1932

Abstract

In the wake of sustainable development, materials research is going through a green revolution that is putting energy-efficient and environmentally friendly materials and methods in the limelight. In this quest for greener alternatives, covalent organic frameworks (COFs) have emerged as a new generation of designable crystalline porous polymers for a wide array of clean-energy and environmental applications. In this contribution, we categorically review the merits and shortcomings of COF bulk powders, nanosheets, freestanding thin films/membranes, and membranes on porous supports in various separation processes, including separation of gases, pervaporation, organic solvent nanofiltration, water purification, radionuclide sequestration, and chiral separations, with particular reference to COF material pore size, host–guest interactions, stability, selectivity, and permeability. This review covers the fabrication strategies of nanosheets, films, and membranes, as well as performance parameters, and provides an overview of the separation landscape with COFs in relation to other porous polymers, while seeking to interpret the future research opportunities in this field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-112019-084830
2020-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-112019-084830.html?itemId=/content/journals/10.1146/annurev-chembioeng-112019-084830&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A et al. 2018. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11:1062–176
    [Google Scholar]
  2. 2. 
    Staffel I, Scamman D, Abad AV, Balcombe P, Dodds PE et al. 2019. The role of hydrogen and fuel cells in the global energy system. Annu. Rev. Anal. Chem. 12:463–91
    [Google Scholar]
  3. 3. 
    Mota FM, Kim DH. 2019. From CO2 methanation to ambitious long-chain hydrocarbons: alternative fuels paving the path to sustainability. Chem. Soc. Rev. 48:205–59
    [Google Scholar]
  4. 4. 
    UNESCO World Water Assess. Progr 2019. The United Nations World Water Development Report 2019: Leaving No One Behind Paris: UNESCO
  5. 5. 
    Das R, Vecitis CD, Schulze A, Cao B, Ismail AF et al. 2017. Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. 46:6946–7020
    [Google Scholar]
  6. 6. 
    Zhang S, Drioli E. 1995. Pervaporation membranes. Sep. Sci. Technol. 30:1–31
    [Google Scholar]
  7. 7. 
    Marchetti P, Solomon MFJ, Szekely G, Livingston AG 2014. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114:10735–806
    [Google Scholar]
  8. 8. 
    Marchetti P, Peeva L, Livingston A 2017. The selectivity challenge in organic solvent nanofiltration: membrane and process solutions. Annu. Rev. Chem. Biomol. Eng. 8:473–97
    [Google Scholar]
  9. 9. 
    Galizia M, Bye KP. 2018. Advances in organic solvent nanofiltration rely on physical chemistry and polymer chemistry. Front. Chem. 6:511 https://doi.org/10.3389/fchem.2018.00511
    [Crossref] [Google Scholar]
  10. 10. 
    Vandezande P, Gevers LEM, Vankelecom IFJ 2008. Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37:365–405
    [Google Scholar]
  11. 11. 
    Szekely G, Jimenez-Solomon MF, Marchetti P, Kim JF, Livingston AG 2014. Sustainability assessment of organic solvent nanofiltration: from fabrication to application. Green Chem 16:4440–73
    [Google Scholar]
  12. 12. 
    Stalcup AM. 2010. Chiral separations. Annu. Rev. Anal. Chem. 3:341–63
    [Google Scholar]
  13. 13. 
    Peighambardoust SJ, Rowshanzamir S, Amjadi M 2010. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 35:9349–84
    [Google Scholar]
  14. 14. 
    Nasef MM. 2014. Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions. Chem. Rev. 114:12278–329
    [Google Scholar]
  15. 15. 
    Sun Q, Aguila B, Ma S 2019. Opportunities of porous organic polymers for radionuclide sequestration. Trends Chem 1:292–303
    [Google Scholar]
  16. 16. 
    Yaghi OM, Kalmutzki MJ, Diercks CS 2019. Introduction to Reticular Chemistry: Metal‐Organic Frameworks and Covalent Organic Frameworks Weinheim, Ger.: Wiley-VCH Verlag Gmb H & Co. KGaA509 pp.
  17. 17. 
    Diercks CS, Kalmutzki MJ, Yaghi OM 2017. Covalent organic frameworks—organic chemistry beyond the molecule. Molecules 22:1575
    [Google Scholar]
  18. 18. 
    Bisbey RP, Dichtel WR. 2017. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 3:533–43
    [Google Scholar]
  19. 19. 
    Lyle SJ, Waller PJ, Yaghi OM 2019. Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem 1:172–84
    [Google Scholar]
  20. 20. 
    Waller PJ, Gándara F, Yaghi OM 2015. Chemistry of covalent organic frameworks. Acc. Chem. Res. 48:3053–63
    [Google Scholar]
  21. 21. 
    Diercks CS, Yaghi OM. 2017. The atom, the molecule, and the covalent organic framework. Science 355:293–302
    [Google Scholar]
  22. 22. 
    Colson JW, Dichtel WR. 2013. Rationally synthesized two-dimensional polymers. Nat. Chem. 5:453–65
    [Google Scholar]
  23. 23. 
    Chen X, Geng K, Liu R, Tan KT, Gong Y et al. 2019. Covalent organic frameworks: chemical approaches to designer structures and built-in functions. Angew. Chem. Int. Ed. 59:5050–91
    [Google Scholar]
  24. 24. 
    Huang N, Wang P, Jiang DL 2016. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1:1–19
    [Google Scholar]
  25. 25. 
    Feng X, Ding X, Jiang D 2012. Covalent organic frameworks. Chem. Soc. Rev. 41:6010–22
    [Google Scholar]
  26. 26. 
    Lohse MS, Bein T. 2018. Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 28:1705553
    [Google Scholar]
  27. 27. 
    Segura JL, Mancheño MJ, Zamora F 2016. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45:5635–71
    [Google Scholar]
  28. 28. 
    Song Y, Sun Q, Aguila B, Ma S 2018. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 6:1801410
    [Google Scholar]
  29. 29. 
    Kandambeth S, Dey K, Banerjee R 2019. Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 141:1807–22
    [Google Scholar]
  30. 30. 
    Jin Y, Hu Y, Zhang W 2017. Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 1:0056
    [Google Scholar]
  31. 31. 
    Ding S-Y, Wang W. 2013. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42:548–68
    [Google Scholar]
  32. 32. 
    Yoo Y, Lai Z, Jeong H-K 2009. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater 123:100–6
    [Google Scholar]
  33. 33. 
    Sakamoto R, Takada K, Pal T, Maeda H, Kambe T et al. 2017. Coordination nanosheets (CONASHs): strategies, structures and functions. Chem. Commun. 53:5781–801
    [Google Scholar]
  34. 34. 
    Kong X, Liu Q, Zhang C, Peng Z, Chen Q 2017. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 46:2127–57
    [Google Scholar]
  35. 35. 
    Minassian-Saraga LT, Vincent B, Adler M, Barraud A, Churaev NV et al. 1994. Thin films including layers: terminology in relation to their preparation and characterization (IUPAC Recommendations 1994). Pure Appl. Chem. 66:1667–738
    [Google Scholar]
  36. 36. 
    Koros WJ, Ma YH, Shimidzu T 1996. Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure Appl. Chem. 68:1479–89
    [Google Scholar]
  37. 37. 
    Zhou W, Wei M, Zhang X, Xu F, Wang Y 2019. Fast desalination by multilayered covalent organic framework (COF) nanosheets. ACS Appl. Mater. Interfaces 11:16847–54
    [Google Scholar]
  38. 38. 
    Wang S, Li X, Wu H, Tian Z, Xin Q et al. 2016. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ. Sci. 9:1863–90
    [Google Scholar]
  39. 39. 
    Qiu S, Xue M, Zhu G 2014. Metal–organic framework membranes: from synthesis to separation application. Chem. Soc. Rev. 43:6116–40
    [Google Scholar]
  40. 40. 
    Fedosov DA, Smirnov AV, Knyazeva EE, Ivanova II 2011. Zeolite membranes: synthesis, properties, and application. Pet. Chem. 51:1657–67
    [Google Scholar]
  41. 41. 
    Lai Z, Bonilla G, Diaz I, Nery JG, Sujaoti K et al. 2003. Microstructural optimization of a zeolite membrane for organic vapor separation. Science 300:456–60
    [Google Scholar]
  42. 42. 
    Yin X, Zhu G, Yang W, Li Y, Zhu G et al. 2005. Stainless-steel-net-supported zeolite NaA membrane with high permeance and high permselectivity for oxygen over nitrogen. Adv. Mater. 17:2006–10
    [Google Scholar]
  43. 43. 
    Seoane B, Coronas J, Gascon I, Benavides ME, Karvan O et al. 2015. Metal–organic framework based mixed matrix membranes: A solution for highly efficient CO2 capture. ? Chem. Soc. Rev. 44:2421–54
    [Google Scholar]
  44. 44. 
    Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM 2010. Performance studies of mixed matrix membranes for gas separation: a review. Sep. Purif. Technol. 75:229–42
    [Google Scholar]
  45. 45. 
    Moore TT, Mahajan R, Vu DQ, Koros WJ 2004. Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AIChE J 50:311–21
    [Google Scholar]
  46. 46. 
    Chandra S, Kandambeth S, Biswal BP, Lukose B, Kunjir SM et al. 2013. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135:17853–61
    [Google Scholar]
  47. 47. 
    Wang S, Wang Q, Shao P, Han Y, Gao X et al. 2017. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139:4258–61
    [Google Scholar]
  48. 48. 
    Zhang K, Lin Y-C, Robinson JA 2016. Synthesis, properties, and stacking of two-dimensional transition metal dichalcogenides. Semiconductors and Semimetals, Vol. 19: 2D Materials F Iacopi, JJ Boeckl, C Jagadish 189–219 Cambridge, MA: Academic
    [Google Scholar]
  49. 49. 
    Berlanga I, Ruiz-González ML, González-Calbet JM, Fierro JLG et al. 2011. Delamination of layered covalent organic frameworks. Small 7:1207–11
    [Google Scholar]
  50. 50. 
    Li G, Zhang K, Tsuru T 2017. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets. ACS Appl. Mater. Interfaces 9:8433–36
    [Google Scholar]
  51. 51. 
    Mitra S, Kandambeth S, Biswal BP, Khayum MA, Choudhury CK et al. 2016. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs). J. Am. Chem. Soc. 138:2823–28
    [Google Scholar]
  52. 52. 
    Zhou T-Y, Lin F, Li Z-T, Zhao X 2013. Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres. Macromolecules 46:7745–52
    [Google Scholar]
  53. 53. 
    Khayum MA, Kandambeth S, Mitra S, Nair SB, Das A et al. 2016. Chemically delaminated free-standing ultrathin covalent organic nanosheets. Angew. Chem. Int. Ed. 55:15604–8
    [Google Scholar]
  54. 54. 
    Mitra S, Sasmal HS, Kundu T, Kandambeth S, Illath KS 2017. Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthesis. J. Am. Chem. Soc. 139:4513–20
    [Google Scholar]
  55. 55. 
    Das G, Skorjanc T, Sharma SK, Gándara F, Lusi M et al. 2017. Viologen-based conjugated covalent organic networks via Zincke reaction. J. Am. Chem. Soc. 139:9558–65
    [Google Scholar]
  56. 56. 
    Smith BJ, Parent LR, Overholts AC, Beaucage PA, Bisbey RP et al. 2017. Colloidal covalent organic frameworks. ACS Cent. Sci. 3:58–65
    [Google Scholar]
  57. 57. 
    Dey K, Pal M, Rout KC, Kunjattu HS, Das A et al. 2017. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139:13083–91
    [Google Scholar]
  58. 58. 
    Hao Q, Zhao C, Sun B, Lu C, Liu J et al. 2018. Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J. Am. Chem. Soc. 140:12152–58
    [Google Scholar]
  59. 59. 
    Dai W, Shao F, Szczerbiński J, McCaffrey R, Zenobi R et al. 2016. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem. Int. Ed. 55:213–17
    [Google Scholar]
  60. 60. 
    Shinde DB, Sheng G, Li X, Ostwal M, Emwas A-H et al. 2018. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 140:14342–49
    [Google Scholar]
  61. 61. 
    Colson JW, Woll AR, Mukherjee A, Levendorf MP, Spitler EL et al. 2011. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332:228–31
    [Google Scholar]
  62. 62. 
    Bisbey RP, DeBlase CR, Smith BJ, Dichtel WR 2016. Two-dimensional covalent organic framework thin films grown in flow. J. Am. Chem. Soc. 138:11433–36
    [Google Scholar]
  63. 63. 
    Medina DD, Rotter JM, Hu Y, Dogru M, Werner V et al. 2015. Room temperature synthesis of covalent-organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 137:1016–19
    [Google Scholar]
  64. 64. 
    Shi X, Wang R, Xiao A, Jia T, Sun S-P, Wang Y 2018. Layer-by-layer synthesis of covalent organic frameworks on porous substrates for fast molecular separations. ACS Appl. Nano Mater. 1:6320–26
    [Google Scholar]
  65. 65. 
    Ying Y, Liu D, Ma J, Tong M, Zhang W et al. 2016. A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation. J. Mater. Chem. A 4:13444–49
    [Google Scholar]
  66. 66. 
    Kuehl VA, Yin J, Duong PHH, Mastorovich B, Newell B et al. 2018. A highly-ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J. Am. Chem. Soc. 140:18200–7
    [Google Scholar]
  67. 67. 
    Fan H, Gu J, Meng H, Knebel A, Caro J 2018. High‐flux membranes based on the covalent organic framework COF‐LZU1 for selective dye separation by nanofiltration. Angew. Chem. Int. Ed. 57:4083–87
    [Google Scholar]
  68. 68. 
    Kandambeth S, Biswal BP, Chaudhari HD, Rout KC, Kunjattu HS et al. 2017. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29:1603945 https://doi.org/10.1002/adma.201603945
    [Crossref] [Google Scholar]
  69. 69. 
    Sasmal HS, Aiyappa HB, Bhange SN, Karak S, Halder A et al. 2018. Superprotonic conductivity in flexible porous covalent organic framework membranes. Angew. Chem. Int. Ed. 57:10894–98
    [Google Scholar]
  70. 70. 
    Halder A, Karak S, Addicoat M, Bera S, Chakraborty A et al. 2018. Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding. Angew. Chem. Int. Ed. 57:5797–802
    [Google Scholar]
  71. 71. 
    Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S 2016. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J. Am. Chem. Soc. 138:7673–80
    [Google Scholar]
  72. 72. 
    Fan H, Mundstock A, Feldhoff A, Knebel A, Gu J et al. 2018. COF-COF bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 140:10094–98
    [Google Scholar]
  73. 73. 
    Biswal BP, Chaudhari HD, Banerjee R, Kharul UK 2016. Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chem. Eur. J. 22:4695–99
    [Google Scholar]
  74. 74. 
    Shan M, Seoane B, Rozhko E, Dikhtiarenko A, Clet G et al. 2016. Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation. Chem. Eur. J. 22:14467–70
    [Google Scholar]
  75. 75. 
    Kang Z, Peng Y, Qian Y, Yuan D, Addicoat MA et al. 2016. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28:1277–85
    [Google Scholar]
  76. 76. 
    Shan M, Seoane B, Andres-Garcia E, Kapteijn F, Gascon J 2018. Mixed-matrix membranes containing an azine-linked covalent organic framework: influence of the polymeric matrix on post-combustion CO2-capture. J. Membr. Sci. 549:377–84
    [Google Scholar]
  77. 77. 
    Wu X, Tian Z, Wang S, Peng D, Yang L et al. 2017. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. J. Membr. Sci. 528:273–83
    [Google Scholar]
  78. 78. 
    Zou C, Li Q, Hua Y, Zhou B, Duan J, Jin W 2017. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal. ACS Appl. Mater. Interfaces 9:29093–100
    [Google Scholar]
  79. 79. 
    Duan K, Wang J, Zhang Y, Liu J 2019. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J. Membr. Sci. 572:588–95
    [Google Scholar]
  80. 80. 
    Duong PHH, Kuehl VA, Mastorovich B, Hoberg JO, Parkinson BA, Li-Oakey KD 2019. Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. J. Membr. Sci. 574:338–48
    [Google Scholar]
  81. 81. 
    Xu L, Xu J, Shan B, Wang X, Gao C 2017. TpPa-2-incorporated mixed matrix membranes for efficient water purification. Energy Environ. Sci. 526:355–66
    [Google Scholar]
  82. 82. 
    Zhao Y, Yao KX, Teng B, Zhang T, Han Y 2013. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture. Energy Environ. Sci. 6:3684–92
    [Google Scholar]
  83. 83. 
    Li B, Zhang Y, Krishna R, Yao K, Han Y et al. 2014. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 136:8654–60
    [Google Scholar]
  84. 84. 
    Guan X, Ma Y, Li H, Yusran Y, Xue M et al. 2018. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. J. Am. Chem. Soc. 140:4494–98
    [Google Scholar]
  85. 85. 
    Guan X, Li H, Ma Y, Xue M, Fang Q et al. 2019. Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 11:587–94
    [Google Scholar]
  86. 86. 
    Lu H, Wang C, Chen J, Ge R, Leng W et al. 2015. A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions. Chem. Commun. 51:15562–65
    [Google Scholar]
  87. 87. 
    Fan H, Mundstock A, Gu J, Meng H, Caro J 2018. An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation. J. Mater. Chem. A 6:16849–53
    [Google Scholar]
  88. 88. 
    Robeson LM. 1991. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62:165–85
    [Google Scholar]
  89. 89. 
    Robeson LM. 2008. The upper bound revisited. J. Membr. Sci. 320:390–400
    [Google Scholar]
  90. 90. 
    Cheng Y, Ying Y, Zhai L, Liu G, Dong J et al. 2019. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. Sci. 573:97–106
    [Google Scholar]
  91. 91. 
    Cheng Y, Ying Y, Zhai L, Liu G, Dong J et al. 2020. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 142:94472–80
    [Google Scholar]
  92. 92. 
    Das S, Ben T. 2018. A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H2/CO2 separation selectivity. Dalton Trans 47:7206–12
    [Google Scholar]
  93. 93. 
    Wang Y, Li J, Yang Q, Zhong C 2016. Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification. ACS Appl. Mater. Interfaces 8:8694–701
    [Google Scholar]
  94. 94. 
    Tong M, Yang Q, Ma Q, Liu D, Zhong C 2016. Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study. J. Mater. Chem. A 4:124–31
    [Google Scholar]
  95. 95. 
    Yan T, Lan Y, Tong M, Zhong C 2019. Screening and design of covalent organic framework membranes for CO2/CH4 separation. ACS Sustain. Chem. Eng. 7:1220–27
    [Google Scholar]
  96. 96. 
    Sharma A, Malani A, Medhekar NV, Babarao R 2017. CO2 adsorption and separation in covalent organic frameworks with interlayer slipping. Cryst. Eng. Comm. 19:6950–63
    [Google Scholar]
  97. 97. 
    Sharma A, Babarao R, Medhekar NV, Malani A 2018. Methane adsorption and separation in slipped and functionalized covalent organic frameworks. Ind. Eng. Chem. Res. 57:4767–78
    [Google Scholar]
  98. 98. 
    Biswal BP, Kandambeth S, Chandra S, Shinde DB, Bera S et al. 2015. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption. J. Mater. Chem. A 3:23664–69
    [Google Scholar]
  99. 99. 
    Zhang K, He Z, Gupta KM, Jiang J 2017. Computational design of 2D functional covalent-organic framework membranes for water desalination. Environ. Sci. Water Res. Technol. 3:735–43
    [Google Scholar]
  100. 100. 
    Wang C, Li Z, Chen J, Li Z, Yin Y et al. 2017. Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination. J. Membr. Sci. 523:273–81
    [Google Scholar]
  101. 101. 
    Wu M, Yuan J, Wu H, Su Y, Yang H et al. 2019. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. J. Membr. Sci. 576:131–41
    [Google Scholar]
  102. 102. 
    Yang H, Yang L, Wang H, Xu Z, Zhao Y et al. 2019. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 10:2101 https://doi.org/10.1038/s41467-019-10157-5
    [Crossref] [Google Scholar]
  103. 103. 
    Ahmed MB, Zhou JL, Ngo HH, Guo W 2015. Adsorptive removal of antibiotics from water and waste-water: progress and challenges. Sci. Total Environ. 532:112–26
    [Google Scholar]
  104. 104. 
    Dantas G, Sommer MO, Oluwasegun RD, Church GM 2008. Bacteria subsisting on antibiotics. Science 320:100–3
    [Google Scholar]
  105. 105. 
    Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E et al. 2015. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13:310–17
    [Google Scholar]
  106. 106. 
    Stahl T, Mattern D, Brunn H 2011. Toxicology of perfluorinated compounds. Environ. Sci. Eur. 23:38 https://doi.org/10.1186/2190-4715-23-38
    [Crossref] [Google Scholar]
  107. 107. 
    Ren J-Y, Wang X-L, Li X-L, Wang M-L, Zhao R-S, Lin J-M 2018. Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples. Anal. Bioanal. Chem. 410:1657–65
    [Google Scholar]
  108. 108. 
    Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R 2013. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 135:5328–31
    [Google Scholar]
  109. 109. 
    Liu J-M, Wang X-Z, Zhao C-Y, Hao J-L, Fang G-Z, Wang S 2018. Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix. J. Hazard. Mater. 344:220–29
    [Google Scholar]
  110. 110. 
    Salonen LM, Pinela SR, Fernandes SPS, Loucano J, Carbó-Argibay E et al. 2017. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework. J. Chromatogr. A 1525:17–22
    [Google Scholar]
  111. 111. 
    Zhang W, Zhang L, Zhao H, Li B, Ma H 2018. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. J. Mater. Chem. A 6:13331–39
    [Google Scholar]
  112. 112. 
    Wang R, Shi X, Xiao A, Zhou W, Wang Y 2018. Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. J. Membr. Sci. 566:197–204
    [Google Scholar]
  113. 113. 
    Wang R, Shi X, Zhang Z, Xiao A, Sun S-P et al. 2019. Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation. J. Membr. Sci. 586:274–80
    [Google Scholar]
  114. 114. 
    Zhang X, Hui L, Wang J, Peng D, Liu J, Zhang Y 2019. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation. J. Membr. Sci. 581:321–30
    [Google Scholar]
  115. 115. 
    Khan NA, Yuan J, Hong W, Cao L, Zhang R et al. 2019. Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux. ACS Appl. Mater. Interfaces 11:28978–86
    [Google Scholar]
  116. 116. 
    Valentino L, Matsumoto M, Dichtel WR, Marinas BJ 2017. Development and performance characterization of a polyimine covalent organic framework thin-film composite nanofiltration membrane. Environ. Sci. Technol. 51:14352–59
    [Google Scholar]
  117. 117. 
    Huang N, Wang P, Addicoat MA, Heine T, Jiang D 2017. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture. Angew. Chem. Int. Ed. 56:4982–86
    [Google Scholar]
  118. 118. 
    Petersen RJ. 2005. Foreward. Nanofiltration: Principles and Applications AI Schäfer, AG Fane, TD Waite xx–xxi Oxford, UK: Elsevier
    [Google Scholar]
  119. 119. 
    Mulder M. 2004. Preparation of synthetic membranes. Basic Principles of Membrane Technology71–156 Dordrecht, Neth.: Kluwer Acad. Publ, 2nd ed..
    [Google Scholar]
  120. 120. 
    Whu JA, Baltzis BC, Sirkar KK 2000. Nanofiltration studies of larger organic microsolutes in methanol solutions. J. Membr. Sci. 170:159–72
    [Google Scholar]
  121. 121. 
    Bowen WR, Welfoot JS. 2002. Modelling of membrane nanofiltration—pore size distribution effects. Chem. Eng. Sci. 57:1393–407
    [Google Scholar]
  122. 122. 
    Yang XJ, Livingston AG, Freitas dos Santos L 2001. Experimental observations of nanofiltration with organic solvents. J. Membr. Sci. 190:45–55
    [Google Scholar]
  123. 123. 
    Zhao Y, Yuan Q. 2006. A comparison of nanofiltration with aqueous and organic solvents. J. Membr. Sci. 279:453–58
    [Google Scholar]
  124. 124. 
    Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R 2012. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134:19524–27
    [Google Scholar]
  125. 125. 
    Karan S, Jiang Z, Livingston AG 2015. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348:1347–51
    [Google Scholar]
  126. 126. 
    Gadwal I, Sheng G, Thankamony RL, Liu Y, Li H, Lai Z 2018. Synthesis of sub-10 nm two-dimensional covalent organic thin film with sharp molecular sieving nanofiltration. ACS Appl. Mater. Interfaces 10:12295–99
    [Google Scholar]
  127. 127. 
    Li C, Li S, Tian L, Zhang J, Su B, Hu MZ 2019. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN). J. Membr. Sci. 572:520–31
    [Google Scholar]
  128. 128. 
    Wei W, Liu J, Jiang J 2019. Computational design of 2D covalent-organic framework membranes for organic solvent nanofiltration. ACS Sustain. Chem. Eng. 7:1734–44
    [Google Scholar]
  129. 129. 
    Li S-Y, Srivastava R, Parnas RS 2010. Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J. Membr. Sci. 363:287–94
    [Google Scholar]
  130. 130. 
    Srinivasan K, Palanivelu K, Gopalakrishnan AN 2007. Recovery of 1-butanol from a model pharmaceutical aqueous waste by pervaporation. Chem. Eng. Sci. 62:2905–14
    [Google Scholar]
  131. 131. 
    Fan H, Shi Q, Yan H, Ji S, Dong J, Zhang G 2014. Simultaneous spray self-assembly of highly loaded ZIF-8–PDMS nanohybrid membranes exhibiting exceptionally high biobutanol permselective pervaporation. Angew. Chem. Int. Ed. 53:5578–82
    [Google Scholar]
  132. 132. 
    Fan H, Xie Y, Li J, Zhang L, Zheng Q, Zhang G 2018. Ultra-high selectivity COF-based membranes forbiobutanol production. J. Mater. Chem. A 6:17602–11
    [Google Scholar]
  133. 133. 
    Yang H, Cheng X, Cheng X, Pan F, Wu H et al. 2018. Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J. Membr. Sci. 565:331–41
    [Google Scholar]
  134. 134. 
    Yang H, Wu H, Pan F, Li Z, Ding H et al. 2016. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. J. Membr. Sci. 520:583–95
    [Google Scholar]
  135. 135. 
    Yang H, Wu H, Yao Z, Shi B, Xu Z et al. 2018. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. J. Mater. Chem. A 6:583–91
    [Google Scholar]
  136. 136. 
    Liu G, Jiang Z, Yang H, Li C, Wang H et al. 2019. High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. J. Membr. Sci. 572:557–66
    [Google Scholar]
  137. 137. 
    Pan F, Wang M, Ding H, Song Y, Li W et al. 2018. Embedding Ag+@COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. J. Membr. Sci. 552:1–12
    [Google Scholar]
  138. 138. 
    Qian H-L, Yang C-X, Yan X-P 2016. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat. Commun. 7:12104 https://doi.org/10.1038/ncomms12104
    [Crossref] [Google Scholar]
  139. 139. 
    Han X, Huang J, Yuan C, Liu Y, Cui Y 2018. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J. Am. Chem. Soc. 140:892–95
    [Google Scholar]
  140. 140. 
    Zhang S, Zheng Y, An H, Aguila B, Yang C-Xet al. 2018. Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation. Angew. Chem. Int. Ed. 57:16754–59
    [Google Scholar]
  141. 141. 
    Zhang K, Cai S-L, Yan Y-L, He Z-H, Lin H-M et al. 2017. Construction of a hydrazone-linked chiral covalent organic framework–silica composite as the stationary phase for high performance liquid chromatography. J. Chromatogr. A 1519:100–9
    [Google Scholar]
  142. 142. 
    Wu X, Han X, Xu Q, Liu Y, Yuan C et al. 2019. Chiral BINOL-based covalent organic frameworks for enantioselective sensing. J. Am. Chem. Soc. 141:7081–89
    [Google Scholar]
  143. 143. 
    Mishra AK, Bose S, Kuila T, Kim NH, Lee JH 2012. Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Prog. Polym. Sci. 37:842–69
    [Google Scholar]
  144. 144. 
    Yin Y, Li Z, Yang X, Cao L, Wang C et al. 2016. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework. J. Power Sourc. 332:265–73
    [Google Scholar]
  145. 145. 
    Chandra S, Kundu T, Kandambeth S, BabaRao R, Marathe Y et al. 2014. Phosphoric acid loaded Azo (−N═N−) based covalent organic framework for proton conduction. J. Am. Chem. Soc. 136:6570–73
    [Google Scholar]
  146. 146. 
    Montoro C, Rodríguez-San-Miguel D, Polo E, Escudero-Cid R, Ruiz-González ML et al. 2017. Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework. J. Am. Chem. Soc. 139:10079–86
    [Google Scholar]
  147. 147. 
    Peng Y, Xu G, Hu Z, Cheng Y, Chi C et al. 2016. Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces 8:18505–12
    [Google Scholar]
  148. 148. 
    Shao Q, Jiang S. 2014. Molecular understanding and design of zwitterionic materials. Adv. Mater. 27:15–26
    [Google Scholar]
  149. 149. 
    Li Y, Wu H, Yin Y, Cao L, He X et al. 2018. Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity. J. Membr. Sci. 568:1–9
    [Google Scholar]
  150. 150. 
    Xiao C, Silver MA, Wang S 2017. Metal–organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook. Dalton Trans 46:16381–86
    [Google Scholar]
  151. 151. 
    Abney CW, Mayes RT, Piechowicz M, Lin Z, Bryantsev VS et al. 2016. XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies. Energy Environ. Sci. 9:448–53
    [Google Scholar]
  152. 152. 
    Zhang A, Asakura T, Uchiyama G 2003. The adsorption mechanism of uranium(VI) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group. React. Funct. Polym. 57:67–76
    [Google Scholar]
  153. 153. 
    Abney CW, Liu S, Lin W 2013. Tuning amidoximate to enhance uranyl binding: a density functional theory study. J. Phys. Chem. A 117:11558–65
    [Google Scholar]
  154. 154. 
    Sun Q, Aguila B, Earl LD, Abney CW, Wojtas L et al. 2018. Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Adv. Mater. 30:1705479 https://doi.org/10.1002/adma.201705479
    [Crossref] [Google Scholar]
  155. 155. 
    Marshall TA, Morris K, Law GTW, Mosselmans JFW, Bots P et al. 2014. Incorporation and retention of 99-TC (IV) in magnetite under high pH conditions. Environ. Sci. Technol. 48:11853–62
    [Google Scholar]
  156. 156. 
    Marchenko VI, Zhuravleva GI, Dvoeglazov KN, Savilova OA 2008. Behaviors of plutonium and neptunium in nitric acid solutions containing hydrazine and technetium ions. Theor. Found. Chem. Eng. 42:733–39
    [Google Scholar]
  157. 157. 
    Marchenko VI, Dvoeglazov KN, Volk VI 2009. Use of redox reagents for stabilization of Pu and Np valence forms in aqueous reprocessing of spent nuclear fuel: chemical and technological aspects. Radiochemistry 51:329–44
    [Google Scholar]
  158. 158. 
    Zhou X, Ye G-A, Zhang H, Li L, Luo F, Meng Z 2014. Chemical behavior of neptunium in the presence of technetium in nitric acid media. Radiochim. Acta 102:111–16
    [Google Scholar]
  159. 159. 
    Childs BC, Poineau F, Czerwinski KR, Sattelberger AP 2015. The nature of the volatile technetium species formed during vitrification of borosilicate glass. J. Radioanal. Nucl. Chem. 306:417–21
    [Google Scholar]
  160. 160. 
    He L, Liu S, Chen L, Dai X, Li J et al. 2019. Mechanism unravelling for ultrafast and selective 99TcO4 uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chem. Sci. 10:4293–305
    [Google Scholar]
  161. 161. 
    Wang C, Wang Y, Ge R, Song X, Xing X et al. 2018. A 3D covalent organic framework with exceptionally high iodine capture capability. Chem. Eur. J. 24:585–89
    [Google Scholar]
  162. 162. 
    Wang P, Xu Q, Li Z, Jiang W, Jiang Q, Jiang D 2018. Exceptional iodine capture in 2D covalent organic frameworks. Adv. Mater. 30:1801991 https://doi.org/10.1002/adma.201801991
    [Crossref] [Google Scholar]
  163. 163. 
    An S, Zhu X, He Y, Yang L, Wang H et al. 2019. Porosity modulation in two-dimensional covalent organic frameworks leads to enhanced iodine adsorption performance. Ind. Eng. Chem. Res. 58:10495–502
    [Google Scholar]
  164. 164. 
    Chen Y, Chen Z. 2017. COF-1-modified magnetic nanoparticles for highly selective and efficient solid-phase microextraction of paclitaxel. Talanta 165:188–93
    [Google Scholar]
  165. 165. 
    Liu L-H, Yang C-X, Yan X-P 2017. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography. J. Chromatogr. A 1479:137–44
    [Google Scholar]
  166. 166. 
    Kong D, Bao T, Chen Z 2017. In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids. Microchim. Acta 184:1169–76
    [Google Scholar]
  167. 167. 
    Wang L-L, Yang C-X, Yan X-P 2017. In situ growth of covalent organic framework shells on silica microspheres for liquid chromatography. ChemPlusChem 82:933–38
    [Google Scholar]
  168. 168. 
    Niu X, Ding S, Wang W, Xu Y, Xu Y et al. 2016. Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography. J. Chromatogr. A 1436:109–17
    [Google Scholar]
  169. 169. 
    He S, Zeng T, Wang S, Niu H, Cai Y 2017. Facile synthesis of magnetic covalent organic framework with three-dimensional bouquet-like structure for enhanced extraction of organic targets. ACS Appl. Mater. Interfaces 9:2959–65
    [Google Scholar]
  170. 170. 
    Huang J, Han X, Yang S, Cao Y, Yuan C et al. 2019. Microporous 3D covalent organic frameworks for liquid chromatographic separation of xylene isomers and ethylbenzene. J. Am. Chem. Soc. 141:8996–9003
    [Google Scholar]
  171. 171. 
    Yang C-X, Liu C, Cao Y-M, Yan X-P 2015. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation. Chem. Commun. 51:12254–57
    [Google Scholar]
  172. 172. 
    Singh R, Reddy MKR, Wilson S, Joshi K, Diniz da Costa JC et al. 2009. High temperature materials for CO2 capture. Energy Procedia 1:623–30
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-112019-084830
Loading
/content/journals/10.1146/annurev-chembioeng-112019-084830
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error