1932

Abstract

Since its first appearance in the 1960s, solid support–free liquid–liquid chromatography has played an ever-growing role in the field of natural products research. The use of the two phases of a liquid biphasic system, the mobile and stationary phases, renders the technique highly versatile and adaptable to a wide spectrum of target molecules, from hydrophobic to highly polar small molecules to proteins. Generally considered a niche technique used only for small-scale preparative separations, liquid–liquid chromatography currently lags far behind conventional liquid–solid chromatography and liquid–liquid extraction in process modeling and industrial acceptance. This review aims to expose a broader audience to this high-potential separation technique by presenting the wide variety of available operating modes and solvent systems as well as structured, model-based design approaches. Topics currently offering opportunities for further investigation are also addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101420-033548
2021-06-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-101420-033548.html?itemId=/content/journals/10.1146/annurev-chembioeng-101420-033548&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ito Y, Weinstein M, Aoki I, Harada R, Kimura E, Nunogaki K. 1966. The coil planet centrifuge. Nature 212:985–87
    [Google Scholar]
  2. 2. 
    Craig LC, Post O. 1949. Apparatus for countercurrent distribution. Anal. Chem. 21:500–4
    [Google Scholar]
  3. 3. 
    Foucault AP. 1995. Centrifugal Partition Chromatography. Abingdon, UK: Taylor & Francis
  4. 4. 
    Conway WD. 1990. Countercurrent Chromatography: Apparatus, Theory, and Applications Weinheim, Ger: Wiley-VCH
  5. 5. 
    Berthod A. 2002. Countercurrent Chromatography: The Support-Free Liquid Stationary Phase. Compr. Anal. Chem. 38 Amsterdam: Elsevier Sci. Technol.
  6. 6. 
    Morley R, Minceva M. 2020. Operating mode and parameter selection in liquid-liquid chromatography. J. Chromatogr. A 1617:460479
    [Google Scholar]
  7. 7. 
    Pauli GF, Pro SM, Friesen JB. 2008. Countercurrent separation of natural products. J. Nat. Prod. 71:1489–508
    [Google Scholar]
  8. 8. 
    Ito Y. 2005. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A 1065:145–68
    [Google Scholar]
  9. 9. 
    Goll J, Morley R, Minceva M. 2017. Trapping multiple dual mode centrifugal partition chromatography for the separation of intermediately-eluting components: operating parameter selection. J. Chromatogr. A 1496:68–79
    [Google Scholar]
  10. 10. 
    Morley R, Minceva M. 2017. Trapping multiple dual mode centrifugal partition chromatography for the separation of intermediately-eluting components: throughput maximization strategy. J. Chromatogr. A 1501:26–38
    [Google Scholar]
  11. 11. 
    Hopmann EA. 2013. Development of a Centrifugal Partition Chromatographic Separation: From Molecule to Process Munich, Ger: Verlag Dr. Hut
  12. 12. 
    Goll J, Frey A, Minceva M. 2013. Study of the separation limits of continuous solid support free liquid-liquid chromatography: separation of capsaicin and dihydrocapsaicin by centrifugal partition chromatography. J. Chromatogr. A 1284:59–68
    [Google Scholar]
  13. 13. 
    Ito Y. 1987. High-speed countercurrent chromatography. Nature 326:419–20
    [Google Scholar]
  14. 14. 
    Ito Y, Bowman RL. 1970. Countercurrent chromatography: liquid-liquid partition chromatography without solid support. Science 167:281–83
    [Google Scholar]
  15. 15. 
    Ito Y. 2005. Origin and evolution of the coil planet centrifuge: a personal reflection of my 40 years of CCC research and development. Sep. Purif. Rev. 34:131–54
    [Google Scholar]
  16. 16. 
    Sutherland I, Brown L, Forbes S, Games G, Hawes D et al. 1998. Countercurrent chromatography (CCC) and its versatile application as an industrial purification & production process. J. Liq. Chromatogr. Relat. Technol. 21:279–98
    [Google Scholar]
  17. 17. 
    Ito Y. 2005. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A 1065:145–68
    [Google Scholar]
  18. 18. 
    Minceva M. 2013. Model-based design of preparative liquid-chromatography processes Thesis, Univ. Erlangen-Nuremberg Erlangen, Ger:.
  19. 19. 
    Murayama W, Kobayashi T, Kosuge Y, Yano H, Nunogaki Y, Nunogaki K. 1982. A new centrifugal counter-current chromatograph and its application. J. Chromatogr. A 239:643–49
    [Google Scholar]
  20. 20. 
    Couillard F. 2010.. Cells and connecting channels for centrifugal partition chromatography devices US Patent 2010/0200488 A1
  21. 21. 
    Schwienheer C, Merz J, Schembecker G. 2015. Investigation, comparison and design of chambers used in centrifugal partition chromatography on the basis of flow pattern and separation experiments. J. Chromatogr. A 1390:39–49
    [Google Scholar]
  22. 22. 
    Nunogaki Y. 1989. Centrifugal counter-current distribution chromatography US Patent 4877523A
  23. 23. 
    de La Poype F, de La Poype R, Durand P, Foucault A, Legrand J et al. 2003. Cell centrifuge partition chromatography device US Patent 2003/6537452 B1
  24. 24. 
    Foucault A, Legrand J, Marchal L, Durand D 2008. Method for optimally sizing cells of a centrifugal partition chromatography device US Patent 2008/0035546 A1
  25. 25. 
    Sutherland IA, Audo G, Bourton E, Couillard F, Fisher D et al. 2008. Rapid linear scale-up of a protein separation by centrifugal partition chromatography. J. Chromatogr. A 1190:57–62
    [Google Scholar]
  26. 26. 
    Sutherland I, Hewitson P, Ignatova S. 2009. New 18-l process-scale counter-current chromatography centrifuge. J. Chromatogr. A 1216:4201–5
    [Google Scholar]
  27. 27. 
    Ignatova S, Wood P, Hawes D, Janaway L, Keay D, Sutherland I. 2007. Feasibility of scaling from pilot to process scale. J. Chromatogr. A 1151:20–24
    [Google Scholar]
  28. 28. 
    Ward DP, Hewitson P, Cárdenas-Fernández M, Hamley-Bennett C, Alba Díaz-Rodríguez A et al. 2017. Centrifugal partition chromatography in a biorefinery context: Optimisation and scale-up of monosaccharide fractionation from hydrolysed sugar beet pulp. J. Chromatogr. A 1497:56–63
    [Google Scholar]
  29. 29. 
    Roehrer S, Minceva M. 2019. Evaluation of inter-apparatus separation method transferability in countercurrent chromatography and centrifugal partition chromatography. Separations 6:36
    [Google Scholar]
  30. 30. 
    Lorántfy L, Rutterschmid D, Örkényi R, Bakonyi D, Faragó J et al. 2020. Continuous industrial-scale centrifugal partition chromatography with automatic solvent system handling: concept and instrumentation. Org. Proc. Res. Dev. 24:112676–88
    [Google Scholar]
  31. 31. 
    Bouju E, Berthod A, Faure K. 2015. Scale-up in centrifugal partition chromatography: the “free-space between peaks” method. J. Chromatogr. A 1409:70–78
    [Google Scholar]
  32. 32. 
    Friesen JB, Pauli GF. 2005. G.U.E.S.S.—a generally useful estimate of solvent systems for CCC. J. Liq. Chromatogr. Relat. Technol. 28:2777–806
    [Google Scholar]
  33. 33. 
    Skalicka-Woźniak K, Garrard I. 2015. A comprehensive classification of solvent systems used for natural product purifications in countercurrent and centrifugal partition chromatography. Nat. Prod. Rep. 32:1556–61
    [Google Scholar]
  34. 34. 
    Skalicka-Woźniak K, Garrard I. 2014. Counter-current chromatography for the separation of terpenoids: a comprehensive review with respect to the solvent systems employed. Phytochem. Rev. 13:547–72
    [Google Scholar]
  35. 35. 
    Camacho-Frias E, Foucault A. 1996. Solvent systems in centrifugal partition chromatography. Analusis 24:159–67
    [Google Scholar]
  36. 36. 
    Oka F, Oka H, Ito Y. 1991. Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography. J. Chromatogr. A 538:99–108
    [Google Scholar]
  37. 37. 
    Berthod A. 1991. Practical approach to high-speed counter-current chromatography. J. Chromatogr. A 550:677–93
    [Google Scholar]
  38. 38. 
    Friesen JB, McAlpine JB, Chen S-N, Pauli GF. 2015. Countercurrent separation of natural products: an update. J. Nat. Prod. 78:1765–96
    [Google Scholar]
  39. 39. 
    Ito Y, Knight M, Finn TM. 2013. Spiral countercurrent chromatography. J. Chromatogr. Sci. 51:726–38
    [Google Scholar]
  40. 40. 
    Bezold F, Goll J, Minceva M. 2015. Study of the applicability of non-conventional aqueous two-phase systems in counter-current and centrifugal partition chromatography. J. Chromatogr. A 1388:126–32
    [Google Scholar]
  41. 41. 
    Sutherland IA. 2007. Review of centrifugal liquid-liquid chromatography using aqueous two-phase solvent (ATPS) systems: its scale-up and prospects for the future production of high-value biologics. Curr. Opin. Drug Discov. 10:540–49
    [Google Scholar]
  42. 42. 
    Ruiz-Angel MJ, Pino V, Carda-Broch S, Berthod A. 2007. Solvent systems for countercurrent chromatography: an aqueous two phase liquid system based on a room temperature ionic liquid. J. Chromatogr. A 1151:65–73
    [Google Scholar]
  43. 43. 
    Schwienheer C, Merz J, Schembecker G. 2015. Selection and use of poly ethylene glycol and phosphate based aqueous two-phase systems for the separation of proteins by centrifugal partition chromatography. J. Liq. Chromatogr. Relat. Technol. 38:929–41
    [Google Scholar]
  44. 44. 
    Bezold F, Minceva M. 2019. A water-free solvent system containing an L-menthol-based deep eutectic solvent for centrifugal partition chromatography applications. J. Chromatogr. A 1587:166–71
    [Google Scholar]
  45. 45. 
    Friesen JB, Pauli GF. 2009. GUESSmix-guided optimization of elution-extrusion counter-current separations. J. Chromatogr. A 1216:4225–31
    [Google Scholar]
  46. 46. 
    Ito Y, Conway WD. 1986. High-speed countercurrent chromatography. Crit. Rev. Anal. Chem. 17:65–143
    [Google Scholar]
  47. 47. 
    Hostettmann K, Hostettmann M, Marston A. 1984. Isolation of natural products by droplet counter-current chromatography and related methods. Nat. Prod. Rep. 1:471–81
    [Google Scholar]
  48. 48. 
    Menet J-M, Thiébaut D 1999. Countercurrent Chromatography Boca Raton, FL: CRC Press
  49. 49. 
    Hostettmann K, Hostettmann M, Marston A. 1998. Preparative Chromatography Techniques: Applications in Natural Product Isolation Berlin: Springer-Verlag
  50. 50. 
    Berthod A 2009. Countercurrent chromatography. Advances in Chromatography 47 E Grushka, N Grinberg 323–52 Boca Raton, FL: CRC Press
    [Google Scholar]
  51. 51. 
    Luca SV, Bujor A, Miron A, Aprotosoaie AC, Skalicka-Wozniak K, Trifan A. 2019. Preparative separation and bioactivity of oligomeric proanthocyanidins. Phytochem. Rev. 19:1093–140
    [Google Scholar]
  52. 52. 
    Luca SV, Miron A, Ignatova S, Skalicka-Wozniak K. 2019. An overview of the two-phase solvent systems used in the countercurrent separation of phenylethanoid glycosides and iridoids and their biological relevance. Phytochem. Rev. 18:377–403
    [Google Scholar]
  53. 53. 
    Friesen JB, Pauli GF. 2007. Rational development of solvent system families in counter-current chromatography. J. Chromatogr. A 1151:51–59
    [Google Scholar]
  54. 54. 
    Lu Y, Berthod A, Hu R, Ma W, Pan Y 2009. Screening of complex natural extracts by countercurrent chromatography using a parallel protocol. Anal. Chem. 81:4048–59
    [Google Scholar]
  55. 55. 
    Friesen JB, Pauli GF. 2008. Performance characteristics of countercurrent separation in analysis of natural products of agricultural significance. J. Agric. Food Chem. 56:19–28
    [Google Scholar]
  56. 56. 
    Liang J, Meng J, Wu D, Guo M, Wu S. 2015. A novel 9 × 9 map-based solvent selection strategy for targeted counter-current chromatography isolation of natural products. J. Chromatogr. A 1400:27–39
    [Google Scholar]
  57. 57. 
    Wei Y, Razwan Sardar M, Sutherland IA, Fisher D 2011. Separation of delphinidin-3-O-sambubioside, cyanidin-3-O-sambubioside and p-coumaric acid from cranberry by CCC followed by prep-HPLC using robotic CCC solvent system selection. Chromatographia 74:367–73
    [Google Scholar]
  58. 58. 
    Hopmann E, Arlt W, Minceva M. 2011. Solvent system selection in counter-current chromatography using conductor-like screening model for real solvents. J. Chromatogr. A 1218:242–50
    [Google Scholar]
  59. 59. 
    Hopmann E, Frey A, Minceva M. 2012. A priori selection of the mobile and stationary phase in centrifugal partition chromatography and counter-current chromatography. J. Chromatogr. A 1238:68–76
    [Google Scholar]
  60. 60. 
    Liu Y, Kuang P, Guo S, Sun Q, Xue T, Li H. 2018. An overview of recent progress in solvent systems, additives and modifiers of counter current chromatography. New J. Chem. 42:6584–600
    [Google Scholar]
  61. 61. 
    Renon H, Prausnitz JM. 1968. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J 14:135–44
    [Google Scholar]
  62. 62. 
    Abrams DS, Prausnitz JM. 1975. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J 21:116–28
    [Google Scholar]
  63. 63. 
    Fredenslund A, Gmehling J, Rasmussen P. 1977. Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method Amsterdam: Elsevier Sci.
  64. 64. 
    Fredenslund A, Jones RL, Prausnitz JM. 1975. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J 21:1086–99
    [Google Scholar]
  65. 65. 
    Klamt A. 1995. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99:2224–35
    [Google Scholar]
  66. 66. 
    Gross J, Sadowski G. 2001. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40:1244–60
    [Google Scholar]
  67. 67. 
    Sørensen JM, Arlt W, Macedo A, Rasmussen P. 1979. Liquid-Liquid Equilibrium Data Collection DECHEMA Chem. Data Ser. V Frankfurt/Main: Scholium Int.
  68. 68. 
    Frey A, Hopmann E, Minceva M. 2014. Selection of biphasic liquid systems in liquid-liquid chromatography using predictive thermodynamic models. Chem. Eng. Technol. 37:1663–74
    [Google Scholar]
  69. 69. 
    Frey A. 2017. Systematic selection and tailoring of biphasic solvent systems in liquid-liquid chromatography PhD thesis, Friedrich-Alexander Univ. Erlangen-Nuremberg Erlangen, Ger:.
  70. 70. 
    Foucault A, Bousquet O, Le Goffic F 1992. Importance of the parameter Vm/Vc in countercurrent chromatography: tentative comparison between instrument designs. J. Liq. Chromatogr. 15:2691–706
    [Google Scholar]
  71. 71. 
    Foucault AP, Bousquet O, Le Goffic F, Cazes J 1992. Countercurrent chromatography with a new centrifugal partition chromatographic system. J. Liq. Chromatogr. 15:2721–33
    [Google Scholar]
  72. 72. 
    Foucault AP, Frias EC, Bordier CG, Le Goffic F 1994. Centrifugal partition chromatography: stability of various biphasic systems and pertinence of the “Stoke's model” to describe the influence of the centrifugal field upon the efficiency. J. Liq. Chromatogr. 17:1–17
    [Google Scholar]
  73. 73. 
    Ignatova S, Maryutina T, Spivakov BY. 2001. Effect of physicochemical properties of two-phase liquid systems on the retention of stationary phase in a CCC column. J. Liq. Chromatogr. Relat. Technol. 24:1655–68
    [Google Scholar]
  74. 74. 
    Ignatova S, Sutherland I. 2003. A fast, effective method of characterizing new phase systems in CCC. J. Liq. Chromatogr. Relat. Technol. 26:1551–64
    [Google Scholar]
  75. 75. 
    Adelmann S, Schembecker G. 2011. Influence of physical properties and operating parameters on hydrodynamics in centrifugal partition chromatography. J. Chromatogr. A 1218:5401–13
    [Google Scholar]
  76. 76. 
    Fumat N, Berthod A, Faure K. 2016. Effect of operating parameters on a centrifugal partition chromatography separation. J. Chromatogr. A 1474:47–58
    [Google Scholar]
  77. 77. 
    Wood PL, Hawes D, Janaway L, Sutherland IA. 2003. Stationary phase retention in CCC: modelling the J-type centrifuge as a constant pressure drop pump. J. Liq. Chromatogr. Relat. Technol. 26:1373–96
    [Google Scholar]
  78. 78. 
    Fromme A, Funke F, Merz J, Schembecker G. 2020. Correlating physical properties of aqueous-organic solvent systems and stationary phase retention in a centrifugal partition chromatograph in descending mode. J. Chromatogr. A 1615:460742
    [Google Scholar]
  79. 79. 
    Fromme A, Fischer C, Klump D, Schembecker G. 2020. Correlating the phase settling behavior of aqueous-organic solvent systems in a centrifugal partition chromatograph. J. Chromatogr. A 1620:461005
    [Google Scholar]
  80. 80. 
    Fromme A, Fischer C, Keine K, Schembecker G. 2020. Characterization and correlation of mobile phase dispersion of aqueous-organic solvent systems in centrifugal partition chromatography. J. Chromatogr. A 1620:460990
    [Google Scholar]
  81. 81. 
    Van Buel M, Van Halsema F, Van der Wielen L, Luyben KCA. 1998. Flow regimes in centrifugal partition chromatography. AIChE J 44:1356–62
    [Google Scholar]
  82. 82. 
    Marchal L, Legrand J, Foucault A. 2002. Mass transport and flow regimes in centrifugal partition chromatography. AIChE J 48:1692–704
    [Google Scholar]
  83. 83. 
    Adelmann S, Schwienheer C, Schembecker G. 2011. Multiphase flow modeling in centrifugal partition chromatography. J. Chromatogr. A 1218:6092–101
    [Google Scholar]
  84. 84. 
    Marchal L, Intes O, Foucault A, Legrand J, Nuzillard J-M, Renault J-H. 2003. Rational improvement of centrifugal partition chromatographic settings for the production of 5-n-alkylresorcinols from wheat bran lipid extract. J. Chromatogr. A 1005:51–62
    [Google Scholar]
  85. 85. 
    Morley R, Minceva M. 2020. Trapping multiple dual mode liquid-liquid chromatography: Preparative separation of nootkatone from a natural product extract. J. Chromatogr. A 1625:461272
    [Google Scholar]
  86. 86. 
    Peng A, Hewitson P, Ye H, Zu L, Garrard I et al. 2016. Sample injection strategy to increase throughput in counter-current chromatography: case study of Honokiol purification. J. Chromatogr. A 1476:19–24
    [Google Scholar]
  87. 87. 
    Cao X, Tian Y, Zhang TY, Ito Y. 1998. Semi-preparative separation and purification of taxol analogs by high-speed countercurrent chromatography. Prep. Biochem. Biotechnol. 28:79–87
    [Google Scholar]
  88. 88. 
    Jeon J-S, Park CL, Syed AS, Kim Y-M, Cho IJ, Kim CY. 2016. Preparative separation of sesamin and sesamolin from defatted sesame meal via centrifugal partition chromatography with consecutive sample injection. J. Chromatogr. B 1011:108–13
    [Google Scholar]
  89. 89. 
    Zhou JY, Fang QC, Lee YW. 1990. The application of high-speed countercurrent chromatography to the semipreparative separation of vincamine and vincine. Phytochem. Anal. 1:74–76
    [Google Scholar]
  90. 90. 
    Tong S, Guan Y-X, Yan J, Zheng B, Zhao L 2011. Enantiomeric separation of (R, S)-naproxen by recycling high speed counter-current chromatography with hydroxypropyl-β-cyclodextrin as chiral selector. J. Chromatogr. A 1218:5434–40
    [Google Scholar]
  91. 91. 
    Xie J, Deng J, Tan F, Su J. 2010. Separation and purification of echinacoside from Penstemon barbatus (Can.) Roth by recycling high-speed counter-current chromatography. J. Chromatogr. B 878:2665–68
    [Google Scholar]
  92. 92. 
    Yang F, Quan J, Zhang TY, Ito Y. 1998. Multidimensional counter-current chromatographic system and its application. J. Chromatogr. A 803:298–301
    [Google Scholar]
  93. 93. 
    Müller M, Murić M, Glanz L, Vette W. 2019. Improving the resolution of overlapping peaks by heartcut two-dimensional countercurrent chromatography with the same solvent system in both dimensions. J. Chromatogr. A 1596:142–51
    [Google Scholar]
  94. 94. 
    Li S, He S, Zhong S, Duan X, Ye H et al. 2011. Elution–extrusion counter-current chromatography separation of five bioactive compounds from Dendrobium chrysototxum Lindl. J. Chromatogr. A 1218:3124–28
    [Google Scholar]
  95. 95. 
    Berthod A, Hassoun M, Ruiz-Angel MJ. 2006. Band broadening inside the chromatographic column: the interest of a liquid stationary phase. Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26–30, 2006: ANYL-285 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  96. 96. 
    Lu Y, Liu R, Berthod A, Pan Y. 2008. Rapid screening of bioactive components from Zingiber cassumunar using elution-extrusion counter-current chromatography. J. Chromatogr. A 1181:33–44
    [Google Scholar]
  97. 97. 
    Berthod A, Hassoun M, Harris G. 2005. Using the liquid nature of the stationary phase: the elution-extrusion method. J. Liq. Chromatogr. Relat. Technol. 28:1851–66
    [Google Scholar]
  98. 98. 
    Bradow J, Riley F, Philippe L, Yan Q, Schuff B, Harris GH 2015. Automated solvent system screening for the preparative countercurrent chromatography of pharmaceutical discovery compounds. J. Sep. Sci. 38:3983–91
    [Google Scholar]
  99. 99. 
    Menges RA, Menges TS, Bertrand GL, Armstrong DW, Spino LA. 1992. Extraction of nonionic surfactants from waste water using centrifugal partition chromatography. J. Liq. Chromatogr. 15:2909–25
    [Google Scholar]
  100. 100. 
    Marchal L, Mojaat-Guemir M, Foucault A, Pruvost J. 2013. Centrifugal partition extraction of β-carotene from Dunaliella salina for efficient and biocompatible recovery of metabolites. Bioresour. Technol. 134:396–400
    [Google Scholar]
  101. 101. 
    Bauer A, Minceva M. 2019. Direct extraction of astaxanthin from the microalgae Haematococcus pluvialis using liquid-liquid chromatography. RSC Adv 9:22779–89
    [Google Scholar]
  102. 102. 
    Agnely M, Thiebaut D. 1997. Dual-mode high-speed counter-current chromatography: retention, resolution and examples. J. Chromatogr. A 790:17–30
    [Google Scholar]
  103. 103. 
    Delannay E, Toribio A, Boudesocque L, Nuzillard JM, Zèches-Hanrot M et al. 2006. Multiple dual-mode centrifugal partition chromatography, a semi-continuous development mode for routine laboratory-scale purifications. J. Chromatogr. A 1127:45–51
    [Google Scholar]
  104. 104. 
    Hewitson P, Ignatova S, Sutherland I. 2011. Intermittent counter-current extraction—effect of the key operating parameters on selectivity and throughput. J. Chromatogr. A 1218:6072–78
    [Google Scholar]
  105. 105. 
    Hewitson P, Ignatova S, Ye H, Chen L, Sutherland I 2009. Intermittent counter-current extraction as an alternative approach to purification of Chinese herbal medicine. J. Chromatogr. A 1216:4187–92
    [Google Scholar]
  106. 106. 
    Morley R, Minceva M. 2019. Operating mode selection for the separation of intermediately-eluting components with countercurrent and centrifugal partition chromatography. J. Chromatogr. A 1594:140–48
    [Google Scholar]
  107. 107. 
    Couillard F, Foucault A, Durand A. 2005. Method and device for separating constituents of a liquid charge by means of liquid-liquid centrifuge chromatography. WO Patent 2005/011835
  108. 108. 
    Völkl J, Arlt W, Minceva M. 2013. Theoretical study of sequential centrifugal partition chromatography. AIChE J 59:241–49
    [Google Scholar]
  109. 109. 
    Martin A, Synge RM. 1941. A new form of chromatogram employing two liquid phases: a theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem. J. 35:1358–68
    [Google Scholar]
  110. 110. 
    Craig LC. 1944. Identification of small amounts of organic compounds by distribution studies II. Separation by counter-current distribution. J. Biol. Chem. 155:519–34
    [Google Scholar]
  111. 111. 
    Hopmann E, Minceva M. 2012. Separation of a binary mixture by sequential centrifugal partition chromatography. J. Chromatogr. A 1229:140–47
    [Google Scholar]
  112. 112. 
    Kostanian AE. 2002. Modelling counter-current chromatography: a chemical engineering perspective. J. Chromatogr. A 973:39–46
    [Google Scholar]
  113. 113. 
    Kostanyan AE, Belova VV, Kholkin AI. 2007. Modelling counter-current and dual counter-current chromatography using longitudinal mixing cell and eluting counter-current distribution models. J. Chromatogr. A 1151:142–47
    [Google Scholar]
  114. 114. 
    Schwienheer C, Krause J, Schembecker G, Merz J. 2017. Modelling centrifugal partition chromatography separation behavior to characterize influencing hydrodynamic effects on separation efficiency. J. Chromatogr. A 1492:27–40
    [Google Scholar]
  115. 115. 
    Van Buel M, Van der Wielen L, Luyben KCA. 1997. Effluent concentration profiles in centrifugal partition chromatography. AIChE J 43:693–702
    [Google Scholar]
  116. 116. 
    Chollet S, Marchal L, Jeremy M, Renault JH, Legrand J, Foucault A 2015. Methodology for optimally sized centrifugal partition chromatography columns. J. Chromatogr. A 1388:174–83
    [Google Scholar]
  117. 117. 
    Goll J, Audo G, Minceva M. 2015. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume. J. Chromatogr. A 1406:129–35
    [Google Scholar]
  118. 118. 
    Goll J, Minceva M. 2017. Continuous fractionation of multicomponent mixtures with sequential centrifugal partition chromatography. AIChE J 63:1659–73
    [Google Scholar]
  119. 119. 
    Kostanyan AE. 2016. Modeling of preparative closed-loop recycling liquid-liquid chromatography with specified duration of sample loading. J. Chromatogr. A 1471:94–101
    [Google Scholar]
  120. 120. 
    Guiochon G, Felinger A, Shirazi DG, Katti AM. 2006. Fundamentals of Preparative and Nonlinear Chromatography Amsterdam: Academic
  121. 121. 
    Nicoud R-M. 2015. Chromatographic Processes Cambridge, UK: Cambridge Univ. Press
  122. 122. 
    Guiochon G, Lin B. 2003. Modeling for Preparative Chromatography Amsterdam: Academic
  123. 123. 
    Wang F, Ito Y, Wei Y. 2015. Recent progress on countercurrent chromatography modeling. J. Liq. Chromatogr. Relat. Technol. 38:415–21
    [Google Scholar]
  124. 124. 
    Berthod A, Friesen JB, Inui T, Pauli GF. 2007. Elution–extrusion countercurrent chromatography:theory and concepts in metabolic analysis. Anal. Chem. 79:3371–82
    [Google Scholar]
  125. 125. 
    Roehrer S, Minceva M. 2019. Characterization of a centrifugal partition chromatographic column with spherical cell design. Chem. Eng. Res. Des. 143:180–89
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101420-033548
Loading
/content/journals/10.1146/annurev-chembioeng-101420-033548
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error