1932

Abstract

Enantiomer separation and the isolation of natural products from plants pose challenging separation problems resulting from the similarity of molecules and the number of compounds present in synthesis or extract mixtures. Furthermore, limited theory is available to predict productivities for possible alternative separation techniques. The application and performance of chromatography- and crystallization-based processes are demonstrated for various case studies devoted to isolating valuable target compounds from complex initial mixtures. In all cases, the first emphasis is set to determine the process-specific phase equilibria to identify feasible process options. For all examples considered, yields and productivities are evaluated and compared for different scenarios. Guidelines to approach and solve similar separation tasks are given.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100419-103732
2020-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-100419-103732.html?itemId=/content/journals/10.1146/annurev-chembioeng-100419-103732&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Burcham CL, Florence AJ, Johnson MD 2018. Continuous manufacturing in pharmaceutical process development and manufacturing. Annu. Rev. Chem. Biomol. Eng. 9:253–81
    [Google Scholar]
  2. 2. 
    Kister HZ. 1990. Distillation Operation New York: McGraw-Hill
  3. 3. 
    Stichlmair J, Fair JR. 1998. Distillation: Principles and Practices Weinheim, Ger: Wiley VCH
  4. 4. 
    Doherty MF, Fidkowski ZT, Malone MF, Taylor R 2008. Distillation. Perry's Chemical Engineers' Handbook DW Green, RH Perry, chapter 13 New York: McGraw-Hill. , 8th ed..
    [Google Scholar]
  5. 5. 
    White DC. 2012. Optimize energy use in distillation. CEP Magazine March, pp 35–41
    [Google Scholar]
  6. 6. 
    Ren T, Patel M, Blok K 2006. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. Energy 31:4425–51
    [Google Scholar]
  7. 7. 
    Fredenslund A, Gmehling J, Rasmussen P 1977. Vapor-Liquid Equilibria Using UNIFAC: A Group Contribution Method Amsterdam: Elsevier
  8. 8. 
    Prausnitz JM, Lichtenthaler RN, Gomes de Azevedo E 1999. Molecular Thermodynamics of Fluid-Phase Equilibria New Jersey: Prentice Hall. , 3rd ed..
  9. 9. 
    Smith JM, Van Ness HC, Abbott MM 2004. Introduction to Chemical Engineering Thermodynamics New York: McGraw-Hill Educ.
  10. 10. 
    Henley EJ, Seader JD. 1981. Equilibrium-Stage Separation Operations in Chemical Engineering Weinheim, Ger: Wiley
  11. 11. 
    Wankat P. 1988. Equilibrium Staged Separations Amsterdam: Elsevier
  12. 12. 
    McCabe WL, Thiele EW. 1925. Graphical design of fractionating columns. Ind. Eng. Chem. 17:605–11
    [Google Scholar]
  13. 13. 
    Sundmacher K, Kienle A 2002. Reactive Distillation: Status and Future Directions Weinheim, Ger: Wiley-VCH
  14. 14. 
    McCabe WL, Smith JC, Harriott P 2004. Unit Operations of Chemical Engineering New York: McGraw-Hill Educ.
  15. 15. 
    Gorak A, Stankiewicz A. 2011. Intensified reaction and separation systems. Annu. Rev. Chem. Biomol. Eng. 2:431–51
    [Google Scholar]
  16. 16. 
    Skiborowski M, Harwardt A, Marquardt W 2013. Conceptual design of distillation-based hybrid separation processes. Annu. Rev. Chem. Biomol. Eng. 4:45–68
    [Google Scholar]
  17. 17. 
    Green DW, Perry RH. 2008. Perry's Chemical Engineers' Handbook New York: McGraw-Hill. , 8th ed..
  18. 18. 
    Rumpf H. 1975. Particle Technology Berlin: Springer
  19. 19. 
    Cussler EL, Moggridge GD. 2001. Chemical Product Design Cambridge, UK: Cambridge Univ. Press
  20. 20. 
    Schuur B, Verkuijl BJV, Minnaard AJ, de Vries JG, Heeres HJ, Feringa BL 2011. Chiral separation by enantioselective liquid-liquid extraction. Org. Biomol. Chem. 9:36–51
    [Google Scholar]
  21. 21. 
    Strathmann H. 2011. Membranes: Introduction to Membrane Science and Technology Weinheim, Ger: Wiley-VCH
  22. 22. 
    Tswett MS. 1905. On a new category of adsorption phenomena and on its application to biochemical analysis. Proc. Warsaw Soc. Nat. 14:620–39
    [Google Scholar]
  23. 23. 
    Myers AL, Prausnitz JM. 1965. Thermodynamics of mixed-gas adsorption. AIChE J 11:121–27
    [Google Scholar]
  24. 24. 
    Radke CJ, Prausnitz JM. 1972. Thermodynamics of multi-solute adsorption from dilute liquid solutions. AIChE J 18:761–68
    [Google Scholar]
  25. 25. 
    Craig LC. 1944. Identification of small amounts of organic compounds by distribution studies. J. Biol. Chem. 155:519–34
    [Google Scholar]
  26. 26. 
    Guiochon G, Felinger A, Shirazi DG 2006. Fundamentals of Preparative and Nonlinear Chromatography Amsterdam: Academic, 2nd ed..
  27. 27. 
    Broughton DB, Gerhold CG. 1961. Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets US Patent No. 2985589
  28. 28. 
    Beltscheva D, Hugo P, Seidel-Morgenstern A 2003. Linear two-step gradient counter-current chromatography: analysis based on a recursive solution of an equilibrium stage model. J. Chromatogr. A 989:31–45
    [Google Scholar]
  29. 29. 
    Rhee HK, Aris R, Amundson NR 1986/1989. First Order Partial Differential Equation, Parts I and II Minebola, NY: Dover Publ.
  30. 30. 
    Mazzotti M, Storti G, Morbidelli M 1997. Optimal operation of simulated moving bed units for non-linear chromatographic separations. J. Chromatogr. A 769:3–24
    [Google Scholar]
  31. 31. 
    Kim KM, Lee JW, Kim S, Santos da Silva FV, Seidel-Morgenstern A, Lee CH 2017. Advanced operating strategies to extend the applications of simulated moving bed chromatography. Chem. Eng. Technol. 40:2163–78
    [Google Scholar]
  32. 32. 
    Tavare NS. 1995. Industrial Crystallization: Process Simulation, Analysis and Design New York/London: Plenum
  33. 33. 
    Mullin JW. 2001. Crystallization Oxford, UK/Boston: Butterworth-Heinemann. , 4th ed..
  34. 34. 
    Mersmann A. 2001. Crystallization Technology Handbook Basel, Switz: Marcel Dekker
  35. 35. 
    Cybulski A, Sharma MM, Sheldon RA, Moulijn JA 2001. Fine Chemicals Manufacture: Technology and Engineering Amsterdam: Elsevier
  36. 36. 
    Nagy ZK, Braatz RD. 2012. Advances and new directions in crystallization control. Annu. Rev. Chem. Biomol. Eng. 3:55–75
    [Google Scholar]
  37. 37. 
    Beckmann Wed. 2013. Crystallization: Basic Concepts and Industrial Applications Weinheim, Ger: Wiley-VCH
  38. 38. 
    Ulrich J, Glade H. 2003. Melt Crystallization: Fundamentals, Equipment and Applications Aachen, Ger: Shaker Verlag
  39. 39. 
    Lin SW, Ng KM, Wibowo C 2008. Synthesis of crystallization processes for systems involving solid solutions. Comput. Chem. Eng. 32:4–5956–70
    [Google Scholar]
  40. 40. 
    Temmel E. 2016. Design of continuous crystallization processes PhD thesis, Otto von Guericke Univ. Magdeburg, Magdeburg, Ger.
  41. 41. 
    Münzberg S, Giang Vu T, Seidel-Morgenstern A 2018. Generalizing countercurrent processes: distillation and beyond. Chem. Ing. Tech. 90:1769–81
    [Google Scholar]
  42. 42. 
    Lorenz H. 2013. Solubility and solution equilibria in crystallization. See Reference 37:35–74
    [Google Scholar]
  43. 43. 
    Eliel EL, Wilen S, Doyle M 2001. Basic Organic Stereochemistry New York: Wiley-Intersci.
  44. 44. 
    Meierhenrich U. 2008. Amino Acids and the Asymmetry of Life Berlin: Springer
  45. 45. 
    Herdewijn P, Kisakürek MV. 2008. Origin of Life: Chemical Approach Zürich, Switz: Verlag Helv. Chim. Acta
    [Google Scholar]
  46. 46. 
    Sheldon RA. 1993. Chirotechnology New York: Marcel Dekker
  47. 47. 
    Rouhi AM. 2003. Chirality at work. Chem. Eng. News 81:1856–61
    [Google Scholar]
  48. 48. 
    Rouhi AM. 2003. Chiral business. Chem. Eng. News 81:1845–55
    [Google Scholar]
  49. 49. 
    Crosby J. 1997. Introduction. Chirality in Industry II. Developments in the Commercial Manufacture and Applications of Optically Active Compounds A Collins, G Sheldrake, J Crosby 1–10 Chichester, UK: John Wiley & Sons
    [Google Scholar]
  50. 50. 
    Lorenz H, Seidel-Morgenstern A. 2014. Processes to separate enantiomers. Angew. Chem. Int. Ed. 53:1218–50
    [Google Scholar]
  51. 51. 
    Francotte E. 2005. Chiral stationary phases for preparative enantioselective chromatography. Preparative Enantioselective Chromatography GB Cox 48–77 Oxford, UK: Blackwell Publ.
    [Google Scholar]
  52. 52. 
    Rajendran A, Paredes G, Mazzotti M 2009. Simulated moving bed chromatography for the separation of enantiomers. J. Chromatogr. A 1216:709–38
    [Google Scholar]
  53. 53. 
    Coquerel G. 2007. Preferential crystallization. Top. Curr. Chem. 269:1–51
    [Google Scholar]
  54. 54. 
    Federsel H-J. 2012. In praise of collaboration: the INTENANT success story. Org. Process Res. Dev. 16:260–61
    [Google Scholar]
  55. 55. 
    Kaemmerer H, Horvath Z, Lee JW, Kaspereit M, Arnell R et al. 2012. Separation of racemic bicalutamide by an optimized combination of continuous chromatography and selective crystallization. Org. Process Res. Dev. 16:331–42
    [Google Scholar]
  56. 56. 
    Cockshott ID. 2004. Bicalutamide: clinical pharmacokinetics and metabolism. Clin. Pharmacokinet. 43:13855–78
    [Google Scholar]
  57. 57. 
    Kaemmerer H, Jones MJ, Lorenz H, Seidel-Morgenstern A 2010. Selective crystallisation of a chiral compound-forming-system: solvent screening, SLE determination and process design. Fluid Phase Equilib 296:192–205
    [Google Scholar]
  58. 58. 
    Doherty MF, Malone MF. 2001. Conceptional Design of Distillation Systems New York: McGraw-Hill
  59. 59. 
    Kämmerer H. 2012. New concepts for enantioselective crystallization PhD thesis, Otto von Guericke Univ. Magdeburg, Magdeburg, Ger.
  60. 60. 
    Suvarov P, Lee J-W, Vande Wouwer A, Seidel-Morgenstern A, Kienle A 2019. Online estimation of optimal operating conditions for simulated moving bed chromatographic processes. J. Chromatogr. A 1602:266–72
    [Google Scholar]
  61. 61. 
    Lorenz H, Le Minh T, Kaemmerer H, Buchholz H, Seidel-Morgenstern A 2013. Exploitation of shifts of eutectic compositions in crystallization-based enantioseparation. Chem. Eng. Res. Des. 91:1890–902
    [Google Scholar]
  62. 62. 
    Sarker SD, Nahar L. 2012. Natural Products Isolation New York: Humana/Springer. , 3rd ed..
  63. 63. 
    Hanson JR. 2003. Natural Products: The Secondary Metabolites Cambridge, UK: R. Soc. Chem.
  64. 64. 
    Rates SMK. 2001. Plants as source of drugs. Toxikon 39:603–13
    [Google Scholar]
  65. 65. 
    Wink M. 2008. Ecological roles of alkaloids. Modern Alkaloids: Structure, Isolation, Synthesis and Biology E Fattorusso, O Taglialatela-Scafati 3–24 Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  66. 66. 
    Wink M. 2011. Occurrence and function of natural products in plants. Phytochemistry and Pharmacognosy JM Pezzuto, MJ Kato, chapter 3 Paris: EOLSS Publ.
    [Google Scholar]
  67. 67. 
    Brown GD. 2010. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15:7603–98
    [Google Scholar]
  68. 68. 
    Bart H-J, Pilz S. 2011. Industrial Scale Natural Products Extraction Weinheim, Ger: Wiley-VCH
  69. 69. 
    Rostagno M, Prado J 2013. Natural Product Extraction Cambridge, UK: R. Soc. Chem. Publ.
  70. 70. 
    Chemat F, Strube J. 2015. Green Extraction of Natural Products: Theory and Practice Weinheim, Ger: Wiley-VCH
  71. 71. 
    Ahmad A, Kaleem M, Ahmed Z, Shafiq H 2015. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections: a review. Food Res. Int. 77:221–35
    [Google Scholar]
  72. 72. 
    Couch JF, Naghski J, Krewson CF 1952. Rutin content of Sophora japonica L. J. Am. Chem. Soc. 74:424–25
    [Google Scholar]
  73. 73. 
    Chua LS. 2013. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 150:805–17
    [Google Scholar]
  74. 74. 
    Erlund I. 2004. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 24:851–74
    [Google Scholar]
  75. 75. 
    Gabriele DA. 2015. Quercetin: A flavonol with multifaceted therapeutic applications. ? Fitoterapia 106:256–71
    [Google Scholar]
  76. 76. 
    Bagchi A. 2012. Extraction of curcumin. IOSR J. Environ. Sci. Toxicol. Food Technol. 1:31–16
    [Google Scholar]
  77. 77. 
    DerMarderosian A, Beutler JA. 2014. The Review of Natural Products: The Most Complete Source of Natural Product Information Philadelphia: Lippincott Williams & Wilkins. , 8th ed..
    [Google Scholar]
  78. 78. 
    Grant KL, Schneider CD. 2000. Turmeric. Am. J. Health-Syst. Pharm. 57:1121–22
    [Google Scholar]
  79. 79. 
    Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R 2013. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 11:338–78
    [Google Scholar]
  80. 80. 
    Sanphui P, Bolla G. 2019. Curcumin, a biological wonder molecule: a crystal engineering point of view. Cryst. Growth Des. 18:5690–711
    [Google Scholar]
  81. 81. 
    Pothitirat W, Gritsanapan W. 2005. Quantitative analysis of curcumin, demethoxycurcumin and bisdemethoxycurcumin in the crude curcuminoid extract from Curcuma longa L. in Thailand by TLC-densitometry. Mahidol Univ. J. Pharm. Sci. 32:23–30
    [Google Scholar]
  82. 82. 
    Revathy S, Elumalai S, Benny M, Antony B 2011. Isolation, purification and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. J. Exp. Sci. 2:721–25
    [Google Scholar]
  83. 83. 
    Aggarwal BB, Bhatt ID, Ichikawa H, Ahn KS, Sethi G et al. 2007. Curcumin: biological and medicinal properties. Turmeric: The Genus Curcuma PN Ravindran, KN Babu, K Sivaraman 297–368 New York: CRC
    [Google Scholar]
  84. 84. 
    Motterlini R, Foresti R, Bassi R, Green CJ 2000. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-I and protects endothelial cells against oxidative stress. Free Radic. Biol. Med. 28:1303–12
    [Google Scholar]
  85. 85. 
    Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB 2008. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett 267:133–64
    [Google Scholar]
  86. 86. 
    Salem M, Rohani S, Gillies ER 2014. Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Adv 4:10815–29
    [Google Scholar]
  87. 87. 
    Babu PS, Srinivasan K. 1997. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol. Cell. Biochem. 166:169–75
    [Google Scholar]
  88. 88. 
    Veldman ER, Jia Z, Halldin C, Svedberg MM 2016. Amyloid binding properties of curcumin analogues in Alzheimer's disease postmortem brain tissue. Neurosci. Lett. 630:183–88
    [Google Scholar]
  89. 89. 
    Ruby AJ, Kuttan G, Dinesh Babu K, Rajasekharan KN, Kuttan R 1995. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94:79–83
    [Google Scholar]
  90. 90. 
    Nandakumar DN, Nagaraj VA, Vathsala PG, Rangarajan P, Padmanaban G 2006. Curcumin-artemisinin combination therapy for malaria. Antimicrob. Agents Chemother. 50:51859–60
    [Google Scholar]
  91. 91. 
    Chen PT, Chen ZT, Hou WC, Yu LC, Chen RP 2016. Polyhydroxycurcuminoids but not curcumin upregulate neprilysin and can be applied to the prevention of Alzheimer's disease. Sci. Rep. 6:29760
    [Google Scholar]
  92. 92. 
    Kalaycıoğlu Z, Gazioğlu I, Erim FB 2017. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat. Product Res. 31:2914–17
    [Google Scholar]
  93. 93. 
    Klayman DL. 1985. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–55
    [Google Scholar]
  94. 94. 
    Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T et al. 2010. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327:328–31
    [Google Scholar]
  95. 95. 
    Mutabingwa TK. 2005. Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy. ! Acta Trop 95:305–15
    [Google Scholar]
  96. 96. 
    Zhou WS, Xu XX. 1994. Total synthesis of the antimalarial sesquiterpene peroxide Qinghaosu and Yingzhaosu A. Acc. Chem. Res. 27:211–16
    [Google Scholar]
  97. 97. 
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–43
    [Google Scholar]
  98. 98. 
    Van Noorden R. 2010. Demand for malaria drug soars. Nature 466:672–73
    [Google Scholar]
  99. 99. 
    Lapkin AA, Plucinski PK, Cutler M 2006. Comparative assessment of technologies for extraction of artemisinin. J. Nat. Prod. 69:1653–64
    [Google Scholar]
  100. 100. 
    Lévesque F, Seeberger PH. 2012. Kontinuierliche synthese des malariawirkstoffs artemisinin. Angew. Chem. 124:1738–41
    [Google Scholar]
  101. 101. 
    Kopetzki D, Levesque F, Seeberger PH 2013. A continuous-flow process for the synthesis of artemisinin. Chem. Eur. J. 19:5450–56
    [Google Scholar]
  102. 102. 
    Linh HT. 2009. Natural dyes in Eastern Asia (Vietnam and neighbouring countries). Handbook of Natural Colorants TM Bechtold, R Mussak 65–72 Chichester, UK: John Wiley & Sons
    [Google Scholar]
  103. 103. 
    Huyen NTT, Chau PD, Thiem PV 2009. The composition of fruit essential oil and extract of dried bud of Sophora japonica L. cultivated in Vietnam. J. Sci. Technol. 75:79–82
    [Google Scholar]
  104. 104. 
    Zu Y, Li C, Fu Y, Zhao C 2006. Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. J. Pharm. Biomed. Anal. 41:714–19
    [Google Scholar]
  105. 105. 
    Horosanskaia E, Nguyen TM, Dinh VT, Seidel-Morgenstern A, Lorenz H 2017. Crystallization-based isolation of pure rutin from herbal extract of Sophora japonica L. Org. Process Res. Dev. 21:1769–78
    [Google Scholar]
  106. 106. 
    Horosanskaia E. 2018. Strategien zur kristallisationsbasierten Aufreinigung von pharmazeutisch relevanten Naturstoffen und organischen Mehrkomponentengemischen PhD thesis, Otto-von-Guericke Univ Magdeburg, Ger:.
  107. 107. 
    Horosanskaia E, Lorenz H, Seidel-Morgenstern A, Minh Tan N, Dinh Tien V 2014. Batch and semi-continuous isolation of highly pure rutin from rutin extract of plant Sophora japonica VN Patent Appl. No. 1-2016-01852
    [Google Scholar]
  108. 108. 
    Dunnick JK, Hailey JR. 1992. Toxicity and carcinogenicity studies of quercetin, a natural component of foods. Fundam. Appl. Toxicol. 19:423–31
    [Google Scholar]
  109. 109. 
    Suresh K, Nangia A. 2018. Curcumin: pharmaceutical solids as a platform to improve solubility and bioavailability. Cryst. Eng. Comm. 20:3277–96
    [Google Scholar]
  110. 110. 
    Chava S, Gorantla SRA, Muppidi VK 2015. Solid forms of curcumin and derivatives thereof Patent No. WO2015052568A2
  111. 111. 
    Kasai K, Saito A, Sato S 2017. Crystal structure and pseudopolymorphism of bisdemethoxycurcumin-alcohol solvates. Bull. Miyagi Univ. Educ. 51:83–88
    [Google Scholar]
  112. 112. 
    Yuan L, Lorenz H. 2018. Solvate formation of bis(demethoxy)curcumin: screening and characterization. Crystals 8:11407
    [Google Scholar]
  113. 113. 
    Yuan L, Horosanskaia E, Engelhardt F, Edelmann FT, Couvrat N et al. 2019. Solvate formation of bis(demethoxy)curcumin: crystal structure analyses and stability investigations. Cryst. Growth Des. 19:854–67
    [Google Scholar]
  114. 114. 
    Anderson AM, Mitchell MS, Mohan RS 2000. Isolation of curcumin from turmeric. J. Chem. Educ. 77:359–60
    [Google Scholar]
  115. 115. 
    Rasmussen HB, Christensen SB, Kvist LP, Karazmi A 2000. A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. . Planta Med 66:396–98
    [Google Scholar]
  116. 116. 
    Heffernan C, Ukrainczyk M, Gamidi RK, Hodnett BK, ÅC Rasmuson 2017. Extraction and purification of curcuminoids from crude curcumin by a combination of crystallization and chromatography. Org. Process Res. Dev. 21:821–26
    [Google Scholar]
  117. 117. 
    Péret-Almeida L, Cherubino APF, Alves RJ, Dufossé L, Glória MBA 2005. Separation and determination of the physico-chemical characteristics of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Res. Int. 38:8–91039–44
    [Google Scholar]
  118. 118. 
    Liu J, Svard M, Hippen P, Rasmuson AC 2015. Solubility and crystal nucleation in organic solvents of two polymorphs of curcumin. J. Pharm. Sci. 104:2183–89
    [Google Scholar]
  119. 119. 
    Ukrainczyk M, Hodnett BK, Rasmuson ÅC 2016. Process parameters in the purification of curcumin by cooling crystallization. Org. Process Res. Dev. 20:1593–602
    [Google Scholar]
  120. 120. 
    Horosanskaia E, Yuan L, Seidel-Morgenstern A, Lorenz H 2020. Purification of curcumin from ternary extract-similar mixtures of curcuminoids in a single crystallization step. Crystals 10:3206
    [Google Scholar]
  121. 121. 
    Kung SH, Lund S, Murarka A, McPhee D, Paddon CJ 2018. Approaches and recent developments for the commercial production of semi-synthetic artemisinin. Front. Plant Sci. 9:87
    [Google Scholar]
  122. 122. 
    Horvath Z, Horosanskaia E, Lee JW, Lorenz H, Gilmore K et al. 2015. Recovery of artemisinin from a complex reaction mixture using continuous chromatography and crystallization. Org. Process Res. Dev. 19:624–34
    [Google Scholar]
  123. 123. 
    Horosanskaia E, Triemer S, Seidel-Morgenstern A, Lorenz H 2019. Purification of artemisinin from the product solution of a semisynthetic reaction within a single crystallization step. Org. Process Res. Dev. 23:2074–79
    [Google Scholar]
  124. 124. 
    Qu H, Christensen KB, Fretté XC, Tian F, Rantanen J, Christensen LP 2010. Chromatography-crystallization hybrid process for artemisinin purification from Artemisia annua. Chem. Eng. . Technol 33:791–96
    [Google Scholar]
  125. 125. 
    Malwade CR, Buchholz H, Rong B-G, Qu H, Christensen LP et al. 2016. Crystallization of artemisinin from chromatography fractions of Artemisia annua extract. Org. Process Res. Dev. 20:646–52
    [Google Scholar]
  126. 126. 
    Poirot R, Prat L, Gourdon C, Diard C, Autret JM 2016. Fast batch to continuous solid-liquid extraction from plants in continuous industrial extractor. Chem. Eng. Technol. 30:146–51
    [Google Scholar]
  127. 127. 
    Triemer S, Gilmore K, Vu GT, Seeberger PH, Seidel-Morgenstern A 2018. Literally green chemical synthesis of artemisinin from plant extracts. Angew. Chem. Int. Ed. 57:5525–28
    [Google Scholar]
  128. 128. 
    Gilmore K, Kopetzki D, Lee JW, Horvath Z, McQuade DT et al. 2014. Continuous synthesis of artemisinin-derived medicines. Chem. Commun. 50:12652–55
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100419-103732
Loading
/content/journals/10.1146/annurev-chembioeng-100419-103732
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error