1932

Abstract

Placebos are sham medical treatments. Nonetheless, they can have substantial effects on clinical outcomes. Placebos depend on a person's psychological and brain responses to the treatment context, which influence appraisals of future well-being. Appraisals are flexible cognitive evaluations of the personal meaning of events and situations that can directly impact symptoms and physiology. They also shape associative learning processes by guiding what is learned from experience. Appraisals are supported by a core network of brain regions associated with the default mode network involved in self-generated emotion, self-evaluation, thinking about the future, social cognition, and valuation of rewards and punishment. Placebo treatments for acute pain and a range of clinical conditions engage this same network of regions, suggesting that placebos affect behavior and physiology by changing how a person evaluates their future well-being and the personal significance of their symptoms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-clinpsy-021815-093015
2017-05-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/clinpsy/13/1/annurev-clinpsy-021815-093015.html?itemId=/content/journals/10.1146/annurev-clinpsy-021815-093015&mimeType=html&fmt=ahah

Literature Cited

  1. Amanzio M, Benedetti F, Porro CA, Palermo S, Cauda F. 2013. Activation likelihood estimation meta‐analysis of brain correlates of placebo analgesia in human experimental pain. Hum. Brain Mapp. 34:738–52 [Google Scholar]
  2. Amodio DM, Frith CD. 2006. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7:268–77 [Google Scholar]
  3. Andrews-Hanna JR, Smallwood J, Spreng RN. 2014. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316:29–52 [Google Scholar]
  4. Atlas LY, Wager TD. 2014. A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions.. Placebo by F Benedetti 37–69 Berlin: Springer [Google Scholar]
  5. Atlas LY, Whittington RA, Lindquist MA, Wielgosz J, Sonty N, Wager TD. 2012. Dissociable influences of opiates and expectations on pain. J. Neurosci. 32:8053–64 [Google Scholar]
  6. Bandelow B, Reitt M, Röver C, Michaelis S, Görlich Y, Wedekind D. 2015. Efficacy of treatments for anxiety disorders: a meta-analysis. Int. Clin. Psychopharmacol. 30:183–89 [Google Scholar]
  7. Bannuru RR, McAlindon TE, Sullivan MC, Wong JB, Kent DM, Schmid CH. 2015. Effectiveness and implications of alternative placebo treatments: a systematic review and network meta-analysis of osteoarthritis trials. Ann. Int. Med. 163:365–72 [Google Scholar]
  8. Barrett LF. 2012. Emotions are real. Emotion 12:413–29 [Google Scholar]
  9. Barrett LF. 2014. The conceptual act theory: a précis. Emot. Rev. 6:292–97 [Google Scholar]
  10. Bartra O, McGuire JT, Kable JW. 2013. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76:412–27 [Google Scholar]
  11. Benedetti F. 2014. Placebo effects: from the neurobiological paradigm to translational implications. Neuron 84:623–37 [Google Scholar]
  12. Benedetti F, Amanzio M, Vighetti S, Asteggiano G. 2006. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J. Neurosci. 26:12014–22 [Google Scholar]
  13. Benedetti F, Colloca L, Torre E, Lanotte M, Melcarne A. et al. 2004. Placebo-responsive Parkinson patients show decreased activity in single neurons of subthalamic nucleus. Nat. Neurosci. 7:587–88 [Google Scholar]
  14. Benedetti F, Frisaldi E, Carlino E, Giudetti L, Pampallona A. et al. 2016. Teaching neurons to respond to placebos. J. Physiol. 594:5647–60 [Google Scholar]
  15. Benedetti F, Maggi G, Lopiano L, Lanotte M. 2003a. Open versus hidden medical treatments: The patient's knowledge about a therapy affects the therapy outcome. Prev. Treat. 6: https://dx.doi.org/10.1037/1522-3736.6.1.61a [Google Scholar]
  16. Benedetti F, Pollo A, Lopiano L, Lanotte M, Vighetti S, Rainero I. 2003b. Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J. Neurosci. 23:4315–23 [Google Scholar]
  17. Berntson GG, Micco DJ. 1976. Organization of brainstem behavioral systems. Brain Res. Bull. 1:471–83 [Google Scholar]
  18. Berntson GG, Tuber DS, Ronca AE, Bachman DS. 1983. The decerebrate human: associative learning. Exp. Neurol. 81:77–88 [Google Scholar]
  19. Berridge KC, Kringelbach ML. 2008. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 199:457–80 [Google Scholar]
  20. Binder JR, Desai RH, Graves WW, Conant LL. 2009. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19:2767–96 [Google Scholar]
  21. Blakemore S-J. 2008. The social brain in adolescence. Nat. Rev. Neurosci. 9:267–77 [Google Scholar]
  22. Büchel C, Geuter S, Sprenger C, Eippert F. 2014. Placebo analgesia: a predictive coding perspective. Neuron 81:1223–39 [Google Scholar]
  23. Buckner RL, Carroll DC. 2007. Self-projection and the brain. Trends Cogn. Sci. 11:49–57 [Google Scholar]
  24. Carew TJ, Hawkins RD, Kandel ER. 1983. Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica. Science 219:397–400 [Google Scholar]
  25. Carlino E, Torta D, Piedimonte A, Frisaldi E, Vighetti S, Benedetti F. 2014. Role of explicit verbal information in conditioned analgesia. Eur. J. Pain 19:546–53 [Google Scholar]
  26. Chib VS, Rangel A, Shimojo S, O'Doherty JP. 2009. Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. J. Neurosci. 29:12315–20 [Google Scholar]
  27. Colloca L, Lopiano L, Lanotte M, Benedetti F. 2004. Overt versus covert treatment for pain, anxiety, and Parkinson's disease. Lancet Neurol 3:679–84 [Google Scholar]
  28. Colloca L, Miller FG. 2011. How placebo responses are formed: a learning perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366:1859–69 [Google Scholar]
  29. Colloca L, Petrovic P, Wager TD, Ingvar M, Benedetti F. 2010. How the number of learning trials affects placebo and nocebo responses. Pain 151:430–39 [Google Scholar]
  30. Colloca L, Sigaudo M, Benedetti F. 2008a. The role of learning in nocebo and placebo effects. Pain 136:211–18 [Google Scholar]
  31. Colloca L, Tinazzi M, Recchia S, Le Pera D, Fiaschi A. et al. 2008b. Learning potentiates neurophysiological and behavioral placebo analgesic responses. Pain 139:306–14 [Google Scholar]
  32. Constantinescu AO, O'Reilly JX, Behrens TE. 2016. Organizing conceptual knowledge in humans with a gridlike code. Science 352:1464–68 [Google Scholar]
  33. Craggs JG, Price DD, Perlstein WM, Verne NG, Robinson ME. 2008. The dynamic mechanisms of placebo induced analgesia: evidence of sustained and transient regional involvement. Pain 139:3660–69 [Google Scholar]
  34. Craggs JG, Price DD, Robinson ME. 2014. Enhancing the placebo response: functional magnetic resonance imaging evidence of memory and semantic processing in placebo analgesia. J. Pain 15:4435–46 [Google Scholar]
  35. Crum AJ, Corbin WR, Brownell KD, Salovey P. 2011. Mind over milkshakes: mindsets, not just nutrients, determine ghrelin response. Health Psychol 30:424–29 discussion 430–31 [Google Scholar]
  36. Cuijpers P, Driessen E, Hollon SD, van Oppen P, Barth J, Andersson G. 2012. The efficacy of non-directive supportive therapy for adult depression: a meta-analysis. Clin. Psychol. Rev. 32:280–91 [Google Scholar]
  37. de Jong PJ, van Baast R, Arntz A, Merckelbach H. 1996. The placebo effect in pain reduction: the influence of conditioning experiences and response expectancies. Int. J. Behav. Med. 3:14–29 [Google Scholar]
  38. de la Fuente-Fernández R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl J. 2001. Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science 293:1164–66 [Google Scholar]
  39. Denny BT, Kober H, Wager TD, Ochsner KN. 2012. A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. J. Cogn. Neurosci. 24:1742–52 [Google Scholar]
  40. Doeller CF, Barry C, Burgess N. 2010. Evidence for grid cells in a human memory network. Nature 463:657–61 [Google Scholar]
  41. Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R. et al. 2009a. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63:533–43 [Google Scholar]
  42. Eippert F, Finsterbusch J, Bingel U, Buchel C. 2009b. Direct evidence for spinal cord involvement in placebo analgesia. Science 326:404 [Google Scholar]
  43. Ellsworth PC, Scherer KR. 2003. Appraisal processes in emotion. Handbook of Affective Sciences RJ Davidson, KR Scherer, HH Goldsmith 572–95 Oxford, UK: Oxford Univ. Press [Google Scholar]
  44. Enck P, Benedetti F, Schedlowski M. 2008. New insights into the placebo and nocebo responses. Neuron 59:195–206 [Google Scholar]
  45. Etkin A, Egner T, Kalisch R. 2011. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15:85–93 [Google Scholar]
  46. Etkin A, Wager TD. 2007. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164:1476–88 [Google Scholar]
  47. Fässler M, Meissner K, Kleijnen J, Hróbjartsson A, Linde K. 2015. A systematic review found no consistent difference in effect between more and less intensive placebo interventions. J. Clin. Epidemiol. 68:442–51 [Google Scholar]
  48. Finniss DG, Kaptchuk TJ, Miller F, Benedetti F. 2010. Biological, clinical, and ethical advances of placebo effects. Lancet 375:686–95 [Google Scholar]
  49. Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD. et al. 2010. Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA 303:47–53 [Google Scholar]
  50. Frank JD, Frank JB. 1993. Persuasion and Healing: A Comparative Study of Psychotherapy Baltimore, MD: Johns Hopkins Univ. Press
  51. Freeman EW, Ensrud KE, Larson JC, Guthrie KA, Carpenter JS. et al. 2015. Placebo improvement in pharmacologic treatment of menopausal hot flashes. Psychosom. Med. 77:2167–75 [Google Scholar]
  52. Frith CD, Frith U. 2006. The neural basis of mentalizing. Neuron 50:531–34 [Google Scholar]
  53. Fuentes J, Armijo-Olivo S, Funabashi M, Miciak M, Dick B. et al. 2014. Enhanced therapeutic alliance modulates pain intensity and muscle pain sensitivity in patients with chronic low back pain: an experimental controlled study. Phys. Ther. 94:4477–89 [Google Scholar]
  54. Gaston L, Marmar CR, Gallagher D, Thompson LW. 1989. Impact of confirming patient expectations of change processes in behavioral, cognitive, and brief dynamic psychotherapy. Psychotherapy 26:296–302 [Google Scholar]
  55. Geuter S, Eippert F, Hindi Attar C, Büchel C. 2013. Cortical and subcortical responses to high and low effective placebo treatments. NeuroImage 67:227–36 [Google Scholar]
  56. Goebel MU, Trebst AE, Steiner J, Xie YF, Exton MS. et al. 2002. Behavioral conditioning of immunosuppression is possible in humans. FASEB J 16:1869–73 [Google Scholar]
  57. Goetz CG, Wuu J, McDermott MP, Adler CH, Fahn S. et al. 2008. Placebo response in Parkinson's disease: comparisons among 11 trials covering medical and surgical interventions. Mov. Disord. 23:690–99 [Google Scholar]
  58. Gottfried JA, O'Doherty J, Dolan RJ. 2003. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–7 [Google Scholar]
  59. Grau JW. 2014. Learning from the spinal cord: how the study of spinal cord plasticity informs our view of learning. Neurobiol. Learn. Mem. 108:155–71 [Google Scholar]
  60. Gu X, Lohrenz T, Salas R, Baldwin PR, Soltani A. et al. 2015. Belief about nicotine selectively modulates value and reward prediction error signals in smokers. PNAS 112:82539–44 [Google Scholar]
  61. Gu X, Lohrenz T, Salas R, Baldwin PR, Soltani A. et al. 2016. Belief about nicotine modulates subjective craving and insula activity in deprived smokers. Front. Psychiatry 7:126 https://doi.org/10.3389/fpsyt.2016.00126 [Google Scholar]
  62. Guo JY, Yuan XY, Sui F, Zhang WC, Wang JY. et al. 2011. Placebo analgesia affects the behavioral despair tests and hormonal secretions in mice. Psychopharmacology 217:83–90 [Google Scholar]
  63. Gusnard D, Akbudak E, Shulman GL, Raichle ME. 2001. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. PNAS 98:4259–64 [Google Scholar]
  64. Gusnard DA, Raichle ME. 2001. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2:685–94 [Google Scholar]
  65. Hardy GE, Barkham M, Shapiro DA, Reynolds S, Rees A, Stiles WB. 1995. Credibility and outcome of cognitive-behavioural and psychodynamic-interpersonal psychotherapy. Br. J. Clin. Psychol. 34:555–69 [Google Scholar]
  66. Hare T, O'Doherty J, Camerer C, Schultz W, Rangel A. 2008. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J. Neurosci. 28:5623–30 [Google Scholar]
  67. Hashmi JA, Baria AT, Baliki MN, Huang L, Schnitzer TJ, Apkarian AV. 2012. Brain networks predicting placebo analgesia in a clinical trial for chronic back pain. Pain 153:2393–402 [Google Scholar]
  68. Herrnstein RJ. 1962. Placebo effect in the rat. Science 138:677–78 [Google Scholar]
  69. Hróbjartsson A, Gøtzsche PC. 2010. Placebo interventions for all clinical conditions. Cochrane Database Syst. Rev. 20:CD003974 [Google Scholar]
  70. Izquierdo A, Suda RK, Murray EA. 2004. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24:7540–48 [Google Scholar]
  71. Jenkins AC, Macrae CN, Mitchell JP. 2008. Repetition suppression of ventromedial prefrontal activity during judgments of self and others. PNAS 105:4507–12 [Google Scholar]
  72. Jenkins AC, Mitchell JP. 2011. Medial prefrontal cortex subserves diverse forms of self-reflection. Soc. Neurosci. 6:211–18 [Google Scholar]
  73. Jepma M, Wager TD. 2015. Conceptual conditioning: mechanisms mediating conditioning effects on pain. Psychol. Sci. 26:1728–39 [Google Scholar]
  74. Jonas WB, Crawford C, Colloca L, Kaptchuk TJ, Moseley B. et al. 2015. To what extent are surgery and invasive procedures effective beyond a placebo response? A systematic review with meta-analysis of randomised, sham controlled trials. BMJ Open 5:e009655 [Google Scholar]
  75. Joyce AS, Piper WE. 1998. Expectancy, the therapeutic alliance, and treatment outcome in short-term individual psychotherapy. J. Psychother. Pract. Res. 7:236–48 [Google Scholar]
  76. Kahn I, Andrews-Hanna JR, Vincent JL, Snyder AZ, Buckner RL. 2008. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 100:129–39 [Google Scholar]
  77. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. 2015. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72:603–11 [Google Scholar]
  78. Kam-Hansen S, Jakubowski M, Kelley JM, Kirsch I, Hoaglin DC. et al. 2014. Altered placebo and drug labeling changes the outcome of episodic migraine attacks. Sci. Transl. Med. 6:218ra5 [Google Scholar]
  79. Kaptchuk TJ, Friedlander E, Kelley JM, Sanchez MN, Kokkotou E. et al. 2010. Placebos without deception: a randomized controlled trial in irritable bowel syndrome. PLOS ONE 5:e15591 [Google Scholar]
  80. Kaptchuk TJ, Kelley JM, Conboy LA, Davis RB, Kerr CE. et al. 2008. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ 336:999–1003 [Google Scholar]
  81. Kazdin AE, Krouse R. 1983. The impact of variations in treatment rationales on expectancies for therapeutic change. Behav. Ther. 14:657–71 [Google Scholar]
  82. Keay K, Bandler R. 2001. Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev. 25:669–78 [Google Scholar]
  83. Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, Heatherton TF. 2002. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14:785–94 [Google Scholar]
  84. Kessner S, Forkmann K, Ritter C, Wiech K, Ploner M, Bingel U. 2014. The effect of treatment history on therapeutic outcome: psychological and neurobiological underpinnings. PLOS ONE 9:e109014 [Google Scholar]
  85. Kessner S, Wiech K, Forkmann K, Ploner M, Bingel U. et al. 2013. The effect of treatment history on therapeutic outcome: an experimental approach. JAMA Intern. Med. 173:1468–69 [Google Scholar]
  86. Khan A, Faucett J, Lichtenberg P, Kirsch I, Brown WA. 2012. A systematic review of comparative efficacy of treatments and controls for depression. PLOS ONE 7:e41778 [Google Scholar]
  87. Khan A, Kolts RL, Rapaport MH, Krishnan KR, Brodhead AE, Brown WA. 2005. Magnitude of placebo response and drug-placebo differences across psychiatric disorders. Psychol. Med. 35:743–49 [Google Scholar]
  88. Khan A, Redding N, Brown WA. 2008. The persistence of the placebo response in antidepressant clinical trials. J. Psychiatr. Res. 42:791–96 [Google Scholar]
  89. Kim HF, Hikosaka O. 2013. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron 79:1001–10 [Google Scholar]
  90. Kirsch I. 1985. Response expectancy as a determinant of experience and behavior. Am. Psychol. 40:1189–202 [Google Scholar]
  91. Kirsch I, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ, Johnson BT. 2008. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLOS Med 5:e45 [Google Scholar]
  92. Ko JH, Feigin A, Mattis PJ, Tang CC, Ma Y. et al. 2014. Network modulation following sham surgery in Parkinson's disease. J. Clin. Investig. 124:3656–66 [Google Scholar]
  93. Koban L, Ruzic L, Wager TD. 2013. Brain predictors of individual differences in placebo responding.. Placebo and Pain L Colloca, MA Flaten, K Meissner 89–102 Boston: Acad. Press [Google Scholar]
  94. Koban L, Wager TD. 2016. Beyond conformity: social influences on pain reports and physiology. Emotion 16:24–32 [Google Scholar]
  95. Kong J, Spaeth R, Cook A, Kirsch I, Claggett B. et al. 2013. Are all placebo effects equal? Placebo pills, sham acupuncture, cue conditioning and their association. PLOS ONE 8:e6748 [Google Scholar]
  96. Krishnan A, Woo C-W, Chang LJ, Ruzic L, Gu X. et al. 2016. Somatic and vicarious pain are represented by dissociable multivariate brain patterns. eLife 5:e15166 [Google Scholar]
  97. Lazarus RS, Folkman S. 1984. Stress, Appraisal, and Coping New York: Springer
  98. Leuchter AF, Cook IA, Witte EA, Morgan M, Abrams M. 2002. Changes in brain function of depressed subjects during treatment with placebo. Am. J. Psychiatry 159:122–29 [Google Scholar]
  99. Liberman RP. 1967. The elusive placebo reactor. Neuro-Psycho-Pharmacology: Proc. Int. Congr. Coll. Int. Neuro-Psycho-Pharmacol., 5th, Washington, DC557–66 Amsterdam/New York: Excerpta Medica [Google Scholar]
  100. Lidstone SC. 2010. Effects of expectation on placebo-induced dopamine release in Parkinson disease. Arch. Gen. Psychiatry 67:857–65 [Google Scholar]
  101. Lieberman MD, Jarcho JM, Berman S, Naliboff BD, Suyenobu BY. et al. 2004. The neural correlates of placebo effects: a disruption account. NeuroImage 22:1447–55 [Google Scholar]
  102. Lindquist KA, Satpute AB, Wager TD, Weber J, Barrett LF. 2016. The brain basis of positive and negative affect: evidence from a meta-analysis of the human neuroimaging literature. Cereb. Cortex 26:1910–22 [Google Scholar]
  103. Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Feldman Barrett L. 2012. The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35:121–43 [Google Scholar]
  104. Madsen MV, Gotzsche PC, Hrobjartsson A. 2009. Acupuncture treatment for pain: systematic review of randomised clinical trials with acupuncture, placebo acupuncture, and no acupuncture groups. BMJ 338:a3115 [Google Scholar]
  105. Marks WJ, Bartus RT, Siffert J, Davis CS, Lozano A. et al. 2010. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–72 [Google Scholar]
  106. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. 2007. Wandering minds: the default network and stimulus-independent thought. Science 315:393–95 [Google Scholar]
  107. Matsumoto M, Hikosaka O. 2009. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459:837–41 [Google Scholar]
  108. Mayberg HS. 2002. The functional neuroanatomy of the placebo effect. Am. J. Psychiatry 159:5728–37 http://doi.org/10.1176/appi.ajp.159.5.728 [Crossref] [Google Scholar]
  109. Mechias M-L, Etkin A, Kalisch R. 2010. A meta-analysis of instructed fear studies: implications for conscious appraisal of threat. NeuroImage 49:1760–68 [Google Scholar]
  110. Meissner K. 2011. The placebo effect and the autonomic nervous system: evidence for an intimate relationship. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366:1808–17 [Google Scholar]
  111. Meissner K, Distel H, Mitzdorf U. 2007. Evidence for placebo effects on physical but not on biochemical outcome parameters: a review of clinical trials. BMC Med 5:3 [Google Scholar]
  112. Meissner K, Fässler M, Rücker G, Kleijnen J, Hróbjartsson A. et al. 2013. Differential effectiveness of placebo treatments. JAMA Intern. Med. 173:1910–41 [Google Scholar]
  113. Meyer B, Yuen KSL, Ertl M, Polomac N, Mulert C. et al. 2015. Neural mechanisms of placebo anxiolysis. J. Neurosci. 35:7365–73 [Google Scholar]
  114. Meyer ML, Spunt RP, Berkman ET, Taylor SE, Lieberman MD. 2012. Evidence for social working memory from a parametric functional MRI study. PNAS 109:1883–88 [Google Scholar]
  115. Milad M, Quirk G. 2002. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74 [Google Scholar]
  116. Mitchell JP, Macrae CN, Banaji MR. 2006. Dissociable medial prefrontal contributions to judgments of similar and dissimilar others. Neuron 50:655–63 [Google Scholar]
  117. Moerman DE, Jonas WB. 2002. Deconstructing the placebo effect and finding the meaning response. Ann. Intern. Med. 136:471–76 [Google Scholar]
  118. Montgomery GH, Kirsch I. 1997. Classical conditioning and the placebo effect. Pain 72:107–13 [Google Scholar]
  119. Morelli SA, Sacchet MD, Zaki J. 2015. Common and distinct neural correlates of personal and vicarious reward: a quantitative meta-analysis. NeuroImage 112:244–53 [Google Scholar]
  120. Morelli SA, Torre JB, Eisenberger NI. 2014. The neural bases of feeling understood and not understood. Soc. Cogn. Affect. Neurosci. 9:1890–96 [Google Scholar]
  121. Morrison SE, Saez A, Lau B, Salzman CD. 2011. Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron 71:1127–40 [Google Scholar]
  122. Morton DL, Watson A, El-Deredy W, Jones AKP. 2009. Reproducibility of placebo analgesia: effect of dispositional optimism. Pain 146:194–98. https://doi.org/10.1016/j.pain.2009.07.026 [Crossref] [Google Scholar]
  123. Moseley JB, O'Malley K, Petersen NJ, Menke TJ, Brody BA. et al. 2002. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N. Engl. J. Med. 347:81–88 [Google Scholar]
  124. Müller M, Kamping S, Benrath J, Skowronek H, Schmitz J, Klinger R, Flor H. 2016. Treatment history and placebo responses to experimental and clinical pain in chronic pain patients. Eur. J. Pain1–12 http://doi.org/10.1002/ejp.877
  125. Nakamura Y, Donaldson GW, Kuhn R, Bradshaw DH, Jacobson RC, Chapman CR. 2012. Investigating dose-dependent effects of placebo analgesia: a psychophysiological approach. Pain 153:227–37 [Google Scholar]
  126. Olanow WC, Bartus RT, Baumann TL, Factor S, Boulis N. et al. 2015. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann. Neurol. 78:248–57 [Google Scholar]
  127. Ortony A, Clore GL, Collins A. 1988. The Cognitive Structure of Emotions New York: Cambridge Univ. Press
  128. Padoa-Schioppa C. 2011. Neurobiology of economic choice: a good-based model. Annu. Rev. Neurosci. 34:333–59 [Google Scholar]
  129. Papakostas GI, Fava M. 2009. Does the probability of receiving placebo influence clinical trial outcome? A meta-regression of double-blind, randomized clinical trials in MDD. Eur. Neuropsychopharmacol. 19:34–40 [Google Scholar]
  130. Pauli WM, O'Reilly RC, Yarkoni T, Wager TD. 2016. Regional specialization within the human striatum for diverse psychological functions. PNAS 113:1907–12 [Google Scholar]
  131. Peciña M, Bohnert ASB, Sikora M, Avery ET, Langenecker SA. et al. 2015. Association between placebo-activated neural systems and antidepressant responses. JAMA Psychiatry 72:1087–94 [Google Scholar]
  132. Plassmann H, Wager TD. 2014. How expectancies shape consumption experiences. The Interdisciplinary Science of Consumption SD Preston, ML Kringelbach, B Knutson 219–40 Cambridge, MA: MIT [Google Scholar]
  133. Posternak MA, Zimmerman M, Keitner GI, Miller IW. 2002. A reevaluation of the exclusion criteria used in antidepressant efficacy trials. Am. J. Psychiatry 159:191–200 https://doi.org/10.1176/appi.ajp.159.2.191 [Google Scholar]
  134. Pressman A, Avins AL, Neuhaus J, Ackerson L, Rudd P. 2012. Adherence to placebo and mortality in the Beta Blocker Evaluation of Survival Trial (BEST). Contemp. Clin. Trials 33:492–98 [Google Scholar]
  135. Price DD, Finniss DG, Benedetti F. 2008. A comprehensive review of the placebo effect: recent advances and current thought. Annu. Rev. Psychol. 59:565–90 [Google Scholar]
  136. Price JL. 1999. Prefrontal cortical networks related to visceral function and mood. Ann. N. Y. Acad. Sci. 877:383–96 [Google Scholar]
  137. Quessy SN, Rowbotham MC. 2008. Placebo response in neuropathic pain trials. Pain 138:479–83 [Google Scholar]
  138. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. 2001. A default mode of brain function. PNAS 98:676–82 [Google Scholar]
  139. Rakel D, Barrett B, Zhang Z, Hoeft T, Chewning B. et al. 2011. Perception of empathy in the therapeutic encounter: effects on the common cold. Patient Educ. Couns. 85:3390–97 [Google Scholar]
  140. Robinson MJF, Berridge KC. 2013. Instant transformation of learned repulsion into motivational “wanting.”. Curr. Biol. 23:282–89 [Google Scholar]
  141. Rogers TB, Kuiper NA, Kirker WS. 1977. Self-reference and the encoding of personal information. J. Pers. Soc. Psychol. 35:677–88 [Google Scholar]
  142. Roy M, Shohamy D, Wager TD. 2012. Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn. Sci. 16:147–56 [Google Scholar]
  143. Rudebeck PH, Murray EA. 2014. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron 84:61143–45 [Google Scholar]
  144. Rudebeck PH, Saunders RC, Prescott AT, Chau LS, Murray EA. 2013. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat. Neurosci. 16:81140–45 [Google Scholar]
  145. Rutherford BR. 2016. Patient expectancy as a mediator of placebo effects in antidepressant clinical trials. Am. J. Psychiatry 174:135–42 [Google Scholar]
  146. Rutherford BR, Bailey VS, Schneier FR, Pott E, Brown PJ, Roose SP. 2015. Influence of study design on treatment response in anxiety disorder clinical trials. Depress. Anxiety 32:944–57 [Google Scholar]
  147. Rutherford BR, Pott E, Tandler JM, Wall MM, Roose SP, Lieberman JA. 2014. Placebo response in antipsychotic clinical trials: a meta-analysis. JAMA Psychiatry 10032:1409–21 [Google Scholar]
  148. Schafer SM, Colloca L, Wager TD. 2015. Conditioned placebo analgesia persists when subjects know they are receiving a placebo. J. Pain 16:412–20 [Google Scholar]
  149. Schedlowski M, Pacheco-Lopez G. 2010. The learned immune response: Pavlov and beyond. Brain Behav. Immun. 24:176–85 [Google Scholar]
  150. Scherer KR. 2001. Appraisal considered as a process of multilevel sequential checking. Appraisal Processes in Emotion: Theory, Methods, Research KR Scherer, A Schorr, T Johnstone 92–120 Oxford, UK/New York: Oxford Univ. Press [Google Scholar]
  151. Schmidt L, Braun EK, Wager TD, Shohamy D. 2014. Mind matters: placebo enhances reward learning in Parkinson's disease. Nat. Neurosci. 17:1793–97 [Google Scholar]
  152. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta J-K. 2008. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch. Gen. Psychiatry 65:220–31 [Google Scholar]
  153. Sinyor M, Levitt AJ, Cheung AH, Schaffer A, Kiss A. et al. 2010. Does inclusion of a placebo arm influence response to active antidepressant treatment in randomized controlled trials?. J. Clin. Psychiatry 71:270–79 [Google Scholar]
  154. Smith CA, Ellsworth PC. 1985. Patterns of cognitive appraisal in emotion. J. Pers. Soc. Psychol. 48:813–38 [Google Scholar]
  155. Sneed JR, Rutherford BR, Rindskopf D, Lane DT, Sackeim HA, Roose SP. 2008. Design makes a difference: a meta-analysis of antidepressant response rates in placebo-controlled versus comparator trials in late-life depression. Am. J. Geriatr. Psychiatry 16:65–73 [Google Scholar]
  156. Sorokin I, Schatz A, Welliver C. 2015. Placebo medication and sham surgery responses in benign prostatic hyperplasia treatments: implications for clinical trials. Curr. Urol. Rep. 16:101673 https://doi.org/10.1007/s11934-015-0544-4 [Google Scholar]
  157. Sotsky SM, Glass DR, Shea MT, Pilkonis PA, Collins JF. et al. 1991. Patient predictors of response to psychotherapy and pharmacotherapy: findings in the NIMH Treatment of Depression Collaborative Research Program. Am. J. Psychiatry 148:997–1008 [Google Scholar]
  158. Stalnaker TA, Cooch NK, Schoenbaum G. 2015. What the orbitofrontal cortex does not do. Nat. Neurosci. 18:620–27 [Google Scholar]
  159. Stewart-Williams S, Podd J. 2004. The placebo effect: dissolving the expectancy versus conditioning debate. Psychol. Bull. 130:324–40 [Google Scholar]
  160. Strunk DR, DeRubeis RJ, Chiu AW. Alvarez J. , 2007. Patients’ competence in and performance of cognitive therapy skills: relation to the reduction of relapse risk following treatment for depression. J. Consult. Clin. Psychol. 75:4523–30 [Google Scholar]
  161. Tétreault P, Mansour A, Vachon-Presseau E, Schnitzer TJ, Apkarian AV. Baliki MN. , 2016. Brain connectivity predicts placebo response across chronic pain clinical trials. PLOS Biology 14:10e1002570 [Google Scholar]
  162. Tremblay L, Schultz W. 1999. Relative reward preference in primate orbitofrontal cortex. Nature 398:704–8 [Google Scholar]
  163. Tuttle AH, Tohyama S, Ramsay T, Kimmelman J, Schweinhardt P. et al. 2015. Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain 156:2616–26 [Google Scholar]
  164. Van Overwalle F. 2009. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30:829–58 [Google Scholar]
  165. Vase L, Riley JL, Price DD. 2002. A comparison of placebo effects in clinical analgesic trials versus studies of placebo analgesia. Pain 99:443–52 [Google Scholar]
  166. Vase L, Robinson ME, Verne GN, Price DD. 2005. Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain 115:338–47 [Google Scholar]
  167. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR. et al. 2006. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96:3517–31 [Google Scholar]
  168. Volkow ND, Wang G-J, Ma Y, Fowler JS, Zhu W. et al. 2003. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J. Neurosci. 23:11461–68 [Google Scholar]
  169. Volkow ND, Wang G, Fowler JS, Tomasi D, Telang F. et al. 2011. Addiction: beyond dopamine reward circuitry.. PNAS 108:3715037–42 [Google Scholar]
  170. Wager TD, Atlas LY. 2015. The neuroscience of placebo effects: connecting context, learning and health. Nat. Rev. Neurosci. 16:403–18 [Google Scholar]
  171. Wager TD, Atlas LY, Leotti LA, Rilling JK. 2011. Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. J. Neurosci. 31:439–52 [Google Scholar]
  172. Wager TD, Fields HL. 2013. Placebo analgesia. Textbook of Pain S McMahon, M Koltzenburg, I Tracey, DC Turk 362–73 Philadelphia: Elsevier Health Sci. [Google Scholar]
  173. Wager TD, Kang J, Johnson TD, Nichols TE, Satpute AB, Barrett LF. 2015. A Bayesian model of category-specific emotional brain responses. PLOS Comput. Biol. 11:e1004066 [Google Scholar]
  174. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL. et al. 2004. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303:1162–67 [Google Scholar]
  175. Wager TD, Scott DJ, Zubieta J-K. 2007. Placebo effects on human μ-opioid activity during pain. PNAS 104:11056–61 [Google Scholar]
  176. Wagner DD, Kelley WM, Haxby JV, Heatherton TF. 2016. The dorsal medial prefrontal cortex responds preferentially to social interactions during natural viewing. J. Neurosci. 36:6917–25 [Google Scholar]
  177. Wallis JD. 2007. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neurosci. 30:31–56 [Google Scholar]
  178. Wampold BE, Imel ZE. 2015. The Great Psychotherapy Debate: The Evidence for What Makes Psychotherapy Work New York: Routledge, 2nd ed..
  179. Wechsler ME, Kelley JM, Boyd IOE, Dutile S, Marigowda G. et al. 2011. Active albuterol or placebo, sham acupuncture, or no intervention in asthma. N. Engl. J. Med. 365:119–26 [Google Scholar]
  180. Wendt L, Albring A, Ober K, Engler H, Freundlieb C. et al. 2013. Placebo-induced immunosuppression in humans: role of learning and expectation. Brain Behav. Immun. 29:Suppl.S17 [Google Scholar]
  181. Whalley B, Hyland ME, Kirsch I. 2008. Consistency of the placebo effect. J. Psychosom. Res. 64:537–41 [Google Scholar]
  182. Wilson-Mendenhall CD, Barrett LF, Simmons WK, Barsalou LW. 2011. Grounding emotion in situated conceptualization. Neuropsychologia 49:1105–27 [Google Scholar]
  183. Woods SC, Ramsay DS. 2000. Pavlovian influences over food and drug intake. Behav. Brain Res. 110:175–82 [Google Scholar]
  184. Woods SW, Gueorguieva RV, Baker CB, Makuch RW. 2005. Control group bias in randomized atypical antipsychotic medication trials for schizophrenia. Arch. Gen. Psychiatry 62:961–70 [Google Scholar]
  185. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. 2011. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8:665–70 [Google Scholar]
  186. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D. et al. 2011. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106:1125–65 [Google Scholar]
/content/journals/10.1146/annurev-clinpsy-021815-093015
Loading
/content/journals/10.1146/annurev-clinpsy-021815-093015
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error