1932

Abstract

The most important developments in solvent-based fluid separations, separations involving at least one fluid phase, are reviewed. After a brief introduction and discussion on general solvent trends observed in all fields of application, several specific fields are discussed. Important solvent trends include replacement of traditional molecular solvents by ionic liquids and deep eutectic solvents and, more recently, increasing discussion around bio-based solvents in some application fields. Furthermore, stimuli-responsive systems are discussed; the most significant developments in this field are seen for CO-switchable and redox-responsive solvents. Discussed fields of application include hydrocarbons separations, carbon capture, biorefineries, and metals separations. For all but the hydrocarbons separations, newly reported electrochemically mediated separations seem to offer exciting new windows of opportunities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-102620-015346
2021-06-07
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/12/1/annurev-chembioeng-102620-015346.html?itemId=/content/journals/10.1146/annurev-chembioeng-102620-015346&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Grünewold M, Grün MP. 2019. Fluid separations ProcessNet. https://processnet.org/en/Sections/Fluid+Dynamics+and+Separation/Fluid+Separations-p-198.html
  2. 2. 
    Sholl DS, Lively RP. 2016. Seven chemical separations to change the world. Nat. News 532:435
    [Google Scholar]
  3. 3. 
    Blahušiak M, Kiss AA, Babic K, Kersten SR, Bargeman G, Schuur B. 2018. Insights into the selection and design of fluid separation processes. Sep. Purif. Technol. 194:301–18
    [Google Scholar]
  4. 4. 
    Canales RI, Brennecke JF. 2016. Comparison of ionic liquids to conventional organic solvents for extraction of aromatics from aliphatics. J. Chem. Eng. Data 61:1685–99
    [Google Scholar]
  5. 5. 
    López-Porfiri P, Gorgojo P, Gonzalez-Miquel M. 2020. Green solvents selection guide for bio-based organic acids recovery. ACS Sustain. Chem. Eng. 8:8958–69
    [Google Scholar]
  6. 6. 
    Shiflett M 2020. Commercial Applications of Ionic Liquids Berlin: Springer
  7. 7. 
    Timken HK, Luo H, Chang BK, Carter E, Cole M 2020. ISOALKY™ technology: next generation alkylate gasoline manufacturing process using ionic liquid catalyst. Commercial Applications of Ionic Liquids M Shiflett 33–47 Berlin: Springer
    [Google Scholar]
  8. 8. 
    Dedehayir O, Steinert M. 2016. The hype cycle model: a review and future directions. Technol. Forecast. Soc. Change 108:28–41
    [Google Scholar]
  9. 9. 
    Gomez FJ, Espino M, Fernández MA, Silva MF. 2018. A greener approach to prepare natural deep eutectic solvents. ChemistrySelect 3:6122–25
    [Google Scholar]
  10. 10. 
    Prasad K, Sharma M. 2019. Green solvents for the dissolution and processing of biopolymers. Curr. Opin. Green Sustain. Chem. 18:72–78
    [Google Scholar]
  11. 11. 
    de Morais P, Gonçalves F, Coutinho JAP, Ventura SPM. 2015. Ecotoxicity of cholinium-based deep eutectic solvents. ACS Sustain. Chem. Eng. 3:3398–404
    [Google Scholar]
  12. 12. 
    Macário IP, Ventura SP, Pereira JL, Gonçalves AM, Coutinho JAP, Gonçalves FJ. 2018. The antagonist and synergist potential of cholinium-based deep eutectic solvents. Ecotoxicol. Environ. Saf. 165:597–602
    [Google Scholar]
  13. 13. 
    Martins MA, Pinho SP, Coutinho JAP. 2019. Insights into the nature of eutectic and deep eutectic mixtures. J. Solut. Chem. 48:962–82
    [Google Scholar]
  14. 14. 
    Florindo C, Lima F, Ribeiro BD, Marrucho IM. 2019. Deep eutectic solvents: overcoming 21st century challenges. Curr. Opin. Green Sustain. Chem. 18:31–36
    [Google Scholar]
  15. 15. 
    Dietz CHJT, Kroon MC, Di Stefano M, van Sint Annaland M, Gallucci F. 2018. Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane. Faraday Discuss 206:77–92
    [Google Scholar]
  16. 16. 
    Huang J, Guo X, Xu T, Fan L, Zhou X, Wu S. 2019. Ionic deep eutectic solvents for the extraction and separation of natural products. J. Chromatogr. A 1598:1–19
    [Google Scholar]
  17. 17. 
    Karimi M, Dadfarnia S, Shabani AMH, Tamaddon F, Azadi D. 2015. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and preconcentration of lead and cadmium in edible oils. Talanta 144:648–54
    [Google Scholar]
  18. 18. 
    Kim KH, Dutta T, Sun J, Simmons B, Singh S. 2018. Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem 20:809–15
    [Google Scholar]
  19. 19. 
    Mirza N, Mumford K, Wu Y, Mazhar S, Kentish S, Stevens G. 2017. Improved eutectic based solvents for capturing carbon dioxide (CO2). Energy Procedia 114:827–33
    [Google Scholar]
  20. 20. 
    Morais ES, Mendonça PV, Coelho JFJ, Freire MG, Freire CSR et al. 2018. Deep eutectic solvent aqueous solutions as efficient media for the solubilization of hardwood xylans. ChemSusChem 11:753–62
    [Google Scholar]
  21. 21. 
    Smink D, Juan A, Schuur B, Kersten SRA. 2019. Understanding the role of choline chloride in deep eutectic solvents used for biomass delignification. Ind. Eng. Chem. Res. 58:16348–57
    [Google Scholar]
  22. 22. 
    Su M, Xiong H, Guo Q, Mo J, Yang Z et al. 2018. Choline chloride-urea deep eutectic solvent enhanced removal of lead from mining area soil in the presence of oxalic acid. Ekoloji 27:563–69
    [Google Scholar]
  23. 23. 
    Tran MK, Rodrigues M-TF, Kato K, Babu G, Ajayan PM. 2019. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 4:339–45
    [Google Scholar]
  24. 24. 
    Trivedi TJ, Lee JH, Lee HJ, Jeong YK, Choi JW. 2016. Deep eutectic solvents as attractive media for CO2 capture. Green Chem 18:2834–42
    [Google Scholar]
  25. 25. 
    Rodriguez Rodriguez N, van den Bruinhorst A, Kollau LJ, Kroon MC, Binnemans K 2019. Degradation of deep-eutectic solvents based on choline chloride and carboxylic acids. ACS Sustain. Chem. Eng. 7:11521–28
    [Google Scholar]
  26. 26. 
    Capela EV, Quental MV, Domingues P, Coutinho JA, Freire MG. 2017. Effective separation of aromatic and aliphatic amino acid mixtures using ionic-liquid-based aqueous biphasic systems. Green Chem 19:1850–54
    [Google Scholar]
  27. 27. 
    Muendges J, Zalesko A, Górak A, Zeiner T. 2015. Multistage aqueous two-phase extraction of a monoclonal antibody from cell supernatant. Biotechnol. Progr. 31:925–36
    [Google Scholar]
  28. 28. 
    Cláudio AFM, Marques CFC, Boal-Palheiros I, Freire MG, Coutinho JAP. 2014. Development of back-extraction and recyclability routes for ionic-liquid-based aqueous two-phase systems. Green Chem 16:259–68
    [Google Scholar]
  29. 29. 
    Passos H, Luís A, Coutinho JA, Freire MG. 2016. Thermoreversible (ionic-liquid-based) aqueous biphasic systems. Sci. Rep. 6:20276
    [Google Scholar]
  30. 30. 
    Gausmann M, Kocks C, Doeker M, Eggert A, Maßmann T, Jupke A. 2020. Recovery of succinic acid by integrated multi-phase electrochemical pH-shift extraction and crystallization. Sep. Purif. Technol. 240:116489
    [Google Scholar]
  31. 31. 
    Jérôme F, Luque R 2017. Bio-Based Solvents Chichester, UK: Wiley
  32. 32. 
    Smink D, Kersten SRA, Schuur B. 2020. Recovery of lignin from deep eutectic solvents by liquid-liquid extraction. Sep. Purif. Technol. 235:116127
    [Google Scholar]
  33. 33. 
    Sherwood J, De bruyn M, Constantinou A, Moity L, McElroy CR et al. 2014. Dihydrolevoglucosenone (cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem. Commun. 50:9650–52
    [Google Scholar]
  34. 34. 
    Alves Costa Pacheco A, Sherwood J, Zhenova A, McElroy CR, Hunt AJ et al. 2016. Intelligent approach to solvent substitution: the identification of a new class of levoglucosenone derivatives. ChemSusChem 9:3503–12
    [Google Scholar]
  35. 35. 
    McCoy M. 2019. New solvent seeks to replace NMP. Chem. Eng. News 97:14
    [Google Scholar]
  36. 36. 
    Carner CA, Croft CF, Kolev SD, Almeida MIGS. 2020. Green solvents for the fabrication of polymer inclusion membranes (PIMs). Sep. Purif. Technol. 239:116486
    [Google Scholar]
  37. 37. 
    Marino T, Galiano F, Molino A, Figoli A. 2019. New frontiers in sustainable membrane preparation: Cyrene™ as green bioderived solvent. J. Membr. Sci. 580:224–34
    [Google Scholar]
  38. 38. 
    Meng X, Pu Y, Li M, Ragauskas AJ. 2020. A biomass pretreatment using cellulose-derived solvent Cyrene. Green Chem 22:2862–72
    [Google Scholar]
  39. 39. 
    Sprakel LMJ, Keijsper DJ, Nikolova AL, Schuur B. 2019. Predicting solvent effects on relative volatility behavior in extractive distillation using isothermal titration calorimetry (ITC) and molecular modeling (MM). Chem. Eng. Sci. 210:115203
    [Google Scholar]
  40. 40. 
    Jessop PG, Heldebrant DJ, Li X, Eckertt CA, Liotta CL. 2005. Green chemistry: reversible nonpolar-to-polar solvent. Nature 436:1102
    [Google Scholar]
  41. 41. 
    Voskian S, Brown P, Halliday C, Rajczykowski K, Hatton TA. 2020. Amine-based ionic liquid for CO2 capture and electrochemical or thermal regeneration. ACS Sustain. Chem. Eng. 436:1102
    [Google Scholar]
  42. 42. 
    Wang M, Hatton TA. 2020. Flue gas CO2 capture via electrochemically mediated amine regeneration: desorption unit design and analysis. Ind. Eng. Chem. Res. 59:10120–29
    [Google Scholar]
  43. 43. 
    Zarca R, Ortiz A, Gorri D, Biegler LT, Ortiz I. 2018. Optimized distillation coupled with state-of-the-art membranes for propylene purification. J. Membr. Sci. 556:321–28
    [Google Scholar]
  44. 44. 
    Dou H, Jiang B, Xiao X, Xu M, Wang B et al. 2018. Ultra-stable and cost-efficient protic ionic liquid based facilitated transport membranes for highly selective olefin/paraffin separation. J. Membr. Sci. 557:76–86
    [Google Scholar]
  45. 45. 
    Jiang B, Dou H, Zhang L, Wang B, Sun Y et al. 2017. Novel supported liquid membranes based on deep eutectic solvents for olefin-paraffin separation via facilitated transport. J. Membr. Sci. 536:123–32
    [Google Scholar]
  46. 46. 
    Sanchez CM, Song T, Brennecke JF, Freeman BD. 2020. Hydrogen stable supported ionic liquid membranes with silver carriers: propylene and propane permeability and solubility. Ind. Eng. Chem. Res. 59:5362–70
    [Google Scholar]
  47. 47. 
    Navarro P, Ayuso M, Palma AM, Larriba M, Delgado-Mellado N et al. 2018. Toluene/n-heptane separation by extractive distillation with tricyanomethanide-based ionic liquids: experimental and CPA EoS modeling. Ind. Eng. Chem. Res. 57:14242–53
    [Google Scholar]
  48. 48. 
    Díaz I, Palomar J, Rodríguez M, de Riva J, Ferro V, González EJ. 2016. Ionic liquids as entrainers for the separation of aromatic–aliphatic hydrocarbon mixtures by extractive distillation. Chem. Eng. Res. Des. 115:382–93
    [Google Scholar]
  49. 49. 
    Salleh MZM, Hadj-Kali M, Wazeer I, Ali E, Hashim MA 2019. Extractive separation of benzene and cyclohexane using binary mixtures of ionic liquids. J. Mol. Liq. 285:716–26
    [Google Scholar]
  50. 50. 
    Rodriguez NR, Requejo PF, Kroon MC. 2015. Aliphatic–aromatic separation using deep eutectic solvents as extracting agents. Ind. Eng. Chem. Res. 54:11404–12
    [Google Scholar]
  51. 51. 
    Delgado-Mellado N, Ovejero-Perez A, Navarro P, Larriba M, Ayuso M et al. 2019. Imidazolium and pyridinium-based ionic liquids for the cyclohexane/cyclohexene separation by liquid-liquid extraction. J. Chem. Thermodyn. 131:340–46
    [Google Scholar]
  52. 52. 
    Navarro P, Larriba M, Delgado-Mellado N, Ayuso M, Romero M et al. 2018. Experimental screening towards developing ionic liquid-based extractive distillation in the dearomatization of refinery streams. Sep. Purif. Technol. 201:268–75
    [Google Scholar]
  53. 53. 
    Jongmans MTG, Trampé J, Schuur B, de Haan AB. 2013. Solute recovery from ionic liquids: A conceptual design study for recovery of styrene monomer from [4-mebupy][BF4]. Chem. Eng. Process. 70:148–61
    [Google Scholar]
  54. 54. 
    Varyani M, Khatri PK, Ghosh IK, Jain SL. 2016. Silver assisted separation of n-decane/1-decene using distillable CO2-derived alkyl carbamate ionic liquids. Fluid Phase Equilib 412:101–6
    [Google Scholar]
  55. 55. 
    Schuur B, Nijland M, Blahusiak M, Juan A 2018. CO2-switchable solvents as entrainer in fluid separations. ACS Sustain. Chem. Eng. 6:10429–35
    [Google Scholar]
  56. 56. 
    Alkhaldi KHAE, Al-Jimaz AS, AlTuwaim MS. 2018. Liquid extraction of toluene from heptane, octane, or nonane using mixed ionic solvents of 1-ethyl-3-methylimidazolium methylsulfate and 1-hexyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 64:169–75
    [Google Scholar]
  57. 57. 
    Moreno D, Gonzalez-Miquel M, Ferro VR, Palomar J. 2018. Molecular and thermodynamic properties of zwitterions versus ionic liquids: a comprehensive computational analysis to develop advanced separation processes. ChemPhysChem 19:801–15
    [Google Scholar]
  58. 58. 
    Heydar KT, Pourrahim S, Ghonouei N, Yaghoubnejad S, Sharifi A. 2018. Thermodynamic parameters of a new synthesized tricationic ionic liquid stationary phase by inverse gas chromatography. J. Chem. Eng. Data 63:4513–23
    [Google Scholar]
  59. 59. 
    Yao C, Hou Y, Ren S, Wu W, Liu H. 2019. Selective extraction of aromatics from aliphatics using dicationic ionic liquid-solvent composite extractants. J. Mol. Liq. 291:111267
    [Google Scholar]
  60. 60. 
    Oh TH, Oh S-K, Kim H, Lee K, Lee JM. 2017. Conceptual design of an energy-efficient process for separating aromatic compounds from naphtha with a high concentration of aromatic compounds using 4-methyl-N-butylpyridinium tetrafluoroborate ionic liquid. Ind. Eng. Chem. Res. 56:7273–84
    [Google Scholar]
  61. 61. 
    Chao H, Song Z, Cheng H, Chen L, Qi Z 2018. Computer-aided design and process evaluation of ionic liquids for n-hexane-methylcyclopentane extractive distillation. Sep. Purif. Technol. 196:157–65
    [Google Scholar]
  62. 62. 
    Wang Q, Chen JY, Pan M, He C, He CC et al. 2018. A new sulfolane aromatic extractive distillation process and optimization for better energy utilization. Chem. Eng. Process. 128:80–95
    [Google Scholar]
  63. 63. 
    Abushwireb F, Elakrami H, Emtir M. 2007. Recovery of aromatics from pyrolysis gasoline by conventional and energy-integrated extractive distillation. Comput.-Aided Chem. Eng. 24:1071–76
    [Google Scholar]
  64. 64. 
    Liu J, Chen X, Zhao S, Cao X, Shen B. 2015. Multicycle investigation of normal paraffin separation from naphtha to improve olefin and aromatic feed. Ind. Eng. Chem. Res. 54:12664–70
    [Google Scholar]
  65. 65. 
    Mutelet F, Carre P, Skrzypczak A. 2015. Study of interaction between organic compounds and mono or dicationic oxygenated ionic liquids using gas chromatography. Fluid Phase Equilib 387:59–72
    [Google Scholar]
  66. 66. 
    Mutelet F, Moise J-C, Skrzypczak A. 2012. Evaluation of the performance of trigeminal tricationic ionic liquids for separation problems. J. Chem. Eng. Data 57:918–27
    [Google Scholar]
  67. 67. 
    Pires JCM. 2019. Negative emissions technologies: a complementary solution for climate change mitigation. Sci. Total Environ. 672:502–14
    [Google Scholar]
  68. 68. 
    Bhattacharyya D, Miller DC. 2017. Post-combustion CO2 capture technologies—a review of processes for solvent-based and sorbent-based CO2 capture. Curr. Opin. Chem. Eng. 17:78–92
    [Google Scholar]
  69. 69. 
    Raksajati A, Ho M, Wiley D. 2018. Solvent development for post-combustion CO2 capture: recent development and opportunities. MATEC Web Conf 156:03015
    [Google Scholar]
  70. 70. 
    Schuur B, Brouwer T, Smink D, Sprakel LMJ. 2019. Green solvents for sustainable separation processes. Curr. Opin. Green Sustain. Chem. 18:57–65
    [Google Scholar]
  71. 71. 
    Avelar Bonilla GM, Morales-Collazo O, Brennecke JF 2019. Effect of water on CO2 capture by aprotic heterocyclic anion (AHA) ionic liquids. ACS Sustain. Chem. Eng. 7:16858–69
    [Google Scholar]
  72. 72. 
    Turnaoglu T, Minnick DL, Morais ARC, Baek DL, Fox RV et al. 2019. High-pressure vapor−liquid equilibria of 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids and CO2. J. Chem. Eng. Data 64:4668–78
    [Google Scholar]
  73. 73. 
    Huang Q, Luo Q, Wang Y, Pentzer E, Gurkan B. 2019. Hybrid ionic liquid capsules for rapid CO2 capture. Ind. Eng. Chem. Res. 58:10503–9
    [Google Scholar]
  74. 74. 
    Nematollahi MH, Carvalho PJ. 2019. Green solvents for CO2 capture. Curr. Opin. Green Sustain. Chem. 18:25–30
    [Google Scholar]
  75. 75. 
    Adeyemi I, Abu-Zahra MRM, Alnashef I. 2017. Novel green solvents for CO2 capture. Energy Procedia 114:2552–60
    [Google Scholar]
  76. 76. 
    Adeyemi I, Abu-Zahra MRM, Alnashef I. 2017. Experimental study of the solubility of CO2 in novel amine based deep eutectic solvents. Energy Procedia 105:1394–400
    [Google Scholar]
  77. 77. 
    Nwaoha C, Supap T, Idem R, Saiwan C, Tontiwachwuthikul P et al. 2017. Advancement and new perspectives of using formulated reactive amine blends for post-combustion carbon dioxide (CO2) capture technologies. Petroleum 3:10–36
    [Google Scholar]
  78. 78. 
    Alivand MS, Mazaheri O, Wu Y, Stevens GW, Scholes CA, Mumford KA. 2020. Preparation of nanoporous carbonaceous promoters for enhanced CO2 absorption in tertiary amines. Engineering 6:121381–94
    [Google Scholar]
  79. 79. 
    Knipe JM, Chavez KP, Hornbostel KM, Worthington MA, Nguyen DT et al. 2019. Evaluating the performance of micro-encapsulated CO2 sorbents during CO2 absorption and regeneration cycling. Environ. Sci. Technol. 53:2926–36
    [Google Scholar]
  80. 80. 
    Mota-Martinez MT, Brandl P, Hallett JP, Mac Dowell N 2018. Challenges and opportunities for the utilisation of ionic liquids as solvents for CO2 capture. Mol. Syst. Des. Eng. 3:560–71
    [Google Scholar]
  81. 81. 
    Shukla SK, Mikkola J-P. 2018. Intermolecular interactions upon carbon dioxide capture in deep-eutectic solvents. Phys. Chem. Chem. Phys. 20:24591–601
    [Google Scholar]
  82. 82. 
    Shukla SK, Mikkola J-P. 2019. Unusual temperature-promoted carbon dioxide capture in deep-eutectic solvents: the synergistic interactions. Chem. Commun. 55:3939–42
    [Google Scholar]
  83. 83. 
    Jessop PG, Mercer SM, Heldebrant DJ. 2012. CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ. Sci. 5:7240–53
    [Google Scholar]
  84. 84. 
    Papadopoulos A, Tzirakis F, Tsivintzelis I, Seferlis P. 2019. Phase-change solvents and processes for post-combustion CO2 capture—a detailed review. Ind. Eng. Chem. Res. 58:5088–111
    [Google Scholar]
  85. 85. 
    Zhang S, Shen Y, Wang L, Chen J, Lu Y 2019. Phase change solvents for post-combustion CO2 capture: principle, advances, and challenges. Appl. Energy 239:876–97
    [Google Scholar]
  86. 86. 
    Ghayur A, Verheyen TV. 2018. Technical evaluation of post-combustion CO2 capture and hydrogen production industrial symbiosis. Int. J. Hydrog. Energy 43:13852–59
    [Google Scholar]
  87. 87. 
    Tundo PR, Musolino M, Arico F. 2019. Dialkyl carbonate in the green synthesis of heterocycles. Front. Chem. 7:300
    [Google Scholar]
  88. 88. 
    Monfared A, Mohammadi R, Hosseinian A, Sarhandi S, Nezhad PDK. 2019. Cycloaddition of atmospheric CO2 to epoxides under solvent-free conditions: a straightforward route to carbonates by green chemistry metrics. RSC Adv 9:3884–99
    [Google Scholar]
  89. 89. 
    Akhoury A, Bromberg L, Hatton TA. 2011. Redox-responsive gels with tunable hydrophobicity for controlled solubilization and release of organics. ACS Appl. Mater. Interf. 3:1167–74
    [Google Scholar]
  90. 90. 
    Gurkan B, Simeon F, Hatton TA 2015. Quinone reduction in ionic liquids for electrochemical CO2 separation. ACS Sustain. Chem. Eng. 3:1394–405
    [Google Scholar]
  91. 91. 
    Su X, Hatton TA. 2017. Redox-electrodes for selective electrochemical separations. Adv. Coll. Interf. Sci. 244:6–20
    [Google Scholar]
  92. 92. 
    Srimuk P, Lee J, Fleischmann S, Aslan M, Kim C, Presser V. 2018. Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide. ChemSusChem 11:2091–100
    [Google Scholar]
  93. 93. 
    Lee J, Srimuk P, Zornitta RL, Aslan M, Mehdi BL, Presser V. 2019. High electrochemical seawater desalination performance enabled by an iodide redox electrolyte paired with a sodium superionic conductor. ACS Sustain. Chem. Eng. 7:10132–42
    [Google Scholar]
  94. 94. 
    Sui X, Feng X, Hempenius MA, Vancso GJ. 2013. Redox active gels: synthesis, structures and applications. J. Mater. Chem. B 1:1658–72
    [Google Scholar]
  95. 95. 
    Mejia-Ariza R, Kronig GA, Huskens J. 2015. Size-controlled and redox-responsive supramolecular nanoparticles. Beilstein J. Org. Chem. 11:2388–99
    [Google Scholar]
  96. 96. 
    Prasad K, Mondal D, Sharma M, Freire MG, Mukesh C, Bhatt J. 2018. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohydr. Polym. 180:328–36
    [Google Scholar]
  97. 97. 
    Calvo-Flores FG, Monteagudo-Arrebola MJ, Dobado JA, Isac-García J. 2018. Green and bio-based solvents. Top. Curr. Chem. 376:18
    [Google Scholar]
  98. 98. 
    Choi YH, Verpoorte R. 2019. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 26:87–93
    [Google Scholar]
  99. 99. 
    Du Y, Schuur B, Brilman DWF. 2017. Maximizing lipid yield in Neochloris oleoabundans algae extraction by stressing and using multiple extraction stages with N-ethylbutylamine as switchable solvent. Ind. Eng. Chem. Res. 56:8073–80
    [Google Scholar]
  100. 100. 
    Gössi A, Burgener F, Kohler D, Urso A, Kolvenbach BA et al. 2020. In-situ recovery of carboxylic acids from fermentation broths through membrane supported reactive extraction using membrane modules with improved stability. Sep. Purif. Technol. 241:116694
    [Google Scholar]
  101. 101. 
    Li X, Luque-Moreno LC, Oudenhoven SRG, Rehmann L, Kersten SRA, Schuur B. 2016. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability. Bioresour. Technol. 216:12–18
    [Google Scholar]
  102. 102. 
    Li X, Kersten SRA, Schuur B. 2017. Extraction of acetic acid, glycolaldehyde and acetol from aqueous solutions mimicking pyrolysis oil cuts using ionic liquids. Sep. Purif. Technol. 175:498–505
    [Google Scholar]
  103. 103. 
    Nakasu PYS, Clarke CJ, Rabelo SC, Costa AC, Brandt-Talbot A, Hallett JP. 2020. Interplay of acid–base ratio and recycling on the pretreatment performance of the protic ionic liquid monoethanolammonium acetate. ACS Sustain. Chem. Eng. 8:7952–61
    [Google Scholar]
  104. 104. 
    Sun J, Konda NVSNM, Parthasarathi R, Dutta T, Valiev M et al. 2017. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids. Green Chem 19:3152–63
    [Google Scholar]
  105. 105. 
    Liang L, Yan J, He Q, Luong T, Pray TR et al. 2018. Scale-up of biomass conversion using 1-ethyl-3-methylimidazolium acetate as the solvent. Green Energy Environ 4:432–38
    [Google Scholar]
  106. 106. 
    Kim KH, Eudes A, Jeong K, Yoo CG, Kim CS, Ragauskas A. 2019. Integration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery. PNAS 116:13816
    [Google Scholar]
  107. 107. 
    Shamshina JL, Barber PS, Gurau G, Griggs CS, Rogers RD. 2016. Pulping of crustacean waste using ionic liquids: to extract or not to extract. ACS Sustain. Chem. Eng. 4:6072–81
    [Google Scholar]
  108. 108. 
    Majová V, Horanová S, Škulcová A, Šima J, Jablonský M. 2017. Deep eutectic solvent delignification: impact of initial lignin. BioResources 12:10
    [Google Scholar]
  109. 109. 
    da Costa Lopes AM, Gomes JRB, Coutinho JAP, Silvestre AJD. 2020. Novel insights into biomass delignification with acidic deep eutectic solvents: a mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance. Green Chem 22:2474–87
    [Google Scholar]
  110. 110. 
    Chen L, Dou J, Ma Q, Li N, Wu R et al. 2017. Rapid and near-complete dissolution of wood lignin at ≤80°C by a recyclable acid hydrotrope. Sci. Adv. 3:e1701735
    [Google Scholar]
  111. 111. 
    Yang M, Rehman MSU, Yan T, Khan AU, Oleskowicz-Popiel P et al. 2018. Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent. Bioresour. Technol. 249:737–43
    [Google Scholar]
  112. 112. 
    Fu H, Wang X, Sang H, Hou Y, Chen X, Feng X 2020. Dissolution behavior of microcrystalline cellulose in DBU-based deep eutectic solvents: insights from spectroscopic investigation and quantum chemical calculations. J. Mol. Liq. 299:112140
    [Google Scholar]
  113. 113. 
    Svinyarov I, Bogdanov MG. 2018. Ionic liquid-assisted micellar extraction for the quantitative determination of sesquiterpenic acids in Valeriana officinalis L. (Caprifoliaceae). Sep. Sci. Technol. 53:1230–40
    [Google Scholar]
  114. 114. 
    Torres-Valenzuela LS, Ballesteros-Gómez A, Rubio S. 2020. Supramolecular solvent extraction of bioactives from coffee cherry pulp. J. Food Eng. 278:109933
    [Google Scholar]
  115. 115. 
    Dietz CHJT, Erve A, Kroon MC, van Sint Annaland M, Gallucci F, Held C. 2019. Thermodynamic properties of hydrophobic deep eutectic solvents and solubility of water and HMF in them: measurements and PC-SAFT modeling. Fluid Phase Equilib 489:75–82
    [Google Scholar]
  116. 116. 
    Kumar S, Ahluwalia V, Kundu P, Sangwan RS, Kansal SK et al. 2018. Improved levulinic acid production from agri-residue biomass in biphasic solvent system through synergistic catalytic effect of acid and products. Bioresour. Technol. 251:143–50
    [Google Scholar]
  117. 117. 
    Brouwer T, Blahusiak M, Babic K, Schuur B. 2017. Reactive extraction and recovery of levulinic acid, formic acid and furfural from aqueous solutions containing sulphuric acid. Sep. Purif. Technol. 185:186–95
    [Google Scholar]
  118. 118. 
    Straathof AJ, Wahl SA, Benjamin KR, Takors R, Wierckx N, Noorman HJ. 2019. Grand research challenges for sustainable industrial biotechnology. Trends Biotechnol 37:1042–50
    [Google Scholar]
  119. 119. 
    Reyhanitash E, Fufachev E, van Munster KD, van Beek MB, Sprakel LM et al. 2019. Recovery and conversion of acetic acid from a phosphonium phosphinate ionic liquid to enable valorization of fermented wastewater. Green Chem 21:2023–34
    [Google Scholar]
  120. 120. 
    van Osch DJGP, Dietz CHJT, van Spronsen J, Kroon MC, Gallucci F et al. 2019. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustain. Chem. Eng. 7:2933–42
    [Google Scholar]
  121. 121. 
    Irshad M, Myint AA, Hong ME, Kim J, Sim SJ. 2019. One-pot, simultaneous cell wall disruption and complete extraction of astaxanthin from Haematococcus pluvialis at room temperature. ACS Sustain. Chem. Eng. 7:13898–910
    [Google Scholar]
  122. 122. 
    Singh J, Dhar DW. 2019. Overview of carbon capture technology: microalgal biorefinery concept and state-of-the-art. Front. Marine Sci. 6:29
    [Google Scholar]
  123. 123. 
    Du Y, Cyprichová V, Hoppe K, Schuur B, Brilman W. 2020. Process evaluation of swing strategies to recover N-ethylbutylamine after wet lipid extraction from microalgae. Sep. Purif. Technol. 233:115819
    [Google Scholar]
  124. 124. 
    Cicci A, Sed G, Jessop PG, Bravi M. 2018. Circular extraction: an innovative use of switchable solvents for the biomass biorefinery. Green Chem 20:3908–11
    [Google Scholar]
  125. 125. 
    Sed G, Cicci A, Jessop PG, Bravi M. 2018. A novel switchable-hydrophilicity, natural deep eutectic solvent (NaDES)-based system for bio-safe biorefinery. RSC Adv 8:37092–97
    [Google Scholar]
  126. 126. 
    Wang T, Wang Q, Li P, Yang H 2019. Temperature-responsive ionic liquids to set up a method for the simultaneous extraction and in situ preconcentration of hydrophilic and lipophilic compounds from medicinal plant matrices. Green Chem 21:4133–42
    [Google Scholar]
  127. 127. 
    Desai RK, Monteillet H, Li X, Schuur B, Kleijn JM et al. 2018. One-step mild biorefinery of functional biomolecules from microalgae extracts. React. Chem. Eng. 3:182–87
    [Google Scholar]
  128. 128. 
    Samorì C, Pezzolesi L, Galletti P, Semeraro M, Tagliavini E. 2019. Extraction and milking of astaxanthin from Haematococcus pluvialis cultures. Green Chem 21:3621–28
    [Google Scholar]
  129. 129. 
    Racheva R, Rahlf AF, Wenzel D, Müller C, Kerner M et al. 2018. Aqueous food-grade and cosmetic-grade surfactant systems for the continuous countercurrent cloud point extraction. Sep. Purif. Technol. 202:76–85
    [Google Scholar]
  130. 130. 
    Reyhanitash E, Zaalberg B, Kersten SR, Schuur B. 2016. Extraction of volatile fatty acids from fermented wastewater. Sep. Purif. Technol. 161:61–68
    [Google Scholar]
  131. 131. 
    Pratiwi AI, Yokouchi T, Matsumoto M, Kondo K. 2015. Extraction of succinic acid by aqueous two-phase system using alcohols/salts and ionic liquids/salts. Sep. Purif. Technol. 155:127–32
    [Google Scholar]
  132. 132. 
    Vivek N, Pandey A, Binod P. 2018. An efficient aqueous two phase systems using dual inorganic electrolytes to separate 1,3-propanediol from the fermented broth. Bioresour. Technol. 254:239–46
    [Google Scholar]
  133. 133. 
    Dai J, Wang H, Li Y, Xiu Z-L. 2018. Imidazolium ionic liquids-based salting-out extraction of 2, 3-butanediol from fermentation broths. Process Biochem 71:175–81
    [Google Scholar]
  134. 134. 
    Qureshi N, Eller F. 2018. Recovery of butanol from Clostridium beijerinckii P260 fermentation broth by supercritical CO2 extraction. J. Chem. Technol. Biotechnol. 93:1206–12
    [Google Scholar]
  135. 135. 
    Kaplanow I, Goerzgen F, Merz J, Schembecker G. 2019. Mass transfer of proteins in aqueous two-phase systems. Sci. Rep. 9:3692
    [Google Scholar]
  136. 136. 
    Ferreira AM, Cláudio AFM, Válega M, Domingues FM, Silvestre AJ et al. 2017. Switchable (pH-driven) aqueous biphasic systems formed by ionic liquids as integrated production–separation platforms. Green Chem 19:2768–73
    [Google Scholar]
  137. 137. 
    Vicente FA, Santos JH, Pereira IM, Gonçalves CV, Dias AC et al. 2019. Integration of aqueous (micellar) two-phase systems on the proteins separation. BMC Chem. Eng. 1:4
    [Google Scholar]
  138. 138. 
    Ritter E, Racheva R, Jakobtorweihen S, Smirnova I. 2017. Influence of d-glucose as additive on thermodynamics and physical properties of aqueous surfactant two-phase systems for the continuous micellar extraction. Chem. Eng. Res. Des. 121:149–62
    [Google Scholar]
  139. 139. 
    Saboe PO, Manker LP, Michener WE, Peterson DJ, Brandner DG et al. 2018. In situ recovery of bio-based carboxylic acids. Green Chem 20:1791–804
    [Google Scholar]
  140. 140. 
    Leong YK, Show PL, Lan JC-W, Loh H-S, Yap YJ, Ling TC. 2017. Extraction and purification of polyhydroxyalkanoates (PHAs): application of thermoseparating aqueous two-phase extraction. J. Polym. Res. 24:158
    [Google Scholar]
  141. 141. 
    Samorì C, Kiwan A, Torri C, Conti R, Galletti P, Tagliavini E. 2019. Polyhydroxyalkanoates and crotonic acid from anaerobically digested sewage sludge. ACS Sustain. Chem. Eng. 7:10266–73
    [Google Scholar]
  142. 142. 
    Wenzel M, Hennersdorf F, Langer M, Gloe K, Antonioli B et al. 2018. Tripodal polyamines: adjustable receptors for cation extraction. Sep. Sci. Technol. 53:1273–81
    [Google Scholar]
  143. 143. 
    Le-Phuc N, Pham YTH, Bui PNV, Luong TN, Vo PNX et al. 2018. Towards efficient extraction of La(III) from spent FCC catalysts by alkaline pre-treatment. Min. Eng. 127:1–5
    [Google Scholar]
  144. 144. 
    Doidge ED, Carson I, Tasker PA, Ellis RJ, Morrison CA, Love JB. 2016. A simple primary amide for the selective recovery of gold from secondary resources. Angew. Chem. Int. Ed. 55:12436–39
    [Google Scholar]
  145. 145. 
    Kubota F, Kono R, Yoshida W, Sharaf M, Kolev SD, Goto M. 2019. Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Sep. Purif. Technol. 214:156–61
    [Google Scholar]
  146. 146. 
    Sun Y, Zhu M, Yao Y, Wang H, Tong B, Zhao Z. 2020. A novel approach for the selective extraction of Li+ from the leaching solution of spent lithium-ion batteries using benzo-15-crown-5 ether as extractant. Sep. Purif. Technol. 237:116325
    [Google Scholar]
  147. 147. 
    Li E, Kang J, Ye P, Zhang W, Cheng F, Yin C. 2019. A prospective material for the highly selective extraction of lithium ions based on a photochromic crowned spirobenzopyran. J. Mater. Chem. B 7:903–7
    [Google Scholar]
  148. 148. 
    Chen Y, Wang H, Pei Y, Wang J 2017. Selective separation of scandium (III) from rare earth metals by carboxyl-functionalized ionic liquids. Sep. Purif. Technol. 178:261–68
    [Google Scholar]
  149. 149. 
    Zürner P, Frisch G. 2019. Leaching and selective extraction of indium and tin from zinc flue dust using an oxalic acid-based deep eutectic solvent. ACS Sustain. Chem. Eng. 7:5300–8
    [Google Scholar]
  150. 150. 
    Tan S-y, Hallett JP, Kelsall GH. 2020. Electrodeposition of lead from methanesulfonic acid and methanesulfonate ionic liquid derivatives. Electrochim. Acta 353:136460
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-102620-015346
Loading
/content/journals/10.1146/annurev-chembioeng-102620-015346
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error