1932

Abstract

The properties of water on both molecular and macroscopic surfaces critically influence a wide range of physical behaviors, with applications spanning from membrane science to catalysis to protein engineering. Yet, our current understanding of water interfacing molecular and material surfaces is incomplete, in part because measurement of water structure and molecular-scale properties challenges even the most advanced experimental characterization techniques and computational approaches. This review highlights progress in the ongoing development of tools working to answer fundamental questions on the principles that govern the interactions between water and surfaces. One outstanding and critical question is what universal molecular signatures capture the hydrophobicity of different surfaces in an operationally meaningful way, since traditional macroscopic hydrophobicity measures like contact angles fail to capture even basic properties of molecular or extended surfaces with any heterogeneity at the nanometer length scale. Resolving this grand challenge will require close interactions between state-of-the-art experiments, simulations, and theory, spanning research groups and using agreed-upon model systems, to synthesize an integrated knowledge of solvation water structure, dynamics, and thermodynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-120919-114657
2020-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/11/1/annurev-chembioeng-120919-114657.html?itemId=/content/journals/10.1146/annurev-chembioeng-120919-114657&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Lukšič M, Dill KA 2017. How water's properties are encoded in its molecular structure and energies. Chem. Rev. 117:1912385–414
    [Google Scholar]
  2. 2. 
    Jamadagni SN, Godawat R, Garde S 2011. Hydrophobicity of proteins and interfaces: insights from density fluctuations. Annu. Rev. Chem. Biomol. Eng. 2:147–71
    [Google Scholar]
  3. 3. 
    Barnes R, Sun S, Fichou Y, Dahlquist FW, Heyden M, Han S 2017. Spatially heterogeneous surface water diffusivity around structured protein surfaces at equilibrium. J. Am. Chem. Soc. 139:4917890–901
    [Google Scholar]
  4. 4. 
    Davis JG, Gierszal KP, Wang P, Ben-Amotz D 2012. Water structural transformation at molecular hydrophobic interfaces. Nature 491:7425582–85
    [Google Scholar]
  5. 5. 
    Böhm F, Schwaab G, Havenith M 2017. Mapping hydration water around alcohol chains by THz calorimetry. Angew. Chem. Int. Ed. 56:9981–85
    [Google Scholar]
  6. 6. 
    Monroe JI, Shell MS. 2018. Computational discovery of chemically patterned surfaces that effect unique hydration water dynamics. PNAS 115:328093–98
    [Google Scholar]
  7. 7. 
    Cyran JD, Donovan MA, Vollmer D, Brigiano FS, Pezzotti S et al. 2019. Molecular hydrophobicity at a macroscopically hydrophilic surface. PNAS 116:51520–25
    [Google Scholar]
  8. 8. 
    Giovambattista N, Debenedetti PG, Rossky PJ 2007. Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity. J. Phys. Chem. C 111:31323–32
    [Google Scholar]
  9. 9. 
    Giovambattista N, Rossky PJ, Debenedetti PG 2009. Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces. J. Phys. Chem. B 113:4213723–34
    [Google Scholar]
  10. 10. 
    Lum K, Chandler D, Weeks JD 1999. Hydrophobicity at small and large length scales. J. Phys. Chem. B 103:224570–77
    [Google Scholar]
  11. 11. 
    Chandler D. 2002. Hydrophobicity: two faces of water. Nature 417:6888491
    [Google Scholar]
  12. 12. 
    Chandler D. 2005. Interfaces and the driving force of hydrophobic assembly. Nature 437:7059640–47
    [Google Scholar]
  13. 13. 
    Rajamani S, Truskett TM, Garde S 2005. Hydrophobic hydration from small to large lengthscales: understanding and manipulating the crossover. PNAS 102:279475–80
    [Google Scholar]
  14. 14. 
    Athawale MV, Goel G, Ghosh T, Truskett TM, Garde S 2007. Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water. PNAS 104:3733–38
    [Google Scholar]
  15. 15. 
    Evans R, Wilding NB. 2015. Quantifying density fluctuations in water at a hydrophobic surface: evidence for critical drying. Phys. Rev. Lett. 115:1016103
    [Google Scholar]
  16. 16. 
    Hande VR, Chakrabarty S. 2015. Structural order of water molecules around hydrophobic solutes: length-scale dependence and solute-solvent coupling. J. Phys. Chem. B 119:3411346–57
    [Google Scholar]
  17. 17. 
    Ben-Amotz D. 2016. Water-mediated hydrophobic interactions. Annu. Rev. Phys. Chem. 67:617–38
    [Google Scholar]
  18. 18. 
    Di W, Gao X, Huang W, Sun Y, Lei H et al. 2019. Direct measurement of length scale dependence of the hydrophobic free energy of a single collapsed polymer nanosphere. Phys. Rev. Lett. 122:4047801
    [Google Scholar]
  19. 19. 
    Islam MM, Kobayashi K, Kidokoro S, Kuroda Y 2019. Hydrophobic surface residues can stabilize a protein through improved water-protein interactions. FEBS J 286:4122–34
    [Google Scholar]
  20. 20. 
    Wirtz H, Schäfer S, Hoberg C, Havenith M 2018. Differences in hydration structure around hydrophobic and hydrophilic model peptides probed by THz spectroscopy. J. Infrared Millim. Terahertz Waves 39:9816–27
    [Google Scholar]
  21. 21. 
    Funke S, Sebastiani F, Schwaab G, Havenith M 2019. Spectroscopic fingerprints in the low frequency spectrum of ice (Ih), clathrate hydrates, supercooled water, and hydrophobic hydration reveal similarities in the hydrogen bond network motifs. J. Chem. Phys. 150:22224505
    [Google Scholar]
  22. 22. 
    Hajari T, Bandyopadhyay S. 2017. Water structure around hydrophobic amino acid side chain analogs using different water models. J. Chem. Phys. 146:22225104
    [Google Scholar]
  23. 23. 
    Geissler PL. 2013. Water interfaces, solvation, and spectroscopy. Annu. Rev. Phys. Chem. 64:317–37
    [Google Scholar]
  24. 24. 
    Hillyer MB, Gibb BC. 2016. Molecular shape and the hydrophobic effect. Annu. Rev. Phys. Chem. 67:307–29
    [Google Scholar]
  25. 25. 
    Schirò G, Weik M. 2019. Role of hydration water in the onset of protein structural dynamics. J. Phys. Condens. Matter. 31:46463002
    [Google Scholar]
  26. 26. 
    Xu Y, Havenith M. 2015. Perspective: watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy. J. Chem. Phys. 143:17170901
    [Google Scholar]
  27. 27. 
    Nakamoto K, Margoshes M, Rundle RE 1955. Stretching frequencies as a function of distances in hydrogen bonds. J. Am. Chem. Soc. 77:246480–86
    [Google Scholar]
  28. 28. 
    Lawrence CP, Skinner JL. 2003. Vibrational spectroscopy of HOD in liquid D2O. III. Spectral diffusion, and hydrogen-bonding and rotational dynamics. J. Chem. Phys. 118:264–72
    [Google Scholar]
  29. 29. 
    Perakis F, De Marco L, Shalit A, Tang F, Kann ZR et al. 2016. Vibrational spectroscopy and dynamics of water. Chem. Rev. 116:137590–607
    [Google Scholar]
  30. 30. 
    Sanders SE, Vanselous H, Petersen PB 2018. Water at surfaces with tunable surface chemistries. J. Phys. Condens. Matter 30:11113001
    [Google Scholar]
  31. 31. 
    Medders GR, Paesani F. 2015. Infrared and Raman spectroscopy of liquid water through “first-principles” many-body molecular dynamics. J. Chem. Theory Comput. 11:31145–54
    [Google Scholar]
  32. 32. 
    Woutersen S. 1997. Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure. Science 278:5338658–60
    [Google Scholar]
  33. 33. 
    Stirnemann G, Castrillón SR-V, Hynes JT, Rossky PJ, Debenedetti PG, Laage D 2011. Non-monotonic dependence of water reorientation dynamics on surface hydrophilicity: competing effects of the hydration structure and hydrogen-bond strength. Phys. Chem. Chem. Phys. 13:4419911
    [Google Scholar]
  34. 34. 
    Rankin BM, Ben-Amotz D, van der Post ST, Bakker HJ 2015. Contacts between alcohols in water are random rather than hydrophobic. J. Phys. Chem. Lett. 6:4688–92
    [Google Scholar]
  35. 35. 
    Sun Y, Petersen PB. 2017. Solvation shell structure of small molecules and proteins by IR-MCR spectroscopy. J. Phys. Chem. Lett. 8:3611–14
    [Google Scholar]
  36. 36. 
    Perera P, Wyche M, Loethen Y, Ben-Amotz D 2008. Solute-induced perturbations of solvent-shell molecules observed using multivariate Raman curve resolution. J. Am. Chem. Soc. 130:144576–77
    [Google Scholar]
  37. 37. 
    Yuan R, Yan C, Nishida J, Fayer MD 2017. Dynamics in a water interfacial boundary layer investigated with IR polarization-selective pump-probe experiments. J. Phys. Chem. B 121:174530–37
    [Google Scholar]
  38. 38. 
    Kundu A, Verma PK, Cho M 2019. Water structure and dynamics in the stern layer of micelles: femtosecond mid-infrared pump-probe spectroscopy study. J. Phys. Chem. B 123:255238–45
    [Google Scholar]
  39. 39. 
    Wu X, Lu W, Streacker LM, Ashbaugh HS, Ben-Amotz D 2018. Temperature-dependent hydrophobic crossover length scale and water tetrahedral order. J. Phys. Chem. Lett. 9:51012–17
    [Google Scholar]
  40. 40. 
    Cheng J-X, Pautot S, Weitz DA, Xie XS 2003. Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy. PNAS 100:179826–30
    [Google Scholar]
  41. 41. 
    Pestov D, Murawski RK, Ariunbold GO, Wang X, Zhi M et al. 2007. Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 316:5822265–68
    [Google Scholar]
  42. 42. 
    Shen YR, Ostroverkhov V. 2006. Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106:41140–54
    [Google Scholar]
  43. 43. 
    Ishiyama T, Morita A. 2017. Computational analysis of vibrational sum frequency generation spectroscopy. Annu. Rev. Phys. Chem. 68:355–77
    [Google Scholar]
  44. 44. 
    Nihonyanagi S, Yamaguchi S, Tahara T 2017. Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem. Rev. 117:1610665–93
    [Google Scholar]
  45. 45. 
    Smolentsev N, Smit WJ, Bakker HJ, Roke S 2017. The interfacial structure of water droplets in a hydrophobic liquid. Nat. Commun. 8:15548
    [Google Scholar]
  46. 46. 
    Tarun OB, Hannesschläger C, Pohl P, Roke S 2018. Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales. PNAS 115:164081–86
    [Google Scholar]
  47. 47. 
    Okur HI, Chen Y, Smolentsev N, Zdrali E, Roke S 2017. Interfacial structure and hydration of 3D lipid monolayers in aqueous solution. J. Phys. Chem. B 121:132808–13
    [Google Scholar]
  48. 48. 
    Du Q, Freysz E, Shen YR 1994. Vibrational spectra of water molecules at quartz/water interfaces. Phys. Rev. Lett. 72:2238–41
    [Google Scholar]
  49. 49. 
    Ostroverkhov V, Waychunas GA, Shen YR 2005. New information on water interfacial structure revealed by phase-sensitive surface spectroscopy. Phys. Rev. Lett. 94:4046102
    [Google Scholar]
  50. 50. 
    Sovago M, Campen RK, Wurpel GWH, Müller M, Bakker HJ, Bonn M 2008. Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys. Rev. Lett. 100:17173901
    [Google Scholar]
  51. 51. 
    Sovago M, Kramer Campen R, Bakker HJ, Bonn M 2009. Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation. Chem. Phys. Lett. 470:17–12
    [Google Scholar]
  52. 52. 
    Nihonyanagi S, Yamaguchi S, Tahara T 2010. Water hydrogen bond structure near highly charged interfaces is not like ice. J. Am. Chem. Soc. 132:206867–69
    [Google Scholar]
  53. 53. 
    Schaefer J, Backus EHG, Nagata Y, Bonn M 2016. Both inter- and intramolecular coupling of O-H groups determine the vibrational response of the water/air interface. J. Phys. Chem. Lett. 7:224591–95
    [Google Scholar]
  54. 54. 
    Darlington AM, Jarisz TA, DeWalt-Kerian EL, Roy S, Kim S et al. 2017. Separating the pH-dependent behavior of water in the stern and diffuse layers with varying salt concentration. J. Phys. Chem. C 121:3720229–41
    [Google Scholar]
  55. 55. 
    Sulpizi M, Salanne M, Sprik M, Gaigeot MP 2013. Vibrational sum frequency generation spectroscopy of the water liquid–vapor interface from density functional theory-based molecular dynamics simulations. J. Phys. Chem. Lett. 4:183–87
    [Google Scholar]
  56. 56. 
    Becraft KA, Moore FG, Richmond GL 2003. Charge reversal behavior at the CaF2/H2O/SDS interface as studied by vibrational sum frequency spectroscopy. J. Phys. Chem. B 107:163675–78
    [Google Scholar]
  57. 57. 
    Myalitsin A, Urashima S, Nihonyanagi S, Yamaguchi S, Tahara T 2016. Water structure at the buried silica/aqueous interface studied by heterodyne-detected vibrational sum-frequency generation. J. Phys. Chem. C 120:179357–63
    [Google Scholar]
  58. 58. 
    Stein MJ, Weidner T, McCrea K, Castner DG, Ratner BD 2009. Hydration of sulphobetaine and tetra(ethylene glycol)-terminated self-assembled monolayers studied by sum frequency generation vibrational spectroscopy. J. Phys. Chem. B 113:3311550–56
    [Google Scholar]
  59. 59. 
    Jarisz T, Roy S, Hore DK 2018. Surface water as a mediator and reporter of adhesion at aqueous interfaces. Acc. Chem. Res. 51:92287–95
    [Google Scholar]
  60. 60. 
    Leng C, Buss HG, Segalman RA, Chen Z 2015. Surface structure and hydration of sequence-specific amphiphilic polypeptoids for antifouling/fouling release applications. Langmuir 31:349306–11
    [Google Scholar]
  61. 61. 
    Barry ME, Davidson EC, Zhang C, Patterson AL, Yu B et al. 2019. The role of hydrogen bonding in peptoid-based marine antifouling coatings. Macromolecules 52:31287–95
    [Google Scholar]
  62. 62. 
    Didier MEP, Tarun OB, Jourdain P, Magistretti P, Roke S 2018. Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level. Nat. Commun. 9:5287
    [Google Scholar]
  63. 63. 
    McDermott ML, Vanselous H, Corcelli SA, Petersen PB 2017. DNA's chiral spine of hydration. ACS Cent. Sci. 3:7708–14
    [Google Scholar]
  64. 64. 
    Perets EA, Yan ECY. 2019. Chiral water superstructures around antiparallel β-sheets observed by chiral vibrational sum frequency generation spectroscopy. J. Phys. Chem. Lett. 10:123395–401
    [Google Scholar]
  65. 65. 
    Kocsis I, Sorci M, Vanselous H, Murail S, Sanders SE et al. 2018. Oriented chiral water wires in artificial transmembrane channels. Sci. Adv. 4:3eaao5603
    [Google Scholar]
  66. 66. 
    Cyran JD, Backus EHG, Nagata Y, Bonn M 2018. Structure from dynamics: vibrational dynamics of interfacial water as a probe of aqueous heterogeneity. J. Phys. Chem. B 122:143667–79
    [Google Scholar]
  67. 67. 
    Hsieh C-S, Campen RK, Vila Verde AC, Bolhuis P, Nienhuys H-K, Bonn M 2011. Ultrafast reorientation of dangling OH groups at the air-water interface using femtosecond vibrational spectroscopy. Phys. Rev. Lett. 107:11116102
    [Google Scholar]
  68. 68. 
    McGuire JA. 2006. Ultrafast vibrational dynamics at water interfaces. Science 313:57951945–1948
    [Google Scholar]
  69. 69. 
    Tan J, Zhang J, Li C, Luo Y, Ye S 2019. Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules. Nat. Commun. 10:11010
    [Google Scholar]
  70. 70. 
    Conti Nibali V, Havenith M 2014. New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc. 136:3712800–7
    [Google Scholar]
  71. 71. 
    Pal S, Samanta N, Das Mahanta D, Mitra RK, Chattopadhyay A 2018. Effect of phospholipid headgroup charge on the structure and dynamics of water at the membrane interface: a terahertz spectroscopic study. J. Phys. Chem. B 122:195066–74
    [Google Scholar]
  72. 72. 
    Kim SJ, Born B, Havenith M, Gruebele M 2008. Real-time detection of protein-water dynamics upon protein folding by terahertz absorption spectroscopy. Angew. Chem. Int. Ed. 47:346486–89
    [Google Scholar]
  73. 73. 
    Novelli F, Ostovar Pour S, Tollerud J, Roozbeh A, Appadoo DRT et al. 2017. Time-domain THz spectroscopy reveals coupled protein–hydration dielectric response in solutions of native and fibrils of human lysozyme. J. Phys. Chem. B 121:184810–16
    [Google Scholar]
  74. 74. 
    Wirtz H, Schäfer S, Hoberg C, Reid KM, Leitner DM, Havenith M 2018. Hydrophobic collapse of ubiquitin generates rapid protein–water motions. Biochemistry 57:263650–57
    [Google Scholar]
  75. 75. 
    Zhang J. 2019. Water dynamics in the hydration shell of amphiphilic macromolecules. J. Chem. Phys. B 123:132971–77
    [Google Scholar]
  76. 76. 
    Charkhesht A, Regmi CK, Mitchell-Koch KR, Cheng S, Vinh NQ 2018. High-precision megahertz-to-terahertz dielectric spectroscopy of protein collective motions and hydration dynamics. J. Phys. Chem. B 122:246341–50
    [Google Scholar]
  77. 77. 
    Vinh NQ, Allen SJ, Plaxco KW 2011. Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions. J. Am. Chem. Soc. 133:238942–47
    [Google Scholar]
  78. 78. 
    Martin DR, Forsmo JE, Matyushov DV 2018. Complex dynamics of water in protein confinement. J. Phys. Chem. B 122:133418–25
    [Google Scholar]
  79. 79. 
    Bryant RG. 1996. The dynamics of water-protein interactions. Annu. Rev. Biophys. Biomol. Struct. 25:29–53
    [Google Scholar]
  80. 80. 
    Bryant RG. 2010. Dynamics of water in and around proteins characterized by 1H-spin-lattice relaxometry. C. R. Phys. 11:2128–35
    [Google Scholar]
  81. 81. 
    Mattea C, Qvist J, Halle B 2008. Dynamics at the protein-water interface from 17O spin relaxation in deeply supercooled solutions. Biophys. J. 95:62951–63
    [Google Scholar]
  82. 82. 
    Persson F, Söderhjelm P, Halle B 2018. How proteins modify water dynamics. J. Chem. Phys. 148:21215103
    [Google Scholar]
  83. 83. 
    Lewandowski JR, Halse ME, Blackledge M, Emsley L 2015. Direct observation of hierarchical protein dynamics. Science 348:6234578–81
    [Google Scholar]
  84. 84. 
    Wüthrich K, Billeter M, Güntert P, Luginbühl P, Riek R, Wider G 1996. NMR studies of the hydration of biological macromolecules. Faraday Discuss 103:245–53
    [Google Scholar]
  85. 85. 
    Liepinsh E, Otting G, Wüthrich K 1992. NMR observation of individual molecules of hydration water bound to DNA duplexes: direct evidence for a spine of hydration water present in aqueous solution. Nucleic Acids Res 20:246549–53
    [Google Scholar]
  86. 86. 
    Nucci NV, Pometun MS, Wand AJ 2011. Site-resolved measurement of water-protein interactions by solution NMR. Nat. Struct. Mol. Biol. 18:2245–49
    [Google Scholar]
  87. 87. 
    Walderhaug H, Söderman O, Topgaard D 2010. Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Prog. Nucl. Magn. Reson. Spectrosc. 56:4406–25
    [Google Scholar]
  88. 88. 
    Plato M, Steinhoff H-J, Wegener C, Törring JT, Savitsky A, Möbius K 2002. Molecular orbital study of polarity and hydrogen bonding effects on the g and hyperfine tensors of site directed NO spin labelled bacteriorhodopsin. Mol. Phys. 100:233711–21
    [Google Scholar]
  89. 89. 
    Erilov DA, Bartucci R, Guzzi R, Shubin AA, Maryasov AG et al. 2005. Water concentration profiles in membranes measured by ESEEM of spin-labeled lipids. J. Phys. Chem. B 109:2412003–13
    [Google Scholar]
  90. 90. 
    Bordignon E, Brutlach H, Urban L, Hideg K, Savitsky A et al. 2009. Heterogeneity in the nitroxide micro-environment: polarity and proticity effects in spin-labeled proteins studied by multi-frequency EPR. Appl. Magn. Reson. 37:391
    [Google Scholar]
  91. 91. 
    Lai Y-C, Chen Y-F, Chiang Y-W 2013. ESR study of interfacial hydration layers of polypeptides in water-filled nanochannels and in vitrified bulk solvents. PLOS ONE 8:6e68264
    [Google Scholar]
  92. 92. 
    Jeong D, Han S, Lim Y, Kim SH 2019. Investigation of the hydration state of self-assembled peptide nanostructures with advanced electron paramagnetic resonance spectroscopy. ACS Omega 4:1114–20
    [Google Scholar]
  93. 93. 
    Overhauser AW. 1953. Polarization of nuclei in metals. Phys. Rev. 92:2411–15
    [Google Scholar]
  94. 94. 
    Carver TR, Slichter CP. 1953. Polarization of nuclear spins in metals. Phys. Rev. 92:212–13
    [Google Scholar]
  95. 95. 
    Armstrong BD, Han S. 2007. A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals. J. Chem. Phys. 127:10104508
    [Google Scholar]
  96. 96. 
    Armstrong BD, Han S. 2009. Overhauser dynamic nuclear polarization to study local water dynamics. J. Am. Chem. Soc. 131:134641–47
    [Google Scholar]
  97. 97. 
    Sezer D, Prandolini MJ, Prisner TF 2009. Dynamic nuclear polarization coupling factors calculated from molecular dynamics simulations of a nitroxide radical in water. Phys. Chem. Chem. Phys. 11:316626–37
    [Google Scholar]
  98. 98. 
    Franck JM, Pavlova A, Scott JA, Han S 2013. Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics. Prog. Nucl. Magn. Reson. Spectrosc. 74:33–56
    [Google Scholar]
  99. 99. 
    Franck JM, Ding Y, Stone K, Qin PZ, Han S 2015. Anomalously rapid hydration water diffusion dynamics near DNA surfaces. J. Am. Chem. Soc. 137:3712013–23
    [Google Scholar]
  100. 100. 
    Halle B, Denisov VP. 1998. Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR. Biopolymers 48:4210–33
    [Google Scholar]
  101. 101. 
    Segawa TF, Doppelbauer M, Garbuio L, Doll A, Polyhach YO, Jeschke G 2016. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods. J. Chem. Phys. 144:19194201
    [Google Scholar]
  102. 102. 
    Franck JM, Han S. 2019. Overhauser dynamic nuclear polarization for the study of hydration dynamics, explained. Methods Enzymol 615:131–75
    [Google Scholar]
  103. 103. 
    Israelachvili JN, Pashley RM. 1983. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306:5940249–50
    [Google Scholar]
  104. 104. 
    Israelachvili J, Wennerström H. 1996. Role of hydration and water structure in biological and colloidal interactions. Nature 379:6562219–25
    [Google Scholar]
  105. 105. 
    Schrader AM, Monroe JI, Sheil R, Dobbs HA, Keller TJ et al. 2018. Surface chemical heterogeneity modulates silica surface hydration. PNAS 115:122890–95
    [Google Scholar]
  106. 106. 
    Schrader AM, Cheng C-Y, Israelachvili JN, Han S 2016. Communication: contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces. J. Chem. Phys. 145:4041101
    [Google Scholar]
  107. 107. 
    Salmeron M, Schlögl R. 2008. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surface Sci. Rep. 63:4169–99
    [Google Scholar]
  108. 108. 
    Carrasco J, Hodgson A, Michaelides A 2012. A molecular perspective of water at metal interfaces. Nat. Mater. 11:8667–74
    [Google Scholar]
  109. 109. 
    Peng J, Guo J, Hapala P, Cao D, Ma R et al. 2018. Weakly perturbative imaging of interfacial water with submolecular resolution by atomic force microscopy. Nat. Commun. 9:122
    [Google Scholar]
  110. 110. 
    Guo J, Bian K, Lin Z, Jiang Y 2016. Perspective: structure and dynamics of water at surfaces probed by scanning tunneling microscopy and spectroscopy. J. Chem. Phys. 145:16160901
    [Google Scholar]
  111. 111. 
    Cui X, Liu J, Xie L, Huang J, Liu Q et al. 2018. Modulation of hydrophobic interaction by mediating surface nanoscale structure and chemistry, not monotonically by hydrophobicity. Angew. Chem. Int. Ed. 57:3711903–8
    [Google Scholar]
  112. 112. 
    Stock P, Monroe JI, Utzig T, Smith DJ, Shell MS, Valtiner M 2017. Unraveling hydrophobic interactions at the molecular scale using force spectroscopy and molecular dynamics simulations. ACS Nano 11:32586–97
    [Google Scholar]
  113. 113. 
    Siegbahn H, Siegbahn K. 1973. ESCA applied to liquids. J. Electron Spectrosc. Relat. Phenom. 2:3319–25
    [Google Scholar]
  114. 114. 
    Siegbahn H, Asplund L, Kelfve P, Siegbahn K 1975. Esca applied to liquids III. ESCA phase shifts in pure and mixed organic solvents. J. Electron Spectrosc. Relat. Phenom. 7:5411–19
    [Google Scholar]
  115. 115. 
    Lundholm M, Siegbahn H, Holmberg S, Arbman M 1986. Core electron spectroscopy of water solutions. J. Electron Spectrosc. Relat. Phenom. 40:2163–80
    [Google Scholar]
  116. 116. 
    Camci MT, Aydogan P, Ulgut B, Kocabas C, Suzer S 2016. XPS enables visualization of electrode potential screening in an ionic liquid medium with temporal- and lateral-resolution. Phys. Chem. Chem. Phys. 18:4128434–40
    [Google Scholar]
  117. 117. 
    Smith EF, Rutten FJM, Villar-Garcia IJ, Briggs D, Licence P 2006. Ionic liquids in vacuo: analysis of liquid surfaces using ultra-high-vacuum techniques. Langmuir 22:229386–92
    [Google Scholar]
  118. 118. 
    Lovelock KRJ, Villar-Garcia IJ, Maier F, Steinrück H-P, Licence P 2010. Photoelectron spectroscopy of ionic liquid-based interfaces. Chem. Rev. 110:95158–90
    [Google Scholar]
  119. 119. 
    Aydogan Gokturk P, Salzner U, Nyulászi L, Ulgut B, Kocabas C, Suzer S 2017. XPS-evidence for in-situ electrochemically-generated carbene formation. Electrochim. Acta 234:37–42
    [Google Scholar]
  120. 120. 
    Aydogan Gokturk P, Ulgut B, Suzer S 2019. AC electrowetting modulation of low-volatile liquids probed by XPS: dipolar versus ionic screening. Langmuir 35:93319–26
    [Google Scholar]
  121. 121. 
    Aydogan Gokturk P, Ulgut B, Suzer S 2018. DC electrowetting of nonaqueous liquid revisited by XPS. Langmuir 34:257301–8
    [Google Scholar]
  122. 122. 
    Bluhm H. 2010. Photoelectron spectroscopy of surfaces under humid conditions. J. Electron Spectrosc. Relat. Phenom. 177:271–84
    [Google Scholar]
  123. 123. 
    Yamamoto S, Andersson K, Bluhm H, Ketteler G, Starr DE et al. 2007. Hydroxyl-induced wetting of metals by water at near-ambient conditions. J. Phys. Chem. C 111:227848–50
    [Google Scholar]
  124. 124. 
    Ketteler G, Yamamoto S, Bluhm H, Andersson K, Starr DE et al. 2007. The nature of water nucleation sites on TiO2(110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 111:238278–82
    [Google Scholar]
  125. 125. 
    Deng X, Herranz T, Weis C, Bluhm H, Salmeron M 2008. Adsorption of water on Cu2O and Al2O3 thin films. J. Phys. Chem. C 112:269668–72
    [Google Scholar]
  126. 126. 
    Pletincx S, Marcoen K, Trotochaud L, Fockaert L-L, Mol JMC et al. 2017. Unravelling the chemical influence of water on the PMMA/aluminum oxide hybrid interface in situ. Sci. Rep. 7:113341
    [Google Scholar]
  127. 127. 
    Ketteler G, Ashby P, Mun BS, Ratera I, Bluhm H et al. 2008. In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces. J. Phys. Condens. Matter 20:18184024
    [Google Scholar]
  128. 128. 
    Arima K, Jiang P, Deng X, Bluhm H, Salmeron M 2010. Water adsorption, solvation, and deliquescence of potassium bromide thin films on SiO2 studied by ambient-pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 114:3514900–6
    [Google Scholar]
  129. 129. 
    Axnanda S, Crumlin EJ, Mao B, Rani S, Chang R et al. 2015. Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5:9788
    [Google Scholar]
  130. 130. 
    Lichterman MF, Hu S, Richter MH, Crumlin EJ, Axnanda S et al. 2015. Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8:82409–16
    [Google Scholar]
  131. 131. 
    Favaro M, Jeong B, Ross PN, Yano J, Hussain Z et al. 2016. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7:12695
    [Google Scholar]
  132. 132. 
    Wu CH, Weatherup RS, Salmeron MB 2015. Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks. Phys. Chem. Chem. Phys. 17:4530229–39
    [Google Scholar]
  133. 133. 
    Masuda T, Yoshikawa H, Noguchi H, Kawasaki T, Kobata M et al. 2013. In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents. Appl. Phys. Lett. 103:11111605
    [Google Scholar]
  134. 134. 
    Guo H, Strelcov E, Yulaev A, Wang J, Appathurai N et al. 2017. Enabling photoemission electron microscopy in liquids via graphene-capped microchannel arrays. Nano Lett 17:21034–41
    [Google Scholar]
  135. 135. 
    Kolmakov A, Dikin DA, Cote LJ, Huang J, Abyaneh MK et al. 2011. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat. Nanotechnol. 6:10651–57
    [Google Scholar]
  136. 136. 
    Nguyen L, Tao P (P), Liu H, Al-Hada M, Amati M et al. 2018. Studies of surface of metal nanoparticles in a flowing liquid with XPS. Chem. Commun. 54:719981–84
    [Google Scholar]
  137. 137. 
    Casalongue HS, Kaya S, Viswanathan V, Miller DJ, Friebel D et al. 2013. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat. Commun. 4:2817
    [Google Scholar]
  138. 138. 
    Streibel V, Hävecker M, Yi Y, Velasco Vélez JJ, Skorupska K et al. 2018. In situ electrochemical cells to study the oxygen evolution reaction by near ambient pressure X-ray photoelectron spectroscopy. Top. Catal. 61:202064–84
    [Google Scholar]
  139. 139. 
    Arrigo R, Hävecker M, Schuster ME, Ranjan C, Stotz E et al. 2013. In situ study of the gas-phase electrolysis of water on platinum by NAP-XPS. Angew. Chem. Int. Ed. 52:4411660–64
    [Google Scholar]
  140. 140. 
    Ye Y, Wu CH, Zhang L, Liu Y-S, Glans-Suzuki P-A, Guo J 2017. Using soft X-ray absorption spectroscopy to characterize electrode/electrolyte interfaces in-situ and operando. J. Electron Spectrosc. Relat. Phenom. 221:2–9
    [Google Scholar]
  141. 141. 
    Smith JW, Saykally RJ. 2017. Soft X-ray absorption spectroscopy of liquids and solutions. Chem. Rev. 117:2313909–34
    [Google Scholar]
  142. 142. 
    Näslund L-Å, Lüning J, Ufuktepe Y, Ogasawara H, Wernet Ph et al. 2005. X-ray absorption spectroscopy measurements of liquid water. J. Phys. Chem. B 109:2813835–39
    [Google Scholar]
  143. 143. 
    Guo J, Tong T, Svec L, Go J, Dong C, Chiou J-W 2007. Soft-X-ray spectroscopy experiment of liquids. J. Vac. Sci. Technol. A 25:41231–33
    [Google Scholar]
  144. 144. 
    Fuchs O, Maier F, Weinhardt L, Weigand M, Blum M et al. 2008. A liquid flow cell to study the electronic structure of liquids with soft X-rays. Nucl. Instrum. Methods Phys. Res. A 585:3172–77
    [Google Scholar]
  145. 145. 
    Myneni S, Luo Y, Näslund , Cavalleri M, Ojamäe L et al. 2002. Spectroscopic probing of local hydrogen-bonding structures in liquid water. J. Phys. Condens. Matter. 14:8L213–19
    [Google Scholar]
  146. 146. 
    Wilson KR, Cavalleri M, Rude BS, Schaller RD, Nilsson A et al. 2002. Characterization of hydrogen bond acceptor molecules at the water surface using near-edge X-ray absorption fine-structure spectroscopy and density functional theory. J. Phys. Condens. Matter 14:8L221–26
    [Google Scholar]
  147. 147. 
    Bluhm H, Ogletree DF, Fadley CS, Hussain Z, Salmeron M 2002. The premelting of ice studied with photoelectron spectroscopy. J. Phys. Condens. Matter 14:8L227–33
    [Google Scholar]
  148. 148. 
    Velasco-Velez J-J, Wu CH, Pascal TA, Wan LF, Guo J et al. 2014. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346:6211831–34
    [Google Scholar]
  149. 149. 
    Bosio L, Teixeira J, Bellissent-Funel M-C 1989. Enhanced density fluctuations in water analyzed by neutron scattering. Phys. Rev. A 39:126612–13
    [Google Scholar]
  150. 150. 
    Dings J, Michielsen JCF, van der Elsken J 1992. Equilibrium and nonequilibrium contributions to x-ray scattering from supercooled water. Phys. Rev. A 45:85731–33
    [Google Scholar]
  151. 151. 
    Michielsen JCF, Bot A, van der Elsken J 1988. Small-angle x-ray scattering from supercooled water. Phys. Rev. A 38:126439–41
    [Google Scholar]
  152. 152. 
    Paineau E, Albouy P-A, Rouzière S, Orecchini A, Rols S, Launois P 2013. X-ray scattering determination of the structure of water during carbon nanotube filling. Nano Lett 13:41751–56
    [Google Scholar]
  153. 153. 
    Erko M, Wallacher D, Hoell A, Hauß T, Zizak I, Paris O 2012. Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. Phys. Chem. Chem. Phys. 14:113852–58
    [Google Scholar]
  154. 154. 
    Waluyo I, Huang C, Nordlund D, Bergmann U, Weiss TM et al. 2011. The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements. J. Chem. Phys. 134:064513
    [Google Scholar]
  155. 155. 
    Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G 1998. Protein hydration in solution: experimental observation by x-ray and neutron scattering. PNAS 95:52267–72
    [Google Scholar]
  156. 156. 
    Kondo T, Morita J, Hanaoka K, Takakusagi S, Tamura K et al. 2007. Structure of Au(111) and Au(100) single-crystal electrode surfaces at various potentials in sulfuric acid solution determined by in situ surface X-ray scattering. J. Phys. Chem. C 111:3513197–204
    [Google Scholar]
  157. 157. 
    Als-Nielsen J, Jacquemain D, Kjaer K, Leveiller F, Lahav M, Leiserowitz L 1994. Principles and applications of grazing incidence X-ray and neutron scattering from ordered molecular monolayers at the air-water interface. Phys. Rep. 246:5251–313
    [Google Scholar]
  158. 158. 
    Mamontov E, Burnham CJ, Chen S-H, Moravsky AP, Loong C-K et al. 2006. Dynamics of water confined in single- and double-wall carbon nanotubes. J. Chem. Phys. 124:19194703
    [Google Scholar]
  159. 159. 
    Perrin J-C, Lyonnard S, Volino F 2007. Quasielastic neutron scattering study of water dynamics in hydrated nafion membranes. J. Phys. Chem. C 111:83393–404
    [Google Scholar]
  160. 160. 
    Faraone A, Liu L, Mou C-Y, Yen C-W, Chen S-H 2004. Fragile-to-strong liquid transition in deeply supercooled confined water. J. Chem. Phys. 121:2210843–46
    [Google Scholar]
  161. 161. 
    Malardier-Jugroot C, Bowron DT, Soper AK, Johnson ME, Head-Gordon T 2010. Structure and water dynamics of aqueous peptide solutions in the presence of co-solvents. Phys. Chem. Chem. Phys. 12:2382–92
    [Google Scholar]
  162. 162. 
    Pratt LR. 2002. Molecular theory of hydrophobic effects: “She is too mean to have her name repeated. .” Annu. Rev. Phys. Chem. 53:409–36
    [Google Scholar]
  163. 163. 
    Galamba N. 2013. Water's structure around hydrophobic solutes and the iceberg model. J. Phys. Chem. B 117:72153–59
    [Google Scholar]
  164. 164. 
    Bernal JD, Fowler RH. 1933. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1:8515–48
    [Google Scholar]
  165. 165. 
    Frank HS, Evans MW. 1945. Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13:507–32
    [Google Scholar]
  166. 166. 
    Stillinger FH. 1972. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Solut. Chem. 2:2/3141–58
    [Google Scholar]
  167. 167. 
    Pratt LR, Chandler D. 1977. Theory of the hydrophobic effect. J. Chem. Phys. 67:83683–704
    [Google Scholar]
  168. 168. 
    Hummer G, Garde S, García AE, Pohorille A, Pratt LR 1996. An information theory model of hydrophobic interactions. PNAS 93:178951–55
    [Google Scholar]
  169. 169. 
    Huang X, Margulis CJ, Berne BJ 2003. Do molecules as small as neopentane induce a hydrophobic response similar to that of large hydrophobic surfaces. ? J. Phys. Chem. B 107:4211742–48
    [Google Scholar]
  170. 170. 
    Huang X, Margulis CJ, Berne BJ 2003. Dewetting-induced collapse of hydrophobic particles. PNAS 100:2111953–58
    [Google Scholar]
  171. 171. 
    Huang DM, Chandler D. 2002. The hydrophobic effect and the influence of solute−solvent attractions. J. Phys. Chem. B 106:82047–53
    [Google Scholar]
  172. 172. 
    Mittal J, Hummer G. 2008. Static and dynamic correlations in water at hydrophobic interfaces. PNAS 105:5120130–35
    [Google Scholar]
  173. 173. 
    Godawat R, Jamadagni SN, Garde S 2009. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. PNAS 106:3615119–24
    [Google Scholar]
  174. 174. 
    Patel AJ, Varilly P, Jamadagni SN, Acharya H, Garde S, Chandler D 2011. Extended surfaces modulate hydrophobic interactions of neighboring solutes. PNAS 108:4317678–83
    [Google Scholar]
  175. 175. 
    Layfield JP, Troya D. 2011. Molecular simulations of the structure and dynamics of water confined between alkanethiol self-assembled monolayer plates. J. Phys. Chem. B 115:164662–70
    [Google Scholar]
  176. 176. 
    Willard AP, Chandler D. 2009. Coarse-grained modeling of the interface between water and heterogeneous surfaces. Faraday Discuss 141:209–20
    [Google Scholar]
  177. 177. 
    Willard AP, Chandler D. 2014. The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like. J. Chem. Phys. 141:18C519
    [Google Scholar]
  178. 178. 
    Lee C, McCammon JA, Rossky PJ 1984. The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys. 80:4448
    [Google Scholar]
  179. 179. 
    Hölzl C, Horinek D. 2018. Pressure increases the ice-like order of water at hydrophobic interfaces. Phys. Chem. Chem. Phys. 20:3321257–61
    [Google Scholar]
  180. 180. 
    Shin S, Willard AP. 2018. Water's interfacial hydrogen bonding structure reveals the effective strength of surface-water interactions. J. Phys. Chem. B 122:266781–89
    [Google Scholar]
  181. 181. 
    Shin S, Willard AP. 2018. Characterizing hydration properties based on the orientational structure of interfacial water molecules. J. Chem. Theory Comput. 14:2461–65
    [Google Scholar]
  182. 182. 
    Monroe JI, Shell MS. 2019. Decoding signatures of structure, bulk thermodynamics, and solvation in three-body angle distributions of rigid water models. J. Chem. Phys. 151:9094501
    [Google Scholar]
  183. 183. 
    Hua L, Zangi R, Berne BJ 2009. Hydrophobic interactions and dewetting between plates with hydrophobic and hydrophilic domains. J. Phys. Chem. C 113:135244–53
    [Google Scholar]
  184. 184. 
    Patel AJ, Varilly P, Chandler D 2010. Fluctuations of water near extended hydrophobic and hydrophilic surfaces. J. Phys. Chem. B 114:41632–37
    [Google Scholar]
  185. 185. 
    Acharya H, Vembanur S, Jamadagni SN, Garde S 2010. Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins. Faraday Discuss 146:353–65
    [Google Scholar]
  186. 186. 
    Remsing RC, Weeks JD. 2014. Hydrophobicity scaling of aqueous interfaces by an electrostatic mapping. J. Phys. Chem. B 119:299268–77
    [Google Scholar]
  187. 187. 
    Huang DM, Geissler PL, Chandler D 2001. Scaling of hydrophobic solvation free energies. J. Phys. Chem. B 105:286704–9
    [Google Scholar]
  188. 188. 
    Ashbaugh HS, Paulaitis ME. 2001. Effect of solute size and solute–water attractive interactions on hydration water structure around hydrophobic solutes. J. Am. Chem. Soc. 123:4310721–28
    [Google Scholar]
  189. 189. 
    Dallin BC, Yeon H, Ostwalt AR, Abbott NL, Van Lehn RC 2019. Molecular order affects interfacial water structure and temperature-dependent hydrophobic interactions between nonpolar self-assembled monolayers. Langmuir 35:62078–88
    [Google Scholar]
  190. 190. 
    Xi E, Venkateshwaran V, Li L, Rego N, Patel AJ, Garde S 2017. Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context. PNAS 114:5113345–50
    [Google Scholar]
  191. 191. 
    Xi E, Remsing RC, Patel AJ 2016. Sparse sampling of water density fluctuations in interfacial environments. J. Chem. Theory Comput. 12:2706–13
    [Google Scholar]
  192. 192. 
    Wallqvist A, Berne BJ. 1995. Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. 99:92893–99
    [Google Scholar]
  193. 193. 
    Willard AP, Chandler D. 2010. Instantaneous liquid interfaces. J. Phys. Chem. B 114:51954–58
    [Google Scholar]
  194. 194. 
    Cui D, Ou S, Peters E, Patel S 2014. Ion-specific induced fluctuations and free energetics of aqueous protein hydrophobic interfaces: toward connecting to specific-ion behaviors at aqueous liquid-vapor interfaces. J. Phys. Chem. B 118:174490–504
    [Google Scholar]
  195. 195. 
    Cui D, Ou S-C, Patel S 2015. Protein denaturants at aqueous-hydrophobic interfaces: self-consistent correlation between induced interfacial fluctuations and denaturant stability at the interface. J. Phys. Chem. B 119:1164–78
    [Google Scholar]
  196. 196. 
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926
    [Google Scholar]
  197. 197. 
    Ferrario M, Haughney M, McDonald IR, Klein ML 1990. Molecular‐dynamics simulation of aqueous mixtures: methanol, acetone, and ammonia. J. Chem. Phys. 93:75156–66
    [Google Scholar]
  198. 198. 
    Luzar A, Chandler D. 1993. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 98:108160–73
    [Google Scholar]
  199. 199. 
    Tian CS, Shen YR. 2009. Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy. PNAS 106:3615148–53
    [Google Scholar]
  200. 200. 
    Rimola A, Costa D, Sodupe M, Ugliengo P 2013. Silica surface features and their role in the adsorption of biomolecules. Chem. Rev. 113:4216–313
    [Google Scholar]
  201. 201. 
    Limmer DT, Willard AP, Madden P, Chandler D 2013. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. PNAS 110:114200–5
    [Google Scholar]
  202. 202. 
    Kim J, Tian Y, Wu J 2015. Thermodynamic and structural evidence for reduced hydrogen bonding among water molecules near small hydrophobic solutes. J. Phys. Chem. B 119:3612108–16
    [Google Scholar]
  203. 203. 
    Ashbaugh HS, Pratt LR. 2006. Colloquium: scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 78:1159–78
    [Google Scholar]
  204. 204. 
    Weiß RG, Heyden M, Dzubiella J 2015. Curvature dependence of hydrophobic hydration dynamics. Phys. Rev. Lett. 114:18187802
    [Google Scholar]
  205. 205. 
    Laage D, Stirnemann G, Hynes JT 2009. Why water reorientation slows without iceberg formation around hydrophobic solutes. J. Phys. Chem. B 113:82428–35
    [Google Scholar]
  206. 206. 
    Laage D, Elsaesser T, Hynes JT 2017. Water dynamics in the hydration shells of biomolecules. Chem. Rev. 117:1610694–725
    [Google Scholar]
  207. 207. 
    Giovambattista N, Rossky PJ, Debenedetti PG 2006. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys. Rev. E 73:4041604
    [Google Scholar]
  208. 208. 
    Heyden M. 2019. Heterogeneity of water structure and dynamics at the protein-water interface. J. Chem. Phys. 150:9094701
    [Google Scholar]
  209. 209. 
    Steinhardt PJ, Nelson DR, Ronchetti M 1983. Bond-orientational order in liquids and glasses. Phys. Rev. B 28:2784–805
    [Google Scholar]
  210. 210. 
    Chau P-L, Hardwick AJ. 1998. A new order parameter for tetrahedral configurations. Mol. Phys. 93:3511–18
    [Google Scholar]
  211. 211. 
    Errington JR, Debenedetti PG. 2001. Relationship between structural order and the anomalies of liquid water. Nature 409:6818318–21
    [Google Scholar]
  212. 212. 
    Lynden-Bell RM, Debenedetti PG. 2005. Computational investigation of order, structure, and dynamics in modified water models. J. Phys. Chem. B 109:146527–34
    [Google Scholar]
  213. 213. 
    Chatterjee S, Debenedetti PG, Stillinger FH, Lynden-Bell RM 2008. A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models. J. Chem. Phys. 128:12124511
    [Google Scholar]
  214. 214. 
    Nayar D, Chakravarty C. 2013. Water and water-like liquids: relationships between structure, entropy and mobility. Phys. Chem. Chem. Phys. 15:3414162–77
    [Google Scholar]
  215. 215. 
    Lynden-Bell RM, Head-Gordon T. 2006. Solvation in modified water models: towards understanding hydrophobic effects. Mol. Phys. 104:22–243593–605
    [Google Scholar]
  216. 216. 
    Song B, Molinero V. 2013. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water. J. Chem. Phys. 139:5054511
    [Google Scholar]
  217. 217. 
    Nayar D, Agarwal M, Chakravarty C 2011. Comparison of tetrahedral order, liquid state anomalies, and hydration behavior of mTIP3P and TIP4P water models. J. Chem. Theory Comput. 7:103354–67
    [Google Scholar]
  218. 218. 
    Duboué-Dijon E, Laage D. 2015. Characterization of the local structure in liquid water by various order parameters. J. Phys. Chem. B 119:268406–18
    [Google Scholar]
  219. 219. 
    Head‐Gordon T, Stillinger FH. 1993. An orientational perturbation theory for pure liquid water. J. Chem. Phys. 98:43313–27
    [Google Scholar]
  220. 220. 
    Chaimovich A, Shell MS. 2014. Tetrahedrality and structural order for hydrophobic interactions in a coarse-grained water model. Phys. Rev. E 89:2022140
    [Google Scholar]
  221. 221. 
    Sciortino F, Geiger A, Stanley HE 1992. Network defects and molecular mobility in liquid water. J. Chem. Phys. 96:53857–65
    [Google Scholar]
  222. 222. 
    Jedlovszky P, Brodholt JP, Bruni F, Ricci MA, Soper AK, Vallauri R 1998. Analysis of the hydrogen-bonded structure of water from ambient to supercritical conditions. J. Chem. Phys. 108:208528–40
    [Google Scholar]
  223. 223. 
    Oleinikova A, Smolin N, Brovchenko I, Geiger A, Winter R 2005. Formation of spanning water networks on protein surfaces via 2D percolation transition. J. Phys. Chem. B 109:51988–98
    [Google Scholar]
  224. 224. 
    Oleinikova A, Brovchenko I. 2011. What determines the thermal stability of the hydrogen-bonded water network enveloping peptides. ? J. Phys. Chem. Lett. 2:7765–69
    [Google Scholar]
  225. 225. 
    Head-Gordon T, Sorenson JM, Pertsemlidis A, Glaeser RM 1997. Differences in hydration structure near hydrophobic and hydrophilic amino acids. Biophys. J. 73:42106–15
    [Google Scholar]
  226. 226. 
    Jong K, Hassanali AA. 2018. A data science approach to understanding water networks around biomolecules: the case of tri-alanine in liquid water. J. Phys. Chem. B 122:327895–906
    [Google Scholar]
  227. 227. 
    Scala A, Starr FW, Nave EL, Sciortino F, Stanley HE 2000. Configurational entropy and diffusivity of supercooled water. Nature 406:6792166–69
    [Google Scholar]
  228. 228. 
    Agarwal M, Singh M, Sharma R, Parvez Alam M, Chakravarty C 2010. Relationship between structure, entropy, and diffusivity in water and water-like liquids. J. Phys. Chem. B 114:206995–7001
    [Google Scholar]
  229. 229. 
    Chopra R, Truskett TM, Errington JR 2010. On the use of excess entropy scaling to describe the dynamic properties of water. J. Phys. Chem. B 114:3210558–66
    [Google Scholar]
  230. 230. 
    Lazaridis T, Karplus M. 1996. Orientational correlations and entropy in liquid water. J. Chem. Phys. 105:104294–316
    [Google Scholar]
  231. 231. 
    Dahanayake JN, Mitchell-Koch KR. 2018. Entropy connects water structure and dynamics in protein hydration layer. Phys. Chem. Chem. Phys. 20:2114765–77
    [Google Scholar]
  232. 232. 
    Persson RAX, Pattni V, Singh A, Kast SM, Heyden M 2017. Signatures of solvation thermodynamics in spectra of intermolecular vibrations. J. Chem. Theory Comput. 13:94467–81
    [Google Scholar]
  233. 233. 
    Young T, Abel R, Kim B, Berne BJ, Friesner RA 2007. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. PNAS 104:3808–13
    [Google Scholar]
  234. 234. 
    Nguyen CN, Kurtzman Young T, Gilson MK 2012. Grid inhomogeneous solvation theory: Hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril. J. Chem. Phys. 137:4044101
    [Google Scholar]
  235. 235. 
    Friesen AD, Matyushov DV. 2011. Non-Gaussian statistics of electrostatic fluctuations of hydration shells. J. Chem. Phys. 135:10104501
    [Google Scholar]
  236. 236. 
    Ugliengo P, Sodupe M, Musso F, Bush IJ, Orlando R, Dovesi R 2008. Realistic models of hydroxylated amorphous silica surfaces and MCM-41 mesoporous material simulated by large-scale periodic B3LYP calculations. Adv. Mater. 20:234579–83
    [Google Scholar]
  237. 237. 
    Ewing CS, Bhavsar S, Veser G, McCarthy JJ, Johnson JK 2014. Accurate amorphous silica surface models from first-principles thermodynamics of surface dehydroxylation. Langmuir 30:185133–41
    [Google Scholar]
  238. 238. 
    Sulpizi M, Gaigeot M-P, Sprik M 2012. The silica-water interface: how the silanols determine the surface acidity and modulate the water properties. J. Chem. Theory Comput. 8:31037–47
    [Google Scholar]
  239. 239. 
    Gupta PK, Meuwly M. 2014. Dynamics and vibrational spectroscopy of water at hydroxylated silica surfaces. Faraday Discuss 167:329–46
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-120919-114657
Loading
/content/journals/10.1146/annurev-chembioeng-120919-114657
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error