1932

Abstract

Hypercomplex fluids are amalgamations of polymers, colloids, or amphiphilic molecules that exhibit emergent properties not observed in elemental systems alone. Especially promising building-blocks for assembly of hypercomplex materials are molecules with anisotropic shape. Alone, these molecules form numerous liquid crystalline phases with symmetries and properties that are fundamentally different from those of conventional liquids or solids. When combined with other complex fluids, liquid crystals form materials with diverse emergent properties. In equilibrium, the interactions, dimensions, and shapes of these hypercomplex materials can be precisely controlled. When driven far from equilibrium, these materials can deform and even spontaneously flow in the absence of external forces. Here we describe recent experimental accomplishments in this rapidly developing research area. We emphasize how the common theme underlying these diverse efforts is their reliance on the basic physics of molecular liquid crystals developed in the 1970s.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031113-133827
2014-03-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/5/1/annurev-conmatphys-031113-133827.html?itemId=/content/journals/10.1146/annurev-conmatphys-031113-133827&mimeType=html&fmt=ahah

Literature Cited

  1. De Gennnes PG, Prost J. 1993. The Physics of Liquid Crystals Oxford: Clarendon Press
  2. Chandrasekhar S. 1992. Liquid Crystals Cambridge: Cambridge Univ. Press
  3. Bates FS, Fredrickson GH. 1990. Annu. Rev. Phys. Chem. 41:525–57
  4. Discher DE, Eisenberg A. 2002. Science 297:967–73
  5. Kupfer J, Finkelmann H. 1991. Makromol. Chem. Rapid Commun. 12:717–26
  6. Poulin P, Stark H, Lubensky TC, Weitz DA. 1997. Science 275:1770–73
  7. Chaikin PC, Lubensky TC. 1995. Principles of Condensed Matter Physics Cambridge, UK: Cambridge Univ. Press
  8. Frank FC. 1958. Discuss. Faraday Soc. 25:19–28
  9. Lu PJ, Weitz DA. 2013. Annu. Rev. Condens. Matter Phys. 4:217–33
  10. Crocker JC, Matteo JA, Dinsmore AD, Yodh AG. 1999. Phys. Rev. Lett. 82:4352–55
  11. Verma R, Crocker JC, Lubensky TC, Yodh AG. 1998. Phys. Rev. Lett. 81:4004–7
  12. Asakura S, Oosawa F. 1954. J. Chem. Phys. 22:1255–56
  13. Crocker JC, Grier DG. 1996. J. Colloid Interface Sci. 179:298–310
  14. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. 1986. Opt. Lett. 11:288–90
  15. Neuman KC, Block SM. 2004. Rev. Sci. Instrum. 75:2787–809
  16. Van Blaaderen A, Ruel R, Wiltzius P. 1997. Nature 385:321–24
  17. Van Blaaderen A, Wiltzius P. 1995. Science 270:1177–79
  18. Pusey PN. 1991. Liquids, Freezing and the Glass Transition Amsterdam: Elsevier
  19. Chandler D, Weeks JD, Andersen HC. 1983. Science 220:787–94
  20. Weeks JD, Chandler D, Andersen HC. 1971. J. Chem. Phys. 54:5237–46
  21. Pusey PN, Vanmegen W. 1986. Nature 320:340–42
  22. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA. 2000. Science 287:627–31
  23. Kegel WK, van Blaaderen A. 2000. Science 287:290–93
  24. Gasser U, Weeks ER, Schofield A, Pusey PN, Weitz DA. 2001. Science 292:258–62
  25. Stanley WM. 1935. Science 81:644–45
  26. Bawden F, Pirie N, Bernal J, Fankuchen I. 1936. Nature 138:1051–52
  27. Onsager L. 1949. Ann. N.Y. Acad. Sci. 51:627–59
  28. Frenkel D. 1987. J. Phys. Chem. 91:4912–16
  29. Straley J. 1973. Mol. Cryst. Liq. Cryst. 22:333–57
  30. Straley JP. 1973. Mol. Cryst. Liq. Cryst. 24:7–20
  31. Khokhlov AR, Semenov AN. 1981. Phys. A 108:546–56
  32. Stroobants A, Lekkerkerker HNW, Odijk T. 1986. Macromolecules 19:2232–38
  33. Vroege GJ, Lekkerkerker HNW. 1992. Rep. Prog. Phys. 55:1241–309
  34. Vroege GJ, Lekkerkerker HNW. 1993. J. Phys. Chem. 97:3601–5
  35. Bolhuis P, Frenkel D. 1997. J. Chem. Phys. 106:666–87
  36. McGrother SC, Williamson DC, Jackson G. 1996. J. Chem. Phys. 104:6755–71
  37. Frenkel D, Lekkerkerker HNW, Stroobants A. 1988. Nature 332:822–23
  38. Belamie E, Davidson P, Giraud-Guille MM. 2004. J. Phys. Chem. B 108:14991–5000
  39. Dong XM, Kimura T, Revol JF, Gray DG. 1996. Langmuir 12:2076–82
  40. Livolant F, Leforestier A. 1996. Prog. Polym. Sci. 21:1115–64
  41. Oakes PW, Viamontes J, Tang JX. 2007. Phys. Rev. E 75:061902
  42. Strey HH, Parsegian VA, Podgornik R. 1999. Phys. Rev. E 59:999–1008
  43. Lemaire BJ, Davidson P, Ferre J, Jamet JP, Panine P et al. 2002. Phys. Rev. Lett. 88:125507
  44. Davidson P, Gabriel JCP. 2005. Curr. Opin. Colloid Interface Sci. 9:377–83
  45. Lekkerkerker HNW, Vroege GJ. 2013. Philos. Trans. R. Soc. A 371:20120263
  46. van Bruggen MPB, Dhont JKG, Lekkerkerker HNW. 1999. Macromolecules 32:2256–64
  47. van der Kooij FM, Kassapidou K, Lekkerkerker HNW. 2000. Nature 406:868–71
  48. Fraden S, Maret G, Caspar DLD, Meyer RB. 1989. Phys. Rev. Lett. 63:2068–71
  49. Tang JX, Fraden S. 1995. Liq. Cryst. 19:459–67
  50. Purdy KR, Dogic Z, Fraden S, Ruhm A, Lurio L, Mochrie SGJ. 2003. Phys. Rev. E 67:031708
  51. Barry E, Beller D, Dogic Z. 2009. Soft Matter 5:2563–70
  52. Wensink HH, Vroege GJ. 2003. J. Chem. Phys. 119:6868–82
  53. Bates MA, Frenkel D. 1998. J. Chem. Phys. 109:6193–99
  54. Wen X, Meyer RB, Caspar DLD. 1989. Phys. Rev. Lett. 63:2760–63
  55. Dogic Z, Fraden S. 1997. Phys. Rev. Lett. 78:2417–20
  56. Pouget E, Grelet E, Lettinga MP. 2011. Phys. Rev. E 84:041704
  57. Lettinga MP, Grelet E. 2007. Phys. Rev. Lett. 99:197802
  58. Kuijk A, Byelov DV, Petukhov AV, van Blaaderen A, Imhof A. 2012. Faraday Discuss. 159:181–99
  59. Kuijk A, van Blaaderen A, Imhof A. 2011. J. Am. Chem. Soc. 133:2346–49
  60. Straley JP. 1973. Phys. Rev. A 8:2181–83
  61. Lee SD, Meyer RB. 1986. J. Chem. Phys. 84:3443–48
  62. Li LS, Alivisatos AP. 2003. Adv. Mater. 15:408–11
  63. Jana NR, Gearheart LA, Obare SO, Johnson CJ, Edler KJ et al. 2002. J. Mater. Chem. 12:2909–12
  64. Damasceno PF, Engel M, Glotzer SC. 2012. Science 337:453–57
  65. Gast AP, Hall CK, Russel WB. 1983. J. Colloid Interface Sci. 96:251–67
  66. Lekkerkerker HNW, Poon WCK, Pusey PN, Stroobants A, Warren PB. 1992. Europhys. Lett. 20:559–64
  67. Meijer EJ, Frenkel D. 1991. Phys. Rev. Lett. 67:1110–13
  68. Meijer EJ, Frenkel D. 1994. J. Chem. Phys. 100:6873–87
  69. Lin KH, Crocker JC, Zeri AC, Yodh AG. 2001. Phys. Rev. Lett. 87:088301
  70. Lekkerkerker HNW, Stroobants A. 1994. Nuovo Cim. Soc. Ital. Fis. D 16:949–62
  71. Bolhuis PG, Stroobants A, Frenkel D, Lekkerkerker HNW. 1997. J. Chem. Phys. 107:1551–64
  72. Warren PB. 1994. J. Phys. I 4:237–44
  73. Dogic Z, Purdy KR, Grelet E, Adams M, Fraden S. 2004. Phys. Rev. E 69:051702
  74. Buitenhuis J, Donselaar LN, Buining PA, Stroobants A, Lekkerkerker HNW. 1995. J. Colloid Interface Sci. 175:46–56
  75. Koda T, Numajiri M, Ikeda S. 1996. J. Phys. Soc. Jpn. 65:3551–56
  76. Dogic Z. 2003. Phys. Rev. Lett. 91:165701
  77. Dogic Z, Fraden S. 2001. Philos. Trans. R. Soc. A 359:997–1014
  78. Adams M, Dogic Z, Keller SL, Fraden S. 1998. Nature 393:349–52
  79. Dogic Z, Frenkel D, Fraden S. 2000. Phys. Rev. E 62:3925–33
  80. Frenkel D, Schilling T. 2002. Phys. Rev. E 66:041606
  81. Barry E, Dogic Z. 2010. Proc. Natl. Acad. Sci. USA 107:10348–53
  82. Yang YS, Barry E, Dogic Z, Hagan MF. 2012. Soft Matter 8:707–14
  83. Helfrich W. 1978. Zeitschrift Fur Naturforschung Sect. A 33:305–15
  84. Goetz R, Gompper G, Lipowsky R. 1999. Phys. Rev. Lett. 82:221–24
  85. Israelachvili JN, Wennerstrom H. 1992. J. Phys. Chem. 96:520–31
  86. Lipowsky R, Grotehans S. 1993. Europhys. Lett. 23:599–604
  87. Gibaud T, Barry E, Zakhary MJ, Henglin M, Ward A et al. 2012. Nature 481:348–51
  88. Baker JL, Widmer-Cooper A, Toney MF, Geissler PL, Alivisatos AP. 2010. Nano Lett. 10:195–201
  89. Smith SB, Finzi L, Bustamante C. 1992. Science 258:1122–26
  90. Wang MD, Yin H, Landick R, Gelles J, Block SM. 1997. Biophys. J. 72:1335–46
  91. Warner M, Bladon P, Terentjev E. 1994. J. Phys. II 4:93–102
  92. Warner M, Terentjev EM. 1996. Prog. Polym. Sci. 21:853–91
  93. Tajbakhsh AR, Terentjev EM. 2001. Eur. Phys. J. E 6:181–88
  94. Finkelmann H, Greve A, Warner M. 2001. Eur. Phys. J. E 5:281–93
  95. Finkelmann H, Nishikawa E, Pereira GG, Warner M. 2001. Phys. Rev. Lett. 87:015501
  96. Finkelmann H, Kock HJ, Gleim W, Rehage G. 1984. Makromol. Chem. Rapid. Commun. 5:287–93
  97. Mitchell GR, Coulter M, Davis FJ, Guo W. 1992. J. Phys. II 2:1121–32
  98. Mitchell GR, Davis FJ, Guo W. 1993. Phys. Rev. Lett. 71:2947–50
  99. Kundler I, Finkelmann H. 1995. Macromol. Rapid Commun. 16:679–86
  100. Küupfer J, Finkelmann H. 1994. Macromol. Chem. Phys. 195:1353–67
  101. Finkelmann H, Kim ST, Munoz A, Palffy-Muhoray P, Taheri B. 2001. Adv. Mater. 13:1069–72
  102. Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. 2004. Nat. Mater. 3:307–10
  103. deGennes PG, Hebert M, Kant R. 1997. Macromol. Symp. 113:39–49
  104. Terentjev EM. 1995. Phys. Rev. E 51:1330–37
  105. Stark H. 2001. Phys. Rep. 351:387–474
  106. Ramaswamy S, Nityananda R, Raghunathan VA, Prost J. 1996. Mol. Cryst. Liq. Cryst. 288:175–80
  107. Lubensky TC, Pettey D, Currier N, Stark H. 1998. Phys. Rev. E 57:610–25
  108. Poulin P, Cabuil V, Weitz DA. 1997. Phys. Rev. Lett. 79:4862–65
  109. Gu YD, Abbott NL. 2000. Phys. Rev. Lett. 85:4719–22
  110. Musevic I, Skarabot M, Tkalec U, Ravnik M, Zumer S. 2006. Science 313:954–58
  111. Guzman O, Kim EB, Grollau S, Abbott NL, de Pablo JJ. 2003. Phys. Rev. Lett. 91:235507
  112. Ravnik M, Skarabot M, Zumer S, Tkalec U, Poberaj I et al. 2007. Phys. Rev. Lett. 99:247801
  113. Loudet JC, Barois P, Poulin P. 2000. Nature 407:611–13
  114. Musevic I. 2013. Philos. Trans. R. Soc. A 371:20120266
  115. Tkalec U, Ravnik M, Copar S, Zumer S, Musevic I. 2011. Science 333:62–65
  116. Lapointe CP, Mason TG, Smalyukh II. 2009. Science 326:1083–86
  117. Senyuk B, Liu QK, He SL, Kamien RD, Kusner RB et al. 2013. Nature 493:200–5
  118. Tjhung E, Marenduzzo D, Cates ME. 2012. Proc. Natl. Acad. Sci. USA 109:12381–86
  119. Voituriez R, Joanny JF, Prost J. 2005. Europhys. Lett. 70:404–10
  120. Giomi L, Marchetti MC, Liverpool TB. 2008. Phys. Rev. Lett.101
  121. Simha RA, Ramaswamy S. 2002. Phys. Rev. Lett. 89:058101
  122. Hawkins RJ, Piel M, Faure-Andre G, Lennon-Dumenil AM, Joanny JF et al. 2009. Phys. Rev. Lett. 102:058103
  123. Toner J, Tu YH, Ramaswamy S. 2005. Ann. Phys. 318:170–244
  124. Ramaswamy S. 2010. Mech. Stat. Act. Matter 1:323–45
  125. Marchetti M, Joanny J-F, Ramaswamy S, Liverpool T, Prost J et al. 2012. Rev. Mod. Phys. 85:1143–89
  126. Schaller V, Weber C, Semmrich C, Frey E, Bausch AR. 2010. Nature 467:73–77
  127. Schaller V, Bausch AR. 2013. Proc. Natl. Acad. Sci. USA 110:4488–93
  128. Schaller V, Weber C, Frey E, Bausch AR. 2011. Soft Matter 7:3213–18
  129. Kron SJ, Spudich JA. 1986. Proc. Natl. Acad. Sci. USA 83:6272–76
  130. Gruler H, Dewald U, Eberhardt M. 1999. Eur. Phys. J. B 11:187–92
  131. Kemkemer R, Teichgraber V, Schrank-Kaufmann S, Kaufmann D, Gruler H. 2000. Eur. Phys. J. E 3:101–10
  132. Narayan V, Ramaswamy S, Menon N. 2007. Science 317:105–8
  133. Sanchez T, Chen DTN, DeCamp SJ, Heymann M, Dogic Z. 2012. Nature 491:431
  134. Schnitzer MJ, Block SM. 1997. Nature 388:386–90
  135. Giomi L, Bowick MJ, Ma X, Marchetti MC. 2013. Phys. Rev. Lett. 110:228101
  136. Thampi SP, Golestanian R, Yeomans JM. 2013. Phys. Rev. Lett. 111:118101
/content/journals/10.1146/annurev-conmatphys-031113-133827
Loading
/content/journals/10.1146/annurev-conmatphys-031113-133827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error