1932

Abstract

The production of thermoset polymers is increasing globally owing to their advantageous properties, particularly when applied as composite materials. Though these materials are traditionally used in more durable, longer-lasting applications, ultimately, they become waste at the end of their usable lifetimes. Current recycling practices are not applicable to traditional thermoset waste, owing to their network structures and lack of processability. Recently, researchers have been developing thermoset polymers with the right functionalities to be chemically degraded under relatively benign conditions postuse, providing a route to future management of thermoset waste. This review presents thermosets containing hydrolytically or solvolytically cleavable bonds, such as esters and acetals. Hydrolysis and solvolysis mechanisms are discussed, and various factors that influence the degradation rates are examined. Degradable thermosets with impressive mechanical, thermal, and adhesion behavior are discussed, illustrating that the design of material end-of-life need not limit material performance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-120919-012253
2020-06-07
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-120919-012253.html?itemId=/content/journals/10.1146/annurev-chembioeng-120919-012253&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Am. Chem. Counc 2017. U.S. Resin Production and Sales: 2018 vs. 2017. Washington, DC: Am. Chem. Counc https://plastics.americanchemistry.com/Plastics-Statistics/ACC-PIPS-Year-End-2017-Resin-Stats-vs-2016.pdf
  2. 2. 
    Auvergne R, Caillol S, David G, Boutevin B, Pascault J-P 2014. Biobased thermosetting epoxy: present and future. Chem. Rev. 114:1082–115
    [Google Scholar]
  3. 3. 
    Geyer R, Jambeck JR, Law KL 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:e1700782
    [Google Scholar]
  4. 4. 
    Ma S, Webster DC. 2018. Degradable thermosets based on labile bonds or linkages: a review. Prog. Polym. Sci. 76:65–110
    [Google Scholar]
  5. 5. 
    Natarajan M, Murugavel SC. 2017. Thermal stability and thermal degradation kinetics of bio-based epoxy resins derived from cardanol by thermogravimetric analysis. Polym. Bull. 74:3319–40
    [Google Scholar]
  6. 6. 
    Chatterjee A. 2009. Thermal degradation analysis of thermoset resins. J. Appl. Polym. Sci. 114:1417–25
    [Google Scholar]
  7. 7. 
    Barral L, Cano J, López AJ, Lopez J, Nógueira P, Ramírez C 1995. Thermal degradation of a diglycidyl ether of bisphenol A/1,3-bisaminomethylcyclohexane (DGEBA/1,3-BAC) epoxy resin system. Thermochim. Acta 269–70:253–59
    [Google Scholar]
  8. 8. 
    Lin S-T, Huang SK. 1997. Thermal degradation study of siloxane-DGEBA epoxy copolymers. Eur. Polym. J. 33:365–73
    [Google Scholar]
  9. 9. 
    Ahamad T, Alshehri SM. 2013. Thermal degradation and evolved gas analysis of epoxy (DGEBA)/novolac resin blends (ENB) during pyrolysis and combustion. J. Therm. Anal. Calorim. 111:445–51
    [Google Scholar]
  10. 10. 
    Dupuis A, Perrin F-X, Ulloa Torres A, Habas J-P, Belec L, Chailan J-F 2017. Photo-oxidative degradation behavior of linseed oil based epoxy resin. Polym. Degrad. Stab. 135:73–84
    [Google Scholar]
  11. 11. 
    Decker C, Zahouily K. 1999. Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers. Polym. Degrad. Stab. 64:293–304
    [Google Scholar]
  12. 12. 
    Denissen W, Winne JM, Du Prez FE 2016. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7:30–38
    [Google Scholar]
  13. 13. 
    Montarnal D, Capelot M, Tournilhac F, Leibler L 2011. Silica-like malleable materials from permanent organic networks. Science 334:965–68
    [Google Scholar]
  14. 14. 
    Nishimura Y, Chung J, Muradyan H, Guan Z 2017. Silyl ether as a robust and thermally stable dynamic covalent motif for malleable polymer design. J. Am. Chem. Soc. 139:14881–84
    [Google Scholar]
  15. 15. 
    Obadia MM, Mudraboyina BP, Serghei A, Montarnal D, Drockenmuller E 2015. Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C–N bonds. J. Am. Chem. Soc. 137:6078–83
    [Google Scholar]
  16. 16. 
    Snyder RL, Fortman DJ, De Hoe GX, Hillmyer MA, Dichtel WR 2018. Reprocessable acid-degradable polycarbonate vitrimers. Macromolecules 51:389–97
    [Google Scholar]
  17. 17. 
    Zheng N, Fang Z, Zou W, Zhao Q, Xie T 2016. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. 55:11421–25
    [Google Scholar]
  18. 18. 
    Zheng P, McCarthy TJ. 2012. A surprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 134:2024–27
    [Google Scholar]
  19. 19. 
    Fortman DJ, Brutman JP, De Hoe GX, Snyder RL, Dichtel WR, Hillmyer MA 2018. Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustain. Chem. Eng. 6:11145–59
    [Google Scholar]
  20. 20. 
    Chen X, Dam MA, Ono K, Mal A, Shen H et al. 2002. A thermally re-mendable cross-linked polymeric material. Science 295:1698–702
    [Google Scholar]
  21. 21. 
    Shen M, Almallahi R, Rizvi Z, Gonzalez-Martinez E, Yang G, Robertson ML 2019. Accelerated hydrolytic degradation of ester-containing biobased epoxy resins. Polym. Chem. 10:3217–29
    [Google Scholar]
  22. 22. 
    Li Z, Qiu J, Pei C 2016. Recyclable and transparent bacterial cellulose/hemiaminal dynamic covalent network polymer nanocomposite films. Cellulose 23:2449–55
    [Google Scholar]
  23. 23. 
    Zia KM, Bhatti HN, Ahmad Bhatti I 2007. Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React. Funct. Polym. 67:675–92
    [Google Scholar]
  24. 24. 
    Liu T, Hao C, Wang L, Li Y, Liu W et al. 2017. Eugenol-derived biobased epoxy: shape memory, repairing, and recyclability. Macromolecules 50:8588–97
    [Google Scholar]
  25. 25. 
    Ma S, Webster DC, Jabeen F 2016. Hard and flexible, degradable thermosets from renewable bioresources with the assistance of water and ethanol. Macromolecules 49:3780–88
    [Google Scholar]
  26. 26. 
    Yu C, Xu Z, Wang Y, Chen S, Miao M, Zhang D 2018. Synthesis and degradation mechanism of self-cured hyperbranched epoxy resins from natural citric acid. ACS Omega 3:8141–48
    [Google Scholar]
  27. 27. 
    Hashimoto T, Meiji H, Urushisaki M, Sakaguchi T, Kawabe K et al. 2012. Degradable and chemically recyclable epoxy resins containing acetal linkages: synthesis, properties, and application for carbon fiber-reinforced plastics. J. Polym. Sci. A Polym. Chem. 50:3674–81
    [Google Scholar]
  28. 28. 
    Ma S, Wei J, Jia Z, Yu T, Yuan W et al. 2019. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J. Mater. Chem. A 7:1233–43
    [Google Scholar]
  29. 29. 
    Yamaguchi A, Hashimoto T, Kakichi Y, Urushisaki M, Sakaguchi T et al. 2015. Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: synthesis, properties, and chemical recycling. J. Polym. Sci. A Polym. Chem. 53:1052–59
    [Google Scholar]
  30. 30. 
    Huh G, Kwon K-O, Cha S-H, Yoon S-W, Lee MY, Lee J-C 2009. Synthesis of a photo-patternable cross-linked epoxy system containing photodegradable carbonate units for deep UV lithography. J. Appl. Polym. Sci. 114:2093–100
    [Google Scholar]
  31. 31. 
    Zhao L, Liu Y, Wang Z, Li J, Liu W, Chen Z 2013. Synthesis and degradable property of novel sulfite-containing cycloaliphatic epoxy resins. Polym. Degrad. Stab. 98:2125–30
    [Google Scholar]
  32. 32. 
    Canadell J, Goossens H, Klumperman B 2011. Self-healing materials based on disulfide links. Macromolecules 44:2536–41
    [Google Scholar]
  33. 33. 
    Rekondo A, Martin R, Ruiz de Luzuriaga A, Cabañero G, Grande HJ, Odriozola I 2014. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 1:237–40
    [Google Scholar]
  34. 34. 
    Harada M, Ando J, Yamaki M, Ochi M 2015. Synthesis, characterization, and mechanical properties of a novel terphenyl liquid crystalline epoxy resin. J. Appl. Polym. Sci. 132:41296
    [Google Scholar]
  35. 35. 
    Bai N, Saito K, Simon GP 2013. Synthesis of a diamine cross-linker containing Diels–Alder adducts to produce self-healing thermosetting epoxy polymer from a widely used epoxy monomer. Polym. Chem. 4:724–30
    [Google Scholar]
  36. 36. 
    Bai J, Li H, Shi Z, Yin J 2015. An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiol–ene and Diels–Alder click chemistry. Macromolecules 48:3539–46
    [Google Scholar]
  37. 37. 
    Gandini A. 2013. The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog. Polym. Sci. 38:1–29
    [Google Scholar]
  38. 38. 
    Ma S, Liu X, Jiang Y, Tang Z, Zhang C, Zhu J 2013. Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem 15:245–54
    [Google Scholar]
  39. 39. 
    Dai J, Ma S, Liu X, Han L, Wu Y et al. 2015. Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Prog. Org. Coat. 78:49–54
    [Google Scholar]
  40. 40. 
    Yang G, Rohde BJ, Robertson ML 2013. Hydrolytic degradation and thermal properties of epoxy resins derived from soybean oil. Green Mater 1:125–34
    [Google Scholar]
  41. 41. 
    Yang G, Rohde BJ, Tesefay H, Robertson ML 2016. Biorenewable epoxy resins derived from plant-based phenolic acids. ACS Sustain. Chem. Eng. 4:6524–33
    [Google Scholar]
  42. 42. 
    Albertsson A-C, Ljungquist O. 1986. Degradable polymers. I. Synthesis, characterization, and long-term in vitro degradation of a 14C-labeled aliphatic polyester. J. Macromol. Sci. A Chem. 23:393–409
    [Google Scholar]
  43. 43. 
    Höglund A, Målberg S, Albertsson A-C 2012. Assessing the degradation profile of functional aliphatic polyesters with precise control of the degradation products. Macromol. Biosci. 12:260–68
    [Google Scholar]
  44. 44. 
    Antheunis H, van der Meer J-C, de Geus M, Kingma W, Koning CE 2009. Improved mathematical model for the hydrolytic degradation of aliphatic polyesters. Macromolecules 42:2462–71
    [Google Scholar]
  45. 45. 
    Jung JH, Ree M, Kim H 2006. Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal. Today 115:283–87
    [Google Scholar]
  46. 46. 
    Woodard LN, Grunlan MA. 2018. Hydrolytic degradation and erosion of polyester biomaterials. ACS Macro Lett 7:976–82
    [Google Scholar]
  47. 47. 
    von Burkersroda F, Schedl L, Göpferich A 2002. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–31
    [Google Scholar]
  48. 48. 
    Li S. 1999. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J. Biomed. Mater. Res. 48:342–53
    [Google Scholar]
  49. 49. 
    Ford Versypt AN, Pack DW, Braatz RD 2013. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres—a review. J. Control. Release 165:29–37
    [Google Scholar]
  50. 50. 
    Simha R. 1941. Kinetics of degradation and size distribution of long chain polymers. J. Appl. Phys. 12:569–78
    [Google Scholar]
  51. 51. 
    Pitt CG, Gu Z-w 1987. Modification of the rates of chain cleavage of poly(ϵ-caprolactone) and related polyesters in the solid state. J. Control. Release 4:283–92
    [Google Scholar]
  52. 52. 
    Batycky RP, Hanes J, Langer R, Edwards DA 1997. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J. Pharm. Sci. 86:1464–77
    [Google Scholar]
  53. 53. 
    Nishida H, Yamashita M, Nagashima M, Hattori N, Endo T, Tokiwa Y 2000. Theoretical prediction of molecular weight on autocatalytic random hydrolysis of aliphatic polyesters. Macromolecules 33:6595–601
    [Google Scholar]
  54. 54. 
    Antheunis H, van der Meer J-C, de Geus M, Heise A, Koning CE 2010. Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters. Biomacromolecules 11:1118–24
    [Google Scholar]
  55. 55. 
    Siparsky GL, Voorhees KJ, Miao F 1998. Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J. Environ. Polym. Degrad. 6:31–41
    [Google Scholar]
  56. 56. 
    Lyu S, Schley J, Loy B, Lind D, Hobot C et al. 2007. Kinetics and time-temperature equivalence of polymer degradation. Biomacromolecules 8:2301–10
    [Google Scholar]
  57. 57. 
    Siepmann J, Siepmann F. 2008. Mathematical modeling of drug delivery. Int. J. Pharm. 364:328–43
    [Google Scholar]
  58. 58. 
    Aguzzi C, Cerezo P, Salcedo I, Sánchez R, Viseras C 2010. Mathematical models describing drug release from biopolymeric delivery systems. Mater. Technol. 25:205–11
    [Google Scholar]
  59. 59. 
    Siepmann J, Siepmann F. 2012. Modeling of diffusion controlled drug delivery. J. Control. Release 161:351–62
    [Google Scholar]
  60. 60. 
    Lao LL, Peppas NA, Boey FYC, Venkatraman SS 2011. Modeling of drug release from bulk-degrading polymers. Int. J. Pharm. 418:28–41
    [Google Scholar]
  61. 61. 
    Siepmann J, Göpferich A. 2001. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. Rev. 48:229–47
    [Google Scholar]
  62. 62. 
    Sackett CK, Narasimhan B. 2011. Mathematical modeling of polymer erosion: consequences for drug delivery. Int. J. Pharm. 418:104–14
    [Google Scholar]
  63. 63. 
    Arifin DY, Lee LY, Wang C-H 2006. Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv. Drug Deliv. Rev. 58:1274–325
    [Google Scholar]
  64. 64. 
    Kumar S, Samal SK, Mohanty S, Nayak SK 2017. Study of curing kinetics of anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole. Thermochim. Acta 654:112–20
    [Google Scholar]
  65. 65. 
    Zhang Q, Molenda M, Reineke TM 2016. Epoxy resin thermosets derived from trehalose and β-cyclodextrin. Macromolecules 49:8397–406
    [Google Scholar]
  66. 66. 
    Khawam A, Flanagan DR. 2006. Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B 110:17315–28
    [Google Scholar]
  67. 67. 
    Šesták J, Berggren G. 1971. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta 3:1–12
    [Google Scholar]
  68. 68. 
    Kuang X, Shi Q, Zhou Y, Zhao Z, Wang T, Qi HJ 2018. Dissolution of epoxy thermosets via mild alcoholysis: the mechanism and kinetics study. RSC Adv 8:1493–502
    [Google Scholar]
  69. 69. 
    Chunxiu G, Yufang S, Donghua C 2004. Comparative method to evaluate reliable kinetic triplets of thermal decomposition reactions. J. Therm. Anal. Calorim. 76:203–16
    [Google Scholar]
  70. 70. 
    Liqing L, Donghua C. 2004. Application of iso-temperature method of multiple rate to kinetic analysis. J. Therm. Anal. Calorim. 78:283–93
    [Google Scholar]
  71. 71. 
    Gao Z, Amasaki I, Nakada M 2002. A description of kinetics of thermal decomposition of calcium oxalate monohydrate by means of the accommodated Rn model. Thermochim. Acta 385:95–103
    [Google Scholar]
  72. 72. 
    Giménez R, Fernández-Francos X, Salla JM, Serra A, Mantecón A, Ramis X 2005. New degradable thermosets obtained by cationic copolymerization of DGEBA with an s(γ-butyrolactone). Polymer 46:10637–47
    [Google Scholar]
  73. 73. 
    El Gersifi K, Durand G, Tersac G 2006. Solvolysis of bisphenol A diglycidyl ether/anhydride model networks. Polym. Degrad. Stab. 91:690–702
    [Google Scholar]
  74. 74. 
    Kuang X, Zhou Y, Shi Q, Wang T, Qi HJ 2018. Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions. ACS Sustain. Chem. Eng. 6:9189–97
    [Google Scholar]
  75. 75. 
    Liu T, Guo X, Liu W, Hao C, Wang L et al. 2017. Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation. Green Chem 19:4364–72
    [Google Scholar]
  76. 76. 
    Tomuta AM, Fernández-Francos X, Ferrando F, Ramis X, Serra À 2013. Enhanced chemical reworkability of DGEBA thermosets cured with rare earth triflates using aromatic hyperbranched polyesters (HBP) and multiarm star HBP-b-poly(ε-caprolactone) as modifiers. Polym. Adv. Technol. 24:962–70
    [Google Scholar]
  77. 77. 
    Hufendiek A, Lingier S, Du Prez FE 2019. Thermoplastic polyacetals: Chemistry from the past for a sustainable future. ? Polym. Chem. 10:9–33
    [Google Scholar]
  78. 78. 
    Huang F, Cheng R, Meng F, Deng C, Zhong Z 2015. Micelles based on acid degradable poly(acetal urethane): preparation, pH-sensitivity, and triggered intracellular drug release. Biomacromolecules 16:2228–36
    [Google Scholar]
  79. 79. 
    Samanta S, De Silva CC, Leophairatana P, Koberstein JT 2018. Main-chain polyacetal conjugates with HIF-1 inhibitors: temperature-responsive, pH-degradable drug delivery vehicles. J. Mater. Chem. B 6:666–74
    [Google Scholar]
  80. 80. 
    Berardinelli FM, Dolce TJ, Walling C 1965. Degradation and stabilization of polyacetal copolymers. J. Appl. Polym. Sci. 9:1419–29
    [Google Scholar]
  81. 81. 
    Fife TH, Natarajan R. 1986. General acid catalyzed acetal hydrolysis. The hydrolysis of acetals and ketals of cis- and trans-1,2-cyclohexanediol. Changes in rate-determining step and mechanism as a function of pH. J. Am. Chem. Soc. 108:8050–56
    [Google Scholar]
  82. 82. 
    Zhao L, Zhang L, Wang Z 2015. Synthesis and degradable properties of cycloaliphatic epoxy resin from renewable biomass-based furfural. RSC Adv 5:95126–32
    [Google Scholar]
  83. 83. 
    Yuan W, Ma S, Wang S, Li Q, Wang B et al. 2019. Synthesis of fully bio-based diepoxy monomer with dicyclo diacetal for high-performance, readily degradable thermosets. Eur. Polym. J. 117:200–7
    [Google Scholar]
  84. 84. 
    Ying H, Cheng J. 2014. Hydrolyzable polyureas bearing hindered urea bonds. J. Am. Chem. Soc. 136:16974–77
    [Google Scholar]
  85. 85. 
    Ying H, Zhang Y, Cheng J 2014. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5:3218
    [Google Scholar]
  86. 86. 
    Zhang Y, Ying H, Hart KR, Wu Y, Hsu AJ et al. 2016. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds. Adv. Mater. 28:7646–51
    [Google Scholar]
  87. 87. 
    Fortman DJ, Brutman JP, Cramer CJ, Hillmyer MA, Dichtel WR 2015. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 137:14019–22
    [Google Scholar]
  88. 88. 
    Zheng N, Hou J, Xu Y, Fang Z, Zou W et al. 2017. Catalyst-free thermoset polyurethane with permanent shape reconfigurability and highly tunable triple-shape memory performance. ACS Macro Lett 6:326–30
    [Google Scholar]
  89. 89. 
    Sastri VR, Tesoro GC. 1990. Reversible crosslinking in epoxy resins. II. New approaches. J. Appl. Polym. Sci. 39:1439–57
    [Google Scholar]
  90. 90. 
    Tesoro GC, Sastri V. 1990. Reversible crosslinking in epoxy resins. I. Feasibility studies. J. Appl. Polym. Sci. 39:1425–37
    [Google Scholar]
  91. 91. 
    Johnson LM, Ledet E, Huffman ND, Swarner SL, Shepherd SD et al. 2015. Controlled degradation of disulfide-based epoxy thermosets for extreme environments. Polymer 64:84–92
    [Google Scholar]
  92. 92. 
    Ruiz de Luzuriaga A, Martin R, Markaide N, Rekondo A, Cabañero G et al. 2016. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 3:241–47
    [Google Scholar]
  93. 93. 
    Wang S, Ma S, Li Q, Xu X, Wang B et al. 2019. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chem 21:1484–97
    [Google Scholar]
  94. 94. 
    Mai V-D, Shin S-R, Lee D-S, Kang I 2019. Thermal healing, reshaping and ecofriendly recycling of epoxy resin crosslinked with Schiff base of vanillin and hexane-1,6-diamine. Polymers 11:293
    [Google Scholar]
  95. 95. 
    Zhao S, Abu-Omar MM. 2018. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds. Macromolecules 51:9816–24
    [Google Scholar]
  96. 96. 
    Ma S, Webster DC. 2015. Naturally occurring acids as cross-linkers to yield VOC-free, high-performance, fully bio-based, degradable thermosets. Macromolecules 48:7127–37
    [Google Scholar]
  97. 97. 
    Zhang Q, Phillips HR, Purchel A, Hexum JK, Reineke TM 2018. Sustainable and degradable epoxy resins from trehalose, cyclodextrin, and soybean oil yield tunable mechanical performance and cell adhesion. ACS Sustain. Chem. Eng. 6:14967–78
    [Google Scholar]
  98. 98. 
    Janvier M, Hollande L, Jaufurally AS, Pernes M, Ménard R et al. 2017. Syringaresinol: a renewable and safer alternative to bisphenolA for epoxy-amine resins. ChemSusChem 10:738–46
    [Google Scholar]
  99. 99. 
    Keith MJ, Leeke GA, Khan P, Ingram A 2019. Catalytic degradation of a carbon fibre reinforced polymer for recycling applications. Polym. Degrad. Stab. 166:188–201
    [Google Scholar]
  100. 100. 
    Deng T, Liu Y, Cui X, Yang Y, Jia S et al. 2015. Cleavage of C–N bonds in carbon fiber/epoxy resin composites. Green Chem 17:2141–45
    [Google Scholar]
  101. 101. 
    Oliveux G, Dandy LO, Leeke GA 2015. Degradation of a model epoxy resin by solvolysis routes. Polym. Degrad. Stab. 118:96–103
    [Google Scholar]
  102. 102. 
    Piñero-Hernanz R, Dodds C, Hyde J, García-Serna J, Poliakoff M et al. 2008. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Composites A Appl. Sci. Manuf. 39:454–61
    [Google Scholar]
  103. 103. 
    Jiang G, Pickering SJ, Lester EH, Warrior NA 2010. Decomposition of epoxy resin in supercritical isopropanol. Ind. Eng. Chem. Res. 49:4535–41
    [Google Scholar]
  104. 104. 
    Yuan Y, Sun Y, Yan S, Zhao J, Liu S et al. 2017. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites. Nat. Commun. 8:14657
    [Google Scholar]
  105. 105. 
    Altuna FI, Espósito LH, Ruseckaite RA, Stefani PM 2011. Thermal and mechanical properties of anhydride-cured epoxy resins with different contents of biobased epoxidized soybean oil. J. Appl. Polym. Sci. 120:789–98
    [Google Scholar]
  106. 106. 
    García JM, Jones GO, Virwani K, McCloskey BD, Boday DJ et al. 2014. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 344:732–35
    [Google Scholar]
  107. 107. 
    You S, Ma S, Dai J, Jia Z, Liu X, Zhu J 2017. Hexahydro-s-triazine: a trial for acid-degradable epoxy resins with high performance. ACS Sustain. Chem. Eng. 5:4683–89
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-120919-012253
Loading
/content/journals/10.1146/annurev-chembioeng-120919-012253
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error