1932

Abstract

Ammonia is a critically important industrial chemical and is largely responsible for sustaining the growing global population. To provide ammonia to underdeveloped regions and/or regions far from industrial production hubs, modular systems have been targeted and often involve unconventional production methodologies. These novel approaches for ammonia production can tap renewable resources at smaller scales located at the point of use, while decreasing the CO footprint. Plasma-assisted catalysis and electrochemical ammonia synthesis have promise owing to their atmospheric pressure and low-temperature operation conditions and the ability to construct units at scales desired for modularization. Fundamental and applied studies are underway to assess these processes, although many unknowns remain. In this review, we discuss recent developments and opportunities for unconventional ammonia synthesis with a focus on plasma-stimulated systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-092319-080240
2020-06-07
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-092319-080240.html?itemId=/content/journals/10.1146/annurev-chembioeng-092319-080240&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Norskov JK, Chen J, Bullock M, Chirik P, Chorkendorff I et al. 2016. Sustainable ammonia synthesis Rep., DOE Roundtable, Off. Sci., US Dep. Energy Washington, DC:
  2. 2. 
    Schlögl R 2003. Catalytic synthesis of ammonia—a “never-ending story”. ? Angew. Chem. Int. Ed. 42:2004–8
    [Google Scholar]
  3. 3. 
    Jennings JR 2013. Catalytic Ammonia Synthesis: Fundamentals and Practice New York: Springer US
  4. 4. 
    Zhou F, Azofra LM, Ali M, Kar M, Simonov AN et al. 2017. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10:2516–20
    [Google Scholar]
  5. 5. 
    Malmali M, Reese M, McCormick AV, Cussler EL 2018. Converting wind energy to ammonia at lower pressure. ACS Sustain. Chem. Eng. 6:827–34
    [Google Scholar]
  6. 6. 
    Reese M, Marquart C, Malmali M, Wagner K, Buchanan E et al. 2016. Performance of a small-scale Haber process. Ind. Eng. Chem. Res. 55:3742–50
    [Google Scholar]
  7. 7. 
    Milton RD, Cai R, Abdellaoui S, Leech D, DeLacey AL et al. 2017. Bioelectrochemical Haber–Bosch process: an ammonia-producing H2/N2 fuel cell. Angew. Chem. Int. Ed. 56:2680–83
    [Google Scholar]
  8. 8. 
    Arashiba K, Miyake Y, Nishibayashi Y 2010. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 3:120–25
    [Google Scholar]
  9. 9. 
    Michalsky R, Avram AM, Peterson BA, Pfromm PH, Peterson AA 2015. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage. Chem. Sci. 6:3965–74
    [Google Scholar]
  10. 10. 
    Giddey S, Badwal SPS, Kulkarni A 2013. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 38:14576–94
    [Google Scholar]
  11. 11. 
    Medford AJ, Hatzell MC 2017. Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal 7:2624–43
    [Google Scholar]
  12. 12. 
    Patil BS, Wang Q, Hessel V, Lang J 2015. Plasma N2-fixation: 1900–2014. Catal. Today 256:49–66
    [Google Scholar]
  13. 13. 
    Metha P, Barboun P, Go DB, Hicks JC, Schneider WF 2019. Catalysis enabled by plasma activation of strong chemical bonds: a review. ACS Energy Lett 4:1115–33
    [Google Scholar]
  14. 14. 
    Ojha DK, Kale M, McCormick AV, Reese M, Dauenhauer P, Cussler EL 2019. Integrated ammonia synthesis and separation. ACS Sustain. Chem. Eng. 7:18785–92
    [Google Scholar]
  15. 15. 
    Montoya JH, Tsai C, Vojvodic A, Nørskov JK 2015. The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8:2180–86
    [Google Scholar]
  16. 16. 
    Van Der Ham CJM, Koper MTM, Hetterscheid DGH 2014. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43:5183–91
    [Google Scholar]
  17. 17. 
    Hawtof R, Ghosh S, Guarr E, Xu C, Mohan Sankaran R, Renner JN 2019. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Sci. Adv. 5:eaat5778
    [Google Scholar]
  18. 18. 
    Kumari S, Pishgar S, Schwarting ME, Paxton WF, Spurgeon JM 2018. Synergistic plasma-assisted electrochemical reduction of nitrogen to ammonia. Chem. Commun. 54:13347–50
    [Google Scholar]
  19. 19. 
    Patel H, Sharma RK, Kyriakou V, Pandiyan A, Welzel S et al. 2019. Plasma-activated electrolysis for cogeneration of nitric oxide and hydrogen from water and nitrogen. ACS Energy Lett 4:2091–95
    [Google Scholar]
  20. 20. 
    Lieberman MA, Lichtenberg AJ 2005. Principles of Plasma Discharges and Materials Processing Hoboken, NJ: Wiley Intersci.
  21. 21. 
    Chang J-S 2001. Recent development of plasma pollution control technology: a critical review. Sci. Technol. Adv. Mater. 2:571–76
    [Google Scholar]
  22. 22. 
    Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A 2015. Plasma catalysis: synergistic effects at the nanoscale. Chem. Rev. 115:13408–46
    [Google Scholar]
  23. 23. 
    Whitehead JC 2016. Plasma-catalysis: the known knowns, the known unknowns and the unknown unknowns. J. Phys. D Appl. Phys. 49:243001
    [Google Scholar]
  24. 24. 
    Fridman A 2008. Plasma Chemistry Cambridge, UK: Cambridge Univ. Press
  25. 25. 
    Davy H 1800. Researches, Chemical and Philosophical: Chiefly Concerning Nitrous Oxide, or Dephlogisticated Nitrous Air, and Its Respiration London: J. Johnson
  26. 26. 
    Snoeckx R, Bogaerts A 2017. Plasma technology—a novel solution for CO2 conversion. ? Chem. Soc. Rev. 46:5805–63
    [Google Scholar]
  27. 27. 
    Van Durme J, Dewulf J, Leys C, Van Langenhove H 2008. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl. Catal. B Environ. 78:324–33
    [Google Scholar]
  28. 28. 
    Yin KS, Venugopalan M 1983. Plasma chemical synthesis. I. Effect of electrode material on the synthesis of ammonia. Plasma Chem. Plasma Process. 3:343–50
    [Google Scholar]
  29. 29. 
    Wang W, Patil B, Heijkers S, Hessel V, Bogaerts A 2017. Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling. ChemSusChem 10:2145–57
    [Google Scholar]
  30. 30. 
    Helden JHV, Wagemans W, Yagci G, Zijlmans RAB, Schram DC et al. 2007. Detailed study of the plasma-activated catalytic generation of ammonia in N2-H2 plasmas. J. Appl. Phys. 101:043305
    [Google Scholar]
  31. 31. 
    Kim H-H, Nanba T 2016. Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts. Plasma Process. Polym. 14:61600157
    [Google Scholar]
  32. 32. 
    Bai M, Zhang Z, Bai X, Bai M, Ning W 2003. Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure. IEEE Trans. Plasma Sci. 31:1285–91
    [Google Scholar]
  33. 33. 
    Kim J, Go DB, Hicks JC 2017. Synergistic effects of plasma–catalyst interactions for CH4 activation. Phys. Chem. Chem. Phys. 19:13010–21
    [Google Scholar]
  34. 34. 
    Sugiyama K, Akazawa K, Oshima M, Miura H, Matsuda T, Nomura O 1986. Ammonia synthesis by means of plasma over MgO catalyst. Plasma Chem. Plasma Process. 6:179–93
    [Google Scholar]
  35. 35. 
    Mizushima T, Matsumoto K, Sugoh J-i, Ohkita H, Kakuta N 2004. Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis. Appl. Catal. A Gen. 265:53–59
    [Google Scholar]
  36. 36. 
    Shah J, Wang W, Bogaerts A, Carreon ML 2018. Ammonia synthesis by radio frequency plasma catalysis: revealing the underlying mechanisms. ACS Appl. Energy Mater. 1:4824–39
    [Google Scholar]
  37. 37. 
    Akay G, Zhang K. 2017. Process intensification in ammonia synthesis using novel coassembled supported microporous catalysts promoted by nonthermal plasma. Ind. Eng. Chem. Res. 56:457–68
    [Google Scholar]
  38. 38. 
    Mizushima T, Matsumoto K, Ohkita H, Kakuta N 2007. Catalytic effects of metal-loaded membrane-like alumina tubes on ammonia synthesis in atmospheric pressure plasma by dielectric barrier discharge. Plasma Chem. Plasma Process. 27:1–11
    [Google Scholar]
  39. 39. 
    Mehta P, Barboun P, Herrera FA, Kim J, Rumbach P et al. 2018. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1:269–75
    [Google Scholar]
  40. 40. 
    Carreon ML, Jaramillo-Cabanzo DF, Chaudhuri I, Menon M, Sunkara MK 2018. Synergistic interactions of H2 and N2 with molten gallium in the presence of plasma. J. Vacuum Sci. Technol. A 36:021303
    [Google Scholar]
  41. 41. 
    Iwamoto M, Akiyama M, Aihara K, Deguchi T 2017. Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2. ACS Catal 7:6924–29
    [Google Scholar]
  42. 42. 
    Barboun P, Mehta P, Herrera FA, Go DB, Schneider WF, Hicks JC 2019. Distinguishing plasma contributions to catalyst performance in plasma-assisted ammonia synthesis. ACS Sustain. Chem. Eng. 7:8621–30
    [Google Scholar]
  43. 43. 
    Hong J, Pancheshnyi S, Tam E, Lowke JJ, Prawer S, Murphy AB 2017. Kinetic modelling of NH3 production in N2–H2 non-equilibrium atmospheric-pressure plasma catalysis. J. Phys. D Appl. Phys. 50:154005
    [Google Scholar]
  44. 44. 
    Aihara K, Akiyama M, Deguchi T, Tanaka M, Hagiwara R, Iwamoto M 2016. Remarkable catalysis of a wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma. Chem. Commun. 52:13560–63
    [Google Scholar]
  45. 45. 
    Gibson EK, Stere CE, Curran-McAteer B, Jones W, Cibin G et al. 2017. Probing the role of a non-thermal plasma (NTP) in the hybrid NTP catalytic oxidation of methane. Angew. Chem. Int. Ed. 56:9351–55
    [Google Scholar]
  46. 46. 
    Kim J, Abbott MS, Go DB, Hicks JC 2016. Enhancing C=H bond activation of methane via temperature-controlled, catalyst–plasma interactions. ACS Energy Lett 1:94–99
    [Google Scholar]
  47. 47. 
    Gómez-Ramírez A, Montoro-Damas AM, Cotrino J, Lambert RM, González-Elipe AR 2017. About the enhancement of chemical yield during the atmospheric plasma synthesis of ammonia in a ferroelectric packed bed reactor. Plasma Process. Polym. 14:1600081
    [Google Scholar]
  48. 48. 
    Butterworth T, Elder R, Allen R 2016. Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor. Chem. Eng. J. 293:55–67
    [Google Scholar]
  49. 49. 
    Neyts EC 2016. Plasma-surface interactions in plasma catalysis. Plasma Chem. Plasma Process. 36:185–212
    [Google Scholar]
  50. 50. 
    Kim H-H, Ogata A 2011. Nonthermal plasma activates catalyst: from current understanding and future prospects. Eur. Phys. J. Appl. Phys. 55:13806
    [Google Scholar]
  51. 51. 
    Herrera FA, Brown G, Barboun P, Turan N, Metha P et al. 2018. The impact of transition metal catalysts on macroscopic dielectric barrier discharge (DBD) characteristics in an ammonia synthesis plasma catalysis reactor. J. Phys. D Appl. Phys. 52:224002
    [Google Scholar]
  52. 52. 
    Logadottir A, Rod TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH 2001. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 197:229–31
    [Google Scholar]
  53. 53. 
    Ertl G 1980. Surface science and catalysis—studies on the mechanism of ammonia synthesis: the P.H. Emmett Award Address. Catal. Rev. 21:201–23
    [Google Scholar]
  54. 54. 
    Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A et al. 2005. Ammonia synthesis from first-principles calculations. Science 307:555–58
    [Google Scholar]
  55. 55. 
    Vojvodic A, Medford AJ, Studt F, Abild-Pedersen F, Khan TS et al. 2014. Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem. Phys. Lett. 598:108–12
    [Google Scholar]
  56. 56. 
    Rod TH, Logadottir A, Nørskov JK 2000. Ammonia synthesis at low temperatures. J. Chem. Phys. 112:5343–47
    [Google Scholar]
  57. 57. 
    Polanyi JC 1972. Concepts in reaction dynamics. Acc. Chem. Res. 5:161–68
    [Google Scholar]
  58. 58. 
    Killelea DR, Campbell V, Shuman N, Utz AL 2008. Bond-selective control of a heterogeneously catalyzed reaction. Science 319:790–94
    [Google Scholar]
  59. 59. 
    Smith RR, Killelea DR, Delsesto DF, Utz AL 2004. Preference for vibrational over translational energy in a gas-surface reaction. Science 304:992–96
    [Google Scholar]
  60. 60. 
    Bogaerts A, Neyts EC 2018. Plasma technology: an emerging technology for energy storage. ACS Energy Lett 3:1013–27
    [Google Scholar]
  61. 61. 
    Gordiets BF, Zhdanok S 1986. Analytical theory of vibrational kinetics of anharmonic oscillators. Nonequilibrium Vibrational Kinetics M Capitelli 47–84 Berlin/Heidelberg, Ger.: Springer
    [Google Scholar]
  62. 62. 
    Xu S, Chansai S, Stere C, Inceesungvorn B, Goguet A et al. 2019. Sustaining metal–organic frameworks for water–gas shift catalysis by non-thermal plasma. Nat. Catal. 2:142–48
    [Google Scholar]
  63. 63. 
    Stere CE, Adress W, Burch R, Chansai S, Goguet A et al. 2015. Probing a non-thermal plasma activated heterogeneously catalyzed reaction using in situ DRIFTS-MS. ACS Catal 5:956–64
    [Google Scholar]
  64. 64. 
    Azzolina-Jury F, Thibault-Starzyk F 2017. Mechanism of low pressure plasma-assisted CO2 hydrogenation over Ni-USY by microsecond time-resolved FTIR spectroscopy. Top. Catal. 60:1709–21
    [Google Scholar]
  65. 65. 
    Bibinov NK, Fateev AA, Wiesemann K 2001. On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures. J. Phys. D Appl. Phys. 34:1819–26
    [Google Scholar]
  66. 66. 
    Britun N, Gaillard M, Ricard A, Kim YM, Kim KS, Han JG 2007. Determination of the vibrational, rotational and electron temperatures in N2 and Ar-N2 rf discharge. J. Phys. D Appl. Phys. 40:1022–29
    [Google Scholar]
  67. 67. 
    Jiang N, Zhao Y, Qiu C, Shang K, Lu N et al. 2019. Enhanced catalytic performance of CoOx-CeO2 for synergetic degradation of toluene in multistage sliding plasma system through response surface methodology (RSM). Appl. Catal. B Environ. 259:118061
    [Google Scholar]
  68. 68. 
    Deleted in proof
  69. 69. 
    Gómez-Ramírez A, Cotrino J, Lambert RM, González-Elipe AR 2015. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor. Plasma Sourc. Sci. Technol. 24:065011
    [Google Scholar]
  70. 70. 
    Bogaerts A, Neyts E, Gijbels R, van der Mullen J 2002. Gas discharge plasmas and their applications. Spectrochim. Acta B 57:609–58
    [Google Scholar]
  71. 71. 
    Kogelschatz U 2003. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23:1–46
    [Google Scholar]
  72. 72. 
    Eliasson B, Hirth M, Kogelschatz U 1987. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. D Appl. Phys. 20:1421–37
    [Google Scholar]
  73. 73. 
    Kim T, Song S, Kim J, Iwasaki R 2010. Formation of NOx from air and N2/O2 mixtures using a nonthermal microwave plasma system. Jpn. J. Appl. Phys. 49:126201
    [Google Scholar]
  74. 74. 
    Yang J, Li T, Zhong C, Guan X, Hu C 2016. Nitrogen fixation in water using air phase gliding arc plasma. J. Electrochem. Soc. 163:E288–92
    [Google Scholar]
  75. 75. 
    Shah J, Wu T, Lucero J, Carreon MA, Carreon ML 2019. Nonthermal plasma synthesis of ammonia over Ni-MOF-74. ACS Sustain. Chem. Eng. 7:377–83
    [Google Scholar]
  76. 76. 
    Gallon HJ, Tu X, Whitehead JC 2012. Effects of reactor packing materials on H2 production by CO2 reforming of CH4 in a dielectric barrier discharge. Plasma Process. Polym. 9:90–97
    [Google Scholar]
  77. 77. 
    Peng P, Li Y, Cheng Y, Deng S, Chen P, Ruan R 2016. Atmospheric pressure ammonia synthesis using non-thermal plasma assisted catalysis. Plasma Chem. Plasma Process. 36:1201–10
    [Google Scholar]
  78. 78. 
    Xie D, Sun Y, Zhu T, Fan X, Hong X, Yang W 2016. Ammonia synthesis and by-product formation from H2O, H2 and N2 by dielectric barrier discharge combined with an Ru/Al2O3 catalyst. RSC Adv 6:105338–46
    [Google Scholar]
  79. 79. 
    Che F, Gray JT, Ha S, Kruse N, Scott SL, McEwen J-S 2018. Elucidating the roles of electric fields in catalysis: a perspective. ACS Catal 8:5153–74
    [Google Scholar]
  80. 80. 
    Bray J, Hensley AJR, Collinge G, Che F, Wang Y, McEwen J-S 2018. Modeling the adsorbate coverage distribution over a multi-faceted catalytic grain in the presence of an electric field: O/Fe from first principles. Catal. Today 312:92–104
    [Google Scholar]
  81. 81. 
    Bray J, Collinge G, Stampfl C, Wang Y, McEwen J-S 2018. Predicting the electric field effect on the lateral interactions between adsorbates: O/Fe(100) from first principles. Top. Catal. 61:763–75
    [Google Scholar]
  82. 82. 
    Ardagh MA, Abdelrahman OA, Dauenhauer PJ 2019. Principles of dynamic heterogeneous catalysis: surface resonance and turnover frequency response. ACS Catal 9:6929–37
    [Google Scholar]
  83. 83. 
    Ardagh MA, Birol T, Zhang Q, Abdelrahman OA, Dauenhauer PJ 2019. Catalytic resonance theory: superVolcanoes, catalytic molecular pumps, and oscillatory steady state. Catal. Sci. Technol. 9:5058–76
    [Google Scholar]
  84. 84. 
    Butterworth T, Allen RWK 2017. Plasma-catalyst interaction studied in a single pellet DBD reactor: dielectric constant effect on plasma dynamics. Plasma Sourc. Sci. Technol. 26:065008
    [Google Scholar]
  85. 85. 
    Zhang Y-R, Neyts EC, Bogaerts A 2016. Influence of the material dielectric constant on plasma generation inside catalyst pores. J. Phys. Chem. C 120:25923–34
    [Google Scholar]
  86. 86. 
    VanLaer K, Bogaerts A 2015. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technol 3:1038–44
    [Google Scholar]
  87. 87. 
    Van Laer K, Bogaerts A 2017. How bead size and dielectric constant affect the plasma behaviour in a packed bed plasma reactor: a modelling study. Plasma Sourc. Sci. Technol. 26:085007
    [Google Scholar]
  88. 88. 
    Kameshima S, Mizukami R, Yamazaki T, Prananto LA, Nozaki T 2018. Interfacial reactions between DBD and porous catalyst in dry methane reforming. J. Phys. D Appl. Phys. 51:114006
    [Google Scholar]
  89. 89. 
    Zhang L, Ding L-X, Chen G-F, Yang X, Wang H 2019. Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem. Int. Ed. 58:2612–16
    [Google Scholar]
  90. 90. 
    Song Y, Johnson D, Peng R, Hensley DK, Bonnesen PV et al. 2018. A physical catalyst for the electrolysis of nitrogen to ammonia. Sci. Adv. 4:e1700336
    [Google Scholar]
  91. 91. 
    Zhu J 2019. Rational design of a carbon-boron frustrated Lewis pair for metal-free dinitrogen activation. Chem. Asian J. 14:1413–17
    [Google Scholar]
  92. 92. 
    Wu J, Li J, Gong Y, Kitano M, Inoshita T, Hosono H 2019. Intermetallic electride catalyst as a platform for ammonia synthesis. Angew. Chem. Int. Ed. 58:825–29
    [Google Scholar]
  93. 93. 
    Vermeiren V, Bogaerts A. 2019. Improving the energy efficiency of CO2 conversion in nonequilibrium plasmas through pulsing. J. Phys. Chem. C 123:17650–65
    [Google Scholar]
  94. 94. 
    Cherkasov N, Ibhadon AO, Fitzpatrick P 2015. A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. Process Intensif. 90:24–33
    [Google Scholar]
  95. 95. 
    Rusanov VD, Fridman AA, Sholin GV 1981. The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules. Sov. Phys. Usp. 24:447–74
    [Google Scholar]
  96. 96. 
    Jiao F, Xu B 2019. Electrochemical ammonia synthesis and ammonia fuel cells. Adv. Mater. 31:1805173
    [Google Scholar]
  97. 97. 
    Soloveichik G 2019. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nat. Catal. 2:377–80
    [Google Scholar]
  98. 98. 
    Anastasopoulou A, Wang Q, Hessel V, Lang J 2014. Energy considerations for plasma-assisted N-fixation reactions. Processes 2:694–710
    [Google Scholar]
  99. 99. 
    Whitehead JC. 2019. Plasma-catalysis: Is it just a question of scale?. Front. Chem. Sci. Eng. 13:264–73
    [Google Scholar]
  100. 100. 
    Namihira T, Katsuki S, Hackam R, Akiyama H, Okamoto K 2002. Production of nitric oxide using a pulsed arc discharge. 30:1993–98
    [Google Scholar]
  101. 101. 
    Malik MA, Jiang C, Heller R, Lane J, Hughes D, Schoenbach KH 2016. Ozone-free nitric oxide production using an atmospheric pressure surface discharge—a way to minimize nitrogen dioxide co-production. Chem. Eng. J. 283:631–38
    [Google Scholar]
  102. 102. 
    Pei X, Gidon D, Graves DB 2019. Specific energy cost for nitrogen fixation as NOx using DC glow discharge in air. J. Phys. D 53:044002
    [Google Scholar]
  103. 103. 
    Bai X, Tiwari S, Robinson B, Kilmer C, Li L, Hu J 2018. Microwave catalytic synthesis of ammonia from methane and nitrogen. Catal. Sci. Technol. 8:6302–5
    [Google Scholar]
  104. 104. 
    Bai M, Zhang Z, Bai M, Bai X, Gao H 2008. Synthesis of ammonia using CH4/N2 plasmas based on micro-gap discharge under environmentally friendly condition. Plasma Chem. Plasma Process. 28:405–14
    [Google Scholar]
  105. 105. 
    Oumghar A, Legrand C, Diamy AM, Turillon N, Ben-Aim RI 1994. A kinetic study of methane conversion by a dinitrogen microwave plasma. Plasma Chem. Plasma Process. 14:229–49
    [Google Scholar]
  106. 106. 
    Oumghar A, Legrand C, Diamy AM, Turillon N 1995. Methane conversion by an air microwave. Plasma Chem. Plasma Process. 15:87–107
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-092319-080240
Loading
/content/journals/10.1146/annurev-chembioeng-092319-080240
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error