numerical diffusion. Ind. Eng. Chem. Res. 49:5141–52
    [Google Scholar]
  101. 101. 
    Chen XZ, Luo ZH, Yan WC, Lu YH, Ng IS 2011. Three-dimensional CFD-PBM coupled model of the temperature fields in fluidized-bed polymerization reactors. AIChE J. 57:3351–66
    [Google Scholar]
  102. 102. 
    Yan WC, Luo ZH, Lu YH, Chen XD 2012. A CFD-PBM-PMLM integrated model for the gas–solid flow fields in fluidized bed polymerization reactors. AIChE J. 58:1717–32
    [Google Scholar]
  103. 103. 
    Li J, Luo ZH, Lan XY, Xu CM, Gao JS 2013. Numerical simulation of the turbulent gas–solid flow and reaction in a polydisperse FCC riser reactor. Powder Technol. 237:569–80
    [Google Scholar]
  104. 104. 
    Zucca A, Marchisio DL, Vanni M, Barresi AA 2007. Validation of bivariate DQMOM for nanoparticle processes simulation. AIChE J. 53:918–931
    [Google Scholar]
  105. 105. 
    Bisetti F, Blanquart G, Mueller ME, Pitsch H 2012. On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159:317–35
    [Google Scholar]
  106. 106. 
    Attarakih MM, Bart HJ, Faqir NM 2006. Numerical solution of the bivariate population balance equation for the interacting hydrodynamics and mass transfer in liquid–liquid extraction columns. Chem. Eng. Sci. 61:113–23
    [Google Scholar]
  107. 107. 
    Schmidt SA, Simon M, Attarakih MM, Lagar L, Bart HJ 2006. Droplet population balance modelling hydrodynamics and mass transfer. Chem. Eng. Sci. 61:246–56
    [Google Scholar]
  108. 108. 
    Drumm C, Attarakih MM, Bart HJ 2009. Coupling of CFD with DPBM for an RDC extractor. Chem. Eng. Sci. 64:721–32
    [Google Scholar]
  109. 109. 
    Roudsari SF, Turcotte G, Dhib R, Ein-Mozaffari F 2012. CFD modeling of the mixing of water in oil emulsions. Comput. Chem. Eng. 45:124–36
    [Google Scholar]
  110. 110. 
    Buffo A, De Bona J, Vanni M, Marchisio DL 2016. Simplified volume-averaged models for liquid–liquid dispersions: correct derivation and comparison with other approaches. Chem. Eng. Sci. 153:382–93
    [Google Scholar]
  111. 111. 
    De Bona J, Buffo A, Vanni M, Marchisio DL 2016. Limitations of simple mass transfer models in polydisperse liquid–liquid dispersions. Chem. Eng. J. 296:112–21
    [Google Scholar]
  112. 112. 
    Gao Z, Li D, Buffo A, Podgórska W, Marchisio DL 2016. Simulation of droplet breakage in turbulent liquid–liquid dispersions with CFD-PBM: comparison of breakage kernels. Chem. Eng. Sci. 142:277–88
    [Google Scholar]
  113. 113. 
    Gavi E, Rivautella L, Marchisio D, Vanni M, Barresi A, Baldi G 2007. CFD modelling of nano-particle precipitation in confined impinging jet reactors. Chem. Eng. Res. Des. 85:735–44
    [Google Scholar]
  114. 114. 
    Di Pasquale N, Marchisio D, Barresi A 2012. Model validation for precipitation in solvent-displacement processes. Chem. Eng. Sci. 84:671–83
    [Google Scholar]
  115. 115. 
    Cheng J, Yang C, Mao ZS 2012. CFD-PBE simulation of premixed continuous precipitation incorporating nucleation, growth and aggregation in a stirred tank with multi-class method. Chem. Eng. Sci. 68:469–80
    [Google Scholar]
  116. 116. 
    Kah D, Laurent F, Fréret L, De Chaisemartin S, Fox RO et al. 2010. Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays. Flow Turbul. Combust. 85:649–76
    [Google Scholar]
  117. 117. 
    Morchain J, Gabelle JC, Cockx A 2014. A coupled population balance model and CFD approach for the simulation of mixing issues in lab-scale and industrial bioreactors. AIChE J. 60:27–40
    [Google Scholar]
  118. 118. 
    Wodołaski A 2020. Co-simulation of CFD-multiphase population balance coupled model aeration of sludge flocs in stirrer tank bioreactor. Int. J. Multiph. Flow 123:103162
    [Google Scholar]
  119. 119. 
    Boccardo G, Sethi R, Marchisio DL 2019. Fine and ultrafine particle deposition in packed-bed catalytic reactors. Chem. Eng. Sci. 198:290–304
    [Google Scholar]
  120. 120. 
    Cachaza EM, Díaz ME, Montes FJ, Galán MA 2009. Simultaneous computational fluid dynamics (CFD) simulation of the hydrodynamics and mass transfer in a partially aerated bubble column. Ind. Eng. Chem. Res 48:8685–96
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092319-075814
Loading
/content/journals/10.1146/annurev-chembioeng-092319-075814
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error