1932

Abstract

There is an urgent need for new technologies to enable circularity for synthetic polymers, spurred by the accumulation of waste plastics in landfills and the environment and the contributions of plastics manufacturing to climate change. Chemical recycling is a promising means to convert waste plastics into molecular intermediates that can be remanufactured into new products. Given the growing interest in the development of new chemical recycling approaches, it is critical to evaluate the economics, energy use, greenhouse gas emissions, and other life cycle inventory metrics for emerging processes,relative to the incumbent, linear manufacturing practices employed today. Here we offer specific definitions for classes of chemical recycling and upcycling and describe general process concepts for the chemical recycling of mixed plastics waste. We present a framework for techno-economic analysis and life cycle assessment for both closed- and open-loop chemical recycling. Rigorous application of these process analysis tools will be required to enable impactful solutions for the plastics waste problem.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-100521-085846
2022-06-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/13/1/annurev-chembioeng-100521-085846.html?itemId=/content/journals/10.1146/annurev-chembioeng-100521-085846&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Andrady AL, Neal MA. 2009. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B 364:1977–84
    [Google Scholar]
  2. 2.
    Law KL. 2017. Plastics in the marine environment. Annu. Rev. Mar. Sci. 9:205–29
    [Google Scholar]
  3. 3.
    Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L et al. 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369:1515–18
    [Google Scholar]
  4. 4.
    Law KL, Starr N, Siegler TR, Jambeck JR, Mallos NJ, Leonard GH. 2020. The United States’ contribution of plastic waste to land and ocean. Sci. Adv. 6:eabd0288
    [Google Scholar]
  5. 5.
    Stubbins A, Law KL, Muñoz SE, Bianchi TS, Zhu L. 2021. Plastics in the Earth system. Science 373:51–55
    [Google Scholar]
  6. 6.
    Zheng J, Suh S. 2019. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9:374–78
    [Google Scholar]
  7. 7.
    Posen ID, Jaramillo P, Landis AE, Griffin WM. 2017. Greenhouse gas mitigation for US plastics production: energy first, feedstocks later. Environ. Res. Lett. 12:034024
    [Google Scholar]
  8. 8.
    Nicholson SR, Rorrer NA, Carpenter AC, Beckham GT. 2021. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5:673–86
    [Google Scholar]
  9. 9.
    Ford HV, Jones NH, Davies AJ, Godley BJ, Jambeck JR et al. 2021. The fundamental links between climate change and marine plastic pollution. Sci. Total Environ. 806:1150392
    [Google Scholar]
  10. 10.
    Ragaert K, Delva L, Van Geem K. 2017. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69:24–58
    [Google Scholar]
  11. 11.
    Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T et al. 2020. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8:3494–511
    [Google Scholar]
  12. 12.
    Ward CP, Reddy CM. 2020. Opinion: We need better data about the environmental persistence of plastic goods. PNAS 117:14618–21
    [Google Scholar]
  13. 13.
    Garcia JM, Robertson ML. 2017. The future of plastics recycling. Science 358:870–72
    [Google Scholar]
  14. 14.
    Rahimi A, García JM. 2017. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1:0046
    [Google Scholar]
  15. 15.
    Jehanno C, Pérez-Madrigal MM, Demarteau J, Sardon H, Dove AP. 2019. Organocatalysis for depolymerisation. Polym. Chem. 10:172–86
    [Google Scholar]
  16. 16.
    Coates GW, Getzler YD. 2020. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5:501–16
    [Google Scholar]
  17. 17.
    Mark LO, Cendejas MC, Hermans I. 2020. The use of heterogeneous catalysis in the chemical valorization of plastic waste. ChemSusChem 13:5773–73
    [Google Scholar]
  18. 18.
    Ellis LD, Rorrer NA, Sullivan KP, Otto M, McGeehan JE et al. 2021. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4:539–56
    [Google Scholar]
  19. 19.
    Korley LT, Epps TH, Helms BA, Ryan AJ. 2021. Toward polymer upcycling—adding value and tackling circularity. Science 373:66–69
    [Google Scholar]
  20. 20.
    Kosloski-Oh SC, Wood ZA, Manjarrez Y, de los Rios JP, Fieser ME. 2021. Catalytic methods for chemical recycling or upcycling of commercial polymers. Mater. Horiz. 8:1084–129
    [Google Scholar]
  21. 21.
    Martín AJ, Mondelli C, Jaydev SD, Pérez-Ramírez J. 2021. Catalytic processing of plastic waste on the rise. Chem 7:1487–533
    [Google Scholar]
  22. 22.
    Eagan JM, Xu J, Di Girolamo R, Thurber CM, Macosko CW et al. 2017. Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science 355:814–16
    [Google Scholar]
  23. 23.
    Williamson JB, Lewis SE, Johnson RR III, Manning IM, Leibfarth FA. 2019. C−H functionalization of commodity polymers. Angew. Chem. Int. Ed. 58:8654–68
    [Google Scholar]
  24. 24.
    Walker TW, Frelka N, Shen Z, Chew AK, Banick J et al. 2020. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 6:eaba7599
    [Google Scholar]
  25. 25.
    Ügdüler S, Van Geem KM, Roosen M, Delbeke EI, De Meester S. 2020. Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. Waste Manag. 104:148–82
    [Google Scholar]
  26. 26.
    Iacovidou E, Millward-Hopkins J, Busch J, Purnell P, Velis CA et al. 2017. A pathway to circular economy: developing a conceptual framework for complex value assessment of resources recovered from waste. J. Clean. Prod. 168:1279–88
    [Google Scholar]
  27. 27.
    Iacovidou E, Velis CA, Purnell P, Zwirner O, Brown A et al. 2017. Metrics for optimising the multi-dimensional value of resources recovered from waste in a circular economy: a critical review. J. Cleaner Prod. 166:910–38
    [Google Scholar]
  28. 28.
    Sharuddin SDA, Abnisa F, Daud WMAW, Aroua MK. 2016. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115:308–26
    [Google Scholar]
  29. 29.
    Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, Olazar M. 2018. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 82:576–96
    [Google Scholar]
  30. 30.
    Jeswani H, Krüger C, Russ M, Horlacher M, Antony F et al. 2021. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total Environ. 769:144483
    [Google Scholar]
  31. 31.
    Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. 2018. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344:179–99
    [Google Scholar]
  32. 32.
    Anastas PT. 2020. Circularity. What's the problem?. ACS Sustain. Chem. Eng. 8:13111
    [Google Scholar]
  33. 33.
    Kleinhans K, Demets R, Dewulf J, Ragaert K, De Meester S. 2021. Non-household end-use plastics: the “forgotten” plastics for the circular economy. Curr. Opin. Chem. Eng. 32:100680
    [Google Scholar]
  34. 34.
    Mumladze T, Yousef S, Tatariants M, Kriūkienė R, Makarevicius V et al. 2018. Sustainable approach to recycling of multilayer flexible packaging using switchable hydrophilicity solvents. Green Chem. 20:3604–18
    [Google Scholar]
  35. 35.
    Zhou P, Sánchez-Rivera KL, Huber GW, Van Lehn RC. 2021. Computational approach for rapidly predicting temperature-dependent polymer solubilities using molecular-scale models. ChemSusChem 14:194307–16
    [Google Scholar]
  36. 36.
    Horodytska O, Valdés FJ, Fullana A. 2018. Plastic flexible films waste management—a state of art review. Waste Manag. 77:413–25
    [Google Scholar]
  37. 37.
    Kaiser K, Schmid M, Schlummer M. 2018. Recycling of polymer-based multilayer packaging: a review. Recycling 3:11
    [Google Scholar]
  38. 38.
    Cimpan C, Maul A, Jansen M, Pretz T, Wenzel H. 2015. Central sorting and recovery of MSW recyclable materials: a review of technological state-of-the-art, cases, practice and implications for materials recycling. J. Environ. Manag. 156:181–99
    [Google Scholar]
  39. 39.
    Cimpan C, Maul A, Wenzel H, Pretz T. 2016. Techno-economic assessment of central sorting at material recovery facilities—the case of lightweight packaging waste. J. Clean. Prod. 112:4387–97
    [Google Scholar]
  40. 40.
    Gadaleta G, De Gisi S, Binetti SMC, Notarnicola M. 2020. Outlining a comprehensive techno-economic approach to evaluate the performance of an advanced sorting plant for plastic waste recovery. Process Saf. Environ. Prot. 143:248–61
    [Google Scholar]
  41. 41.
    Mastellone ML, Cremiato R, Zaccariello L, Lotito R. 2017. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste. Waste Manag. 64:3–11
    [Google Scholar]
  42. 42.
    Aguado J, Serrano D, San Miguel G. 2007. European trends in the feedstock recycling of plastic wastes. Glob. NEST J. 9:12–19
    [Google Scholar]
  43. 43.
    Sinha V, Patel MR, Patel JV. 2010. PET waste management by chemical recycling: a review. J. Polym. Environ. 18:8–25
    [Google Scholar]
  44. 44.
    Roosen M, Mys N, Kusenberg M, Billen P, Dumoulin A et al. 2020. Detailed analysis of the composition of selected plastic packaging waste products and its implications for mechanical and thermochemical recycling. Environ. Sci. Technol. 54:13282–93
    [Google Scholar]
  45. 45.
    Ügdüler S, Van Geem KM, Denolf R, Roosen M, Mys N et al. 2020. Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis. Green Chem. 22:5376–94
    [Google Scholar]
  46. 46.
    Ügdüler S, De Somer T, Van Geem KM, Roosen M, Kulawig A et al. 2021. Towards a better understanding of delamination of multilayer flexible packaging films by carboxylic acids. ChemSusChem 14:194198–213
    [Google Scholar]
  47. 47.
    Dufaud V, Basset JM. 1998. Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diesels or lower alkanes by a zirconium hydride supported on silica-alumina: a step toward polyolefin degradation by the microscopic reverse of Ziegler–Natta polymerization. Angew. Chem. Int. Ed. 37:806–10
    [Google Scholar]
  48. 48.
    Celik G, Kennedy RM, Hackler RA, Ferrandon M, Tennakoon A et al. 2019. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5:1795–803
    [Google Scholar]
  49. 49.
    Rorrer JE, Beckham GT, Román-Leshkov Y. 2020. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au 1:8–12
    [Google Scholar]
  50. 50.
    Tennakoon A, Wu X, Paterson AL, Patnaik S, Pei Y et al. 2020. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 3:893–901
    [Google Scholar]
  51. 51.
    Jia C, Xie S, Zhang W, Intan NN, Sampath J et al. 2021. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem Catal 1:2437–55
    [Google Scholar]
  52. 52.
    Jehanno C, Demarteau J, Mantione D, Arno MC, Ruipérez F et al. 2021. Selective chemical upcycling of mixed plastics guided by a thermally stable organocatalyst. Angew. Chem. Int. Ed. 60:6710–17
    [Google Scholar]
  53. 53.
    Quartinello F, Vecchiato S, Weinberger S, Kremenser K, Skopek L et al. 2018. Highly selective enzymatic recovery of building blocks from wool-cotton-polyester textile waste blends. Polymers 10:1107
    [Google Scholar]
  54. 54.
    Tournier V, Topham C, Gilles A, David B, Folgoas C et al. 2020. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580:216–19
    [Google Scholar]
  55. 55.
    Carniel A, de Abreu Waldow V, de Castro AM. 2021. A comprehensive and critical review on key elements to implement enzymatic PET depolymerization for recycling purposes. Biotechnol. Adv. 52:107811
    [Google Scholar]
  56. 56.
    Subramanian K, Sarkar MK, Wang H, Qin Z-H, Chopra SS et al. 2021. An overview of cotton and polyester, and their blended waste textile valorisation to value-added products: A circular economy approach–research trends, opportunities and challenges. Crit. Rev. Environ. Sci. Technol. In press
    [Google Scholar]
  57. 57.
    Palme A, Peterson A, de la Motte H, Theliander H, Brelid H. 2017. Development of an efficient route for combined recycling of PET and cotton from mixed fabrics. Text. Cloth. Sustain. 3:4
    [Google Scholar]
  58. 58.
    Renders T, Van den Bossche G, Vangeel T, Van Aelst K, Sels B. 2019. Reductive catalytic fractionation: state of the art of the lignin-first biorefinery. Curr. Opin. Biotechnol. 56:193–201
    [Google Scholar]
  59. 59.
    Abu-Omar MM, Barta K, Beckham GT, Luterbacher JS, Ralph J et al. 2021. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 14:262–92
    [Google Scholar]
  60. 60.
    Won W, Maravelias CT. 2017. Thermal fractionation and catalytic upgrading of lignocellulosic biomass to biofuels: process synthesis and analysis. Renew. Energy 114:357–66
    [Google Scholar]
  61. 61.
    Bartling AW, Stone ML, Hanes RJ, Bhatt A, Zhang Y et al. 2021. Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic fractionation. Energy Environ. Sci. 14:4147–68
    [Google Scholar]
  62. 62.
    Bora RR, Wang R, You F. 2020. Waste polypropylene plastic recycling toward climate change mitigation and circular economy: energy, environmental, and technoeconomic perspectives. ACS Sustain. Chem. Eng. 8:16350–63
    [Google Scholar]
  63. 63.
    Arena U, Di Gregorio F, Amorese C, Mastellone ML. 2011. A techno-economic comparison of fluidized bed gasification of two mixed plastic wastes. Waste Manag. 31:1494–504
    [Google Scholar]
  64. 64.
    Lee W-T, Bobbink FD, van Muyden AP, Lin K-H, Corminboeuf C et al. 2021. Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams. Cell Rep. Phys. Sci. 2:100332
    [Google Scholar]
  65. 65.
    Serrano D, Aguado J, Escola J. 2012. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals. ACS Catal 2:1924–41
    [Google Scholar]
  66. 66.
    Kunwar B, Cheng H, Chandrashekaran SR, Sharma BK. 2016. Plastics to fuel: a review. Renew. Sustain. Energy Rev. 54:421–28
    [Google Scholar]
  67. 67.
    Lopez G, Artetxe M, Amutio M, Bilbao J, Olazar M. 2017. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renew. Sustain. Energy Rev. 73:346–68
    [Google Scholar]
  68. 68.
    Benavides PT, Sun P, Han J, Dunn JB, Wang M. 2017. Life-cycle analysis of fuels from post-use non-recycled plastics. Fuel 203:11–22
    [Google Scholar]
  69. 69.
    Rorrer JE, Troyano-Valls C, Beckham GT, Román-Leshkov Y. 2021. Hydrogenolysis of polypropylene and mixed polyolefin plastic waste over Ru/C to produce liquid alkanes. ACS Sustain. Chem. Eng. 9:3511661–66
    [Google Scholar]
  70. 70.
    Jing Y, Wang Y, Furukawa S, Xia J, Sun C et al. 2021. Towards the circular economy: Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew. Chem. 133:5587–95
    [Google Scholar]
  71. 71.
    Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB et al. 2014. Lignin valorization through integrated biological funneling and chemical catalysis. PNAS 111:12013–18
    [Google Scholar]
  72. 72.
    Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M et al. 2016. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55:8164–215
    [Google Scholar]
  73. 73.
    Song S, Zhang J, Gözaydın G, Yan N 2019. Production of terephthalic acid from corn stover lignin. Angew. Chem. Int. Ed. 58:4934–37
    [Google Scholar]
  74. 74.
    Guzik MW, Kenny ST, Duane GF, Casey E, Woods T et al. 2014. Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Appl. Microbiol. Biotechnol. 98:4223–32
    [Google Scholar]
  75. 75.
    Goff M, Ward PG, O'Connor KE. 2007. Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: a nitrogen feeding strategy for bacterial cells in a stirred tank reactor. J. Biotechnol. 132:283–86
    [Google Scholar]
  76. 76.
    Utomo RNC, Li W-J, Tiso T, Eberlein C, Doeker M et al. 2020. Defined microbial mixed culture for utilization of polyurethane monomers. ACS Sustain. Chem. Eng. 8:17466–74
    [Google Scholar]
  77. 77.
    Guzik MW, Nitkiewicz T, Wojnarowska M, Sołtysik M, Kenny ST et al. 2021. Robust process for high yield conversion of non-degradable polyethylene to a biodegradable plastic using a chemo-biotechnological approach. Waste Manag. 135:60–69
    [Google Scholar]
  78. 78.
    Bäckström E, Odelius K, Hakkarainen M. 2017. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Ind. Eng. Chem. Res. 56:14814–21
    [Google Scholar]
  79. 79.
    Ito Y. 2005. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A 1065:145–68
    [Google Scholar]
  80. 80.
    Li R, Meng L, Han S, Du C, Xu J et al. 2016. Determination and correlation of solid–liquid phase equilibrium and phase diagram for a multicomponent system of mixed dibasic acids. Ternary system of succinic acid + adipic acid + ethanol. J. Chem. Eng. Data 61:2105–13
    [Google Scholar]
  81. 81.
    Eur. Comm 2010. ILCD Handbook: Framework and Requirements for Life Cycle Impact Assessment Models and Indicators Luxemburg: Publ. Off. Eur. Union
  82. 82.
    Beaumont NJ, Aanesen M, Austen MC, Börger T, Clark JR et al. 2019. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142:189–95
    [Google Scholar]
  83. 83.
    Goldstein J. 2014. From Waste to Jobs: What Achieving 75 Percent Recycling Means for California Boston: Nat. Resour. Def. Counc.
  84. 84.
    McMahon K, Ryan-Fogarty Y, Fitzpatrick C. 2021. Estimating job creation potential of compliant WEEE pre-treatment in Ireland. Resour. Conserv. Recycl. 166:105230
    [Google Scholar]
  85. 85.
    Hestin M, Faninger T, Milios L. 2015. Increased EU plastics recycling targets: environmental, economic and social impact assessment Rep. Plast. Recycl. Eur. Brussels:
  86. 86.
    Ohno H, Shigetomi Y, Chapman A, Fukushima Y. 2021. Detailing the economy-wide carbon emission reduction potential of post-consumer recycling. Resour. Conserv. Recycl. 166:105263
    [Google Scholar]
  87. 87.
    Environ. Prot. Agency 2021. EJScreen: Environmental Justice Screening and Mapping Tool. https://www.epa.gov/ejscreen
  88. 88.
    Lamers P, Avelino AFT, Zhang Y, Tan ECD, Young B et al. 2021. Potential socioeconomic and environmental effects of an expanding US bioeconomy: an assessment of near-commercial cellulosic biofuel pathways. Environ. Sci. Technol. 55:5496–505
    [Google Scholar]
  89. 89.
    Kitzes J. 2013. An introduction to environmentally-extended input-output analysis. Resources 2:489–503
    [Google Scholar]
  90. 90.
    Meys R, Frick F, Westhues S, Sternberg A, Klankermayer J, Bardow A. 2020. Towards a circular economy for plastic packaging wastes—the environmental potential of chemical recycling. Resour. Conserv. Recycl. 162:105010
    [Google Scholar]
  91. 91.
    Schwarz AE, Ligthart TN, Godoi Bizarro D, De Wild P, Vreugdenhil B, van Harmelen T 2021. Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manag. 121:331–42
    [Google Scholar]
  92. 92.
    Davidson MG, Furlong RA, McManus MC. 2021. Developments in the life cycle assessment of chemical recycling of plastic waste—a review. J. Clean. Prod. 293:126163
    [Google Scholar]
  93. 93.
    Rieckmann T, Frei F, Völker S. 2011. Modelling of PET quality parameters for a closed-loop recycling system for food contact. Macromol. Symp. 302:34–45
    [Google Scholar]
  94. 94.
    Raheem AB, Noor ZZ, Hassan A, Abd Hamid MK, Samsudin SA, Sabeen AH 2019. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review. J. Clean. Prod. 225:1052–64
    [Google Scholar]
  95. 95.
    Singh A, Rorrer NA, Nicholson SR, Erickson E, DesVeaux JS et al. 2021. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly (ethylene terephthalate). Joule 5:2479–503
    [Google Scholar]
  96. 96.
    Boguski TK, Hunt RG, Franklin WE. 1994. General mathematical models for LCI recycling. Resour. Conserv. Recycl. 12:147–63
    [Google Scholar]
  97. 97.
    Nicholson AL, Olivetti EA, Gregory JR, Field FR, Kirchain RE. 2009. End-of-life LCA allocation methods: Open loop recycling impacts on robustness of material selection decisions Presented at 2009 IEEE International Symposium on Sustainable Systems and Technology May 18–20 Phoenix:
  98. 98.
    Allacker K, Mathieux F, Pennington D, Pant R. 2017. The search for an appropriate end-of-life formula for the purpose of the European Commission Environmental Footprint initiative. Int. J. Life Cycle Assess. 22:1441–58
    [Google Scholar]
  99. 99.
    Schrijvers DL, Loubet P, Sonnemann G. 2016. Developing a systematic framework for consistent allocation in LCA. Int. J. Life Cycle Assess. 21:976–93
    [Google Scholar]
  100. 100.
    Int. Org. Stand 2006. ISO 14044 Environmental management—life cycle assessment—requirements and guidelines Stand. Int. Org. Stand. Geneva:
  101. 101.
    Int. Org. Stand 2006. ISO-14040 Environmental management–life cycle assessment–principles and framework Stand. Int. Org. Stand. Geneva:
  102. 102.
    Heijungs R, Allacker K, Benetto E, Brandão M, Guinee J et al. 2021. System expansion and substitution in LCA: a lost opportunity of ISO 14044 Amendment 2. Front. Sustain. 2: https://doi.org/10.3389/frsus.2021.692055
    [Crossref] [Google Scholar]
  103. 103.
    Shen L, Worrell E, Patel MK. 2010. Open-loop recycling: a LCA case study of PET bottle-to-fibre recycling. Resour. Conserv. Recycl. 55:34–52
    [Google Scholar]
  104. 104.
    Rorrer NA, Nicholson S, Carpenter A, Biddy MJ, Grundl NJ, Beckham GT. 2019. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 3:1006–27
    [Google Scholar]
  105. 105.
    Piccinno F, Hischier R, Seeger S, Som C. 2016. From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 135:1085–97
    [Google Scholar]
  106. 106.
    PlasticsEurope, Eur. Assoc. Plast. Recycl. Recov. Organ 2020. Plasticsthe Facts 2020: an analysis of European latest plastics production, demand and waste data https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/
    [Google Scholar]
  107. 107.
    US Environ. Prot. Agency 2021. National overview: facts and figures on materials, wastes and recycling Accessed Nov. 2021. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials
  108. 108.
    Hundertmark T, Prieto M, Ryba A, Simons TJ, Wallach J. 2019. Accelerating plastic recovery in the United States. McKinsey & Company Dec. 20. https://www.mckinsey.com/industries/chemicals/our-insights/accelerating-plastic-recovery-in-the-united-states
    [Google Scholar]
  109. 109.
    Ragaert K, Hubo S, Delva L, Veelaert L, Du Bois E. 2018. Upcycling of contaminated post-industrial polypropylene waste: A design from recycling case study. Polym. Eng. Sci. 58:528–34
    [Google Scholar]
  110. 110.
    Repub. Serv 2020. 2020 plastics recovery program review. Rep., Repub. Serv. Phoenix: https://www.republicservices.com/cms/documents/sustainability_reports/Plastics-Recovery-Program-Review2020.pdf
  111. 111.
    Ormonde E, DeGuzman M, Yoneyama M, Loechner U, Zhu X. 2019. Plastics recycling. Chemical Economics Handbook London: IHS Markit
    [Google Scholar]
  112. 112.
    Waste Manag 2020. Report on recycling Rep. Waste Manag. Houston: https://sustainability.wm.com/downloads/WM_Report_on_Recycling.pdf
  113. 113.
    Assoc. Plast. Recycl 2021. Model bale specifications https://plasticsrecycling.org/model-bale-specifications
  114. 114.
    Chaudhari US, Lin Y, Thompson VS, Handler RM, Pearce JM et al. 2021. Systems analysis approach to polyethylene terephthalate and olefin plastics supply chains in the circular economy: a review of data sets and models. ACS Sustain. Chem. Eng. 9:7403–21
    [Google Scholar]
  115. 115.
    Tonjes DJ, Aphale O, Clark L, Thyberg KL 2018. Conversion from dual stream to single stream recycling results in nuanced effects on revenues and waste stream amounts and composition. Resour. Conserv. Recycl. 138:151–59
    [Google Scholar]
  116. 116.
    Erkinay Ozdemir M, Ali Z, Subeshan B, Asmatulu E 2021. Applying machine learning approach in recycling. J. Mater. Cycles Waste Manag. 23:855–71
    [Google Scholar]
  117. 117.
    Levasseur A, Lesage P, Margni M, Deschênes L, Samson R 2010. Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ. Sci. Technol. 44:3169–74
    [Google Scholar]
  118. 118.
    Kousemaker TM, Jonker GH, Vakis AI. 2021. LCA practices of plastics and their recycling: a critical review. Appl. Sci. 11:83305
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-100521-085846
Loading
/content/journals/10.1146/annurev-chembioeng-100521-085846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error