1932

Abstract

In directed assembly, small building blocks are assembled into an organized structure under the influence of guiding fields. Capillary interactions provide a versatile route for structure formation. Colloids adsorbed on fluid interfaces distort the interface, which creates an associated energy field. When neighboring distortions overlap, colloids interact to minimize interfacial area. Contact line pinning, particle shape, and surface chemistry play important roles in structure formation. Interface curvature acts like an external field; particles migrate and assemble in patterns dictated by curvature gradients. We review basic analysis and recent findings in this rapidly evolving literature. Understanding the roles of assembly is essential for tuning the mechanical, physical, and optical properties of the structure.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031016-025514
2018-03-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/9/1/annurev-conmatphys-031016-025514.html?itemId=/content/journals/10.1146/annurev-conmatphys-031016-025514&mimeType=html&fmt=ahah

Literature Cited

  1. Glotzer SC, Solomon MJ. 1.  2007. Nat. Mater. 6:557–62
  2. Romano F, Sciortino F. 2.  2011. Nat. Mater. 10:171–73
  3. Damasceno PF, Engel M, Glotzer SC. 3.  2012. Science 337:453–57
  4. Teich EG, van Anders G, Klotsa D, Dshemuchadse J, Glotzer SC. 4.  2016. PNAS 113:E669–78
  5. Sacanna S, Irvine WTM, Chaikin PM, Pine DJ. 5.  2010. Nature 464:575–78
  6. Wang Y, Wang Y, Zheng X, Ducrot É, Lee MG. 6.  et al. 2015. J. Am. Chem. Soc. 137:10760–66
  7. Rogers WB, Shih WM, Manoharan VN. 7.  2016. Nat. Rev. Mater. 1:16008
  8. Valignat MP, Theodoly O, Crocker JC, Russel WB, Chaikin PM. 8.  2005. PNAS 102:4225–29
  9. Geerts N, Eiser E. 9.  2010. Soft Matter 6:4647–60
  10. Kim AJ, Scarlett R, Biancaniello PL, Sinno T, Crocker JC. 10.  2009. Nat. Mater. 8:52–55
  11. Pawar AB, Kretzschmar I. 11.  2008. Langmuir 24:355–58
  12. Pawar AB, Kretzschmar I. 12.  2009. Langmuir 25:9057–63
  13. Park BJ, Lee D. 13.  2012. Soft Matter 8:7690–98
  14. Park BJ, Choi CH, Kang SM, Tettey KE, Lee CS, Lee D. 14.  2013. Soft Matter 9:3383–88
  15. Biswal SL, Gast AP. 15.  2004. Phys. Rev. E 69:041406
  16. Biswal SL, Gast AP. 16.  2003. Phys. Rev. E 68:021402
  17. Liu P, de Folter JWJ, Petukhov AV, Philipse AP. 17.  2015. Soft Matter 11:6201–11
  18. Furst EM, Gast AP. 18.  2000. Phys. Rev. E 62:6916–25
  19. Dommersnes P, Rozynek Z, Mikkelsen A, Castberg R, Kjerstad K. 19.  et al. 2013. Nat. Commun. 4:2066
  20. Cavallaro M, Botto L, Lewandowski EP, Wang M, Stebe KJ. 20.  2011. PNAS 108:20923–28
  21. Li N, Sharifi-Mood N, Tu F, Lee D, Radhakrishnan R. 21.  et al. 2017. Langmuir 33:600–10
  22. Luo Y, Serra F, Stebe KJ. 22.  2016. Soft Matter 12:6027–32
  23. Liu IB, Gharbi MA, Ngo VL, Kamien RD, Yang S, Stebe KJ. 23.  2015. PNAS 112:6336–40
  24. Cavallaro M, Gharbi MA, Beller DA, Copar S, Shi Z. 24.  et al. 2013. PNAS 110:18804–8
  25. Lee E, Xia Y, Ferrier RC, Kim HN, Gharbi MA. 25.  et al. 2016. Adv. Mater. 28:2731–36
  26. Pickering SU. 26.  1907. J. Chem. Soc. 91:2001–21
  27. Crossley S, Faria J, Shen M, Resasco DE. 27.  2009. Science 327:68–72
  28. Tu F, Lee D. 28.  2014. J. Am. Chem. Soc. 136:9999–10006
  29. Yunker PJ, Gratale M, Lohr MA, Still T, Lubensky TC, Yodh AG. 29.  2012. Phys. Rev. Lett. 108:228303
  30. Pieranski P. 30.  1980. Phys. Rev. Lett. 45:569–72
  31. Hall DM, Bruss IR, Barone JR, Grason GM. 31.  2016. Nat. Mater. 15:727–32
  32. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA. 32.  2002. Science 298:1006–09
  33. Irvine WTM, Vitelli V, Chaikin PM. 33.  2010. Nature 468:947–51
  34. Leunissen ME, van Blaaderen A, Hollingsworth AD, Sullivan MT, Chaikin PM. 34.  2007. PNAS 104:2585–90
  35. Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI. 35.  et al. 2005. Nature 437:235–40
  36. Aveyard R, Binks BP, Clint JH, Fletcher PDI, Horozov TS. 36.  et al. 2002. Phys. Rev. Lett. 88:246102
  37. Ghezzi F, Earnshaw J. 37.  1997. J. Phys. Condens. Matter 9:L517–23
  38. McGorty R, Fung J, Kaz D, Manoharan VN. 38.  2010. Mater. Today 13:34–42
  39. Kralchevsky PA, Nagayama K. 39.  2000. Adv. Colloid Interface Sci. 85:145–92
  40. Hu DL, Chan B, Bush JWM. 40.  2003. Nature 424:663–66
  41. Vella D, Mahadevan L. 41.  2005. Am. J. Phys. 73:817–25
  42. Chan D, Henry J, White L. 42.  1981. J. Colloid Interface Sci. 79:410–18
  43. Lee DG, Cicuta P, Vella D. 43.  2017. Soft Matter 13:212–21
  44. Voise J, Schindler M, Casas J, Raphaël E. 44.  2011. J. R. Soc. Interface 8:1357–66
  45. Hu DL, Bush JWM. 45.  2005. Nature 437:733–36
  46. Bowden N, Terfort A, Carbeck J, Whitesides GM. 46.  1997. Science 276:233–35
  47. Bowden N, Choi IS, Grzybowski BA, Whitesides GM. 47.  1999. J. Am. Chem. Soc. 121:5373–91
  48. Bowden N, Arias F, Deng T, Whitesides GM. 48.  2001. Langmuir 17:1757–65
  49. Sharifi-Mood N, Liu IB, Stebe KJ. 49.  2016. Soft Matter Self-Assembly, Vol. 193 Proc. Int. Sch. Phys. “Enrico Fermi,” CN Likos, F Sciortino, P Ziherl, Varenna on Lake Como Villa Monastero: IOS
  50. Zeng C, Brau F, Davidovitch B, Dinsmore AD. 50.  2012. Soft Matter 8:8582–94
  51. Guzowski J, Tasinkevych M, Dietrich S. 51.  2011. Phys. Rev. E 84:031401
  52. Blanc C, Fedorenko D, Gross M, In M, Abkarian M. 52.  et al. 2013. Phys. Rev. Lett. 111:058302
  53. Kaz DM, McGorty R, Mani M, Brenner MP, Manoharan VN. 53.  2012. Nat. Mater. 11:138–42
  54. Boniello G, Blanc C, Fedorenko D, Medfai M, Mbarek NB. 54.  et al. 2015. Nat. Mater. 14:908–11
  55. Wang A, McGorty R, Kaz DM, Manoharan VN. 55.  2016. Soft Matter 12:8958–67
  56. Chen L, Heim LO, Golovko DS, Bonaccurso E. 56.  2012. Appl. Phys. Lett. 101:031601
  57. Colosqui CE, Morris JF, Koplik J. 57.  2013. Phys. Rev. Lett. 111:028302
  58. Singh P, Joseph DD, Gurupatham SK, Dalal B, Nudurupati S. 58.  2009. PNAS 106:19761–64
  59. Cox RG. 59.  1986. J. Fluid Mech. 168:169–94
  60. Blake T, Haynes J. 60.  1969. J. Colloid Interface Sci. 30:421–23
  61. Stamou D, Duschl C, Johannsmann D. 61.  2000. Phys. Rev. E 62:5263–72
  62. Danov KD, Kralchevsky PA, Naydenov BN, Brenn G. 62.  2005. J. Colloid Interface Sci. 287:121–34
  63. Lewandowski EP, Cavallaro M, Botto L, Bernate JC, Garbin V, Stebe KJ. 63.  2010. Langmuir 26:15142–54
  64. Botto L, Lewandowski EP, Cavallaro M Jr., Stebe KJ. 64.  2012. Soft Matter 8:9957–71
  65. Botto L, Yao L, Leheny RL, Stebe KJ. 65.  2012. Soft Matter 8:4971–79
  66. Loudet JC, Pouligny B. 66.  2011. Eur. Phys. J. E Soft Matter 34:76
  67. Wang A, Rogers WB, Manoharan VN. 67.  2017. Phys. Rev. Lett. 119:108004
  68. Loudet JC, Alsayed AM, Zhang J, Yodh AG. 68.  2005. Phys. Rev. Lett. 94:018301
  69. Loudet JC, Yodh AG, Pouligny B. 69.  2006. Phys. Rev. Lett. 97:018304
  70. Lewandowski EP, Bernate JA, Tseng A, Searson PC, Stebe KJ. 70.  2009. Soft Matter 5:886–90
  71. Sharp EL, Al-Shehri H, Horozov TS, Stoyanov SD, Paunov VN. 71.  2014. RSC Adv 4:2205–13
  72. Zhang Z, Pfleiderer P, Schofield AB, Clasen C, Vermant J. 72.  2011. J. Am. Chem. Soc. 133:392–95
  73. Lewandowski EP, Bernate JA, Searson PC, Stebe KJ. 73.  2008. Langmuir 24:9302–7
  74. Yao L, Sharifi-Mood N, Liu IB, Stebe KJ. 74.  2015. J. Colloid Interface Sci. 449:436–42
  75. Lehle H, Noruzifar E, Oettel M. 75.  2008. Eur. Phys. J. E Soft Matter 26:151–60
  76. Soligno G, Dijkstra M, van Roij R. 76.  2016. Phys. Rev. Lett. 116:258001
  77. Lucassen J. 77.  1992. Colloids Surfaces 65:131–37
  78. Yao L, Botto L, Cavallaro M Jr., Bleier BJ, Garbin V, Stebe KJ. 78.  2013. Soft Matter 9:779–86
  79. Kim S, Karrila SJ. 79.  2005. Microhydrodynamics: Principles and Selected Applications Mineola, NY: Dover Publ.
  80. Happel J, Brenner H. 80.  1983. Low Reynolds Number Hydrodynamics Dordrecht, Neth.: Martinus Nijhoff Publ.
  81. Arfken GB, Weber HJ, Harris FE. 81.  2005. Mathematical Methods for Physicists Waltham, MA: Academic
  82. Dasgupta S, Katava M, Faraj M, Auth T, Gompper G. 82.  2014. Langmuir 30:11873–82
  83. Loudet JC, Pouligny B. 83.  2009. EPL 85:28003
  84. van Nierop EA, Stijnman MA, Hilgenfeldt S. 84.  2005. Europhys. Lett. 72:671
  85. Madivala B, Fransaer J, Vermant J. 85.  2009. Langmuir 25:2718–28
  86. Griffiths DJ. 86.  1999. Introduction to Electrodynamics. Upper Saddle River, NJ: Prentice Hall. , 3rd ed.. [Google Scholar]
  87. Sharifi-Mood N, Liu IB, Stebe KJ. 87.  2015. Soft Matter 11:6768–79
  88. Sharifi-Mood N, Liu IB, Stebe KJ. 88.  2016. Soft Matter 12:333–36
  89. Würger A. 89.  2006. Phys. Rev. E 74:041402
  90. Ershov D, Sprakel J, Appel J, Cohen Stuart MA, van der Gucht J. 90.  2013. PNAS 110:9220–24
/content/journals/10.1146/annurev-conmatphys-031016-025514
Loading
/content/journals/10.1146/annurev-conmatphys-031016-025514
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error