1932

Abstract

Why do animals move the way they do? Bacteria, insects, birds, and fish share with us the necessity to move so as to live. Although each organism follows its own evolutionary course, it also obeys a set of common laws. At the very least, the movement of animals, like that of planets, is governed by Newton's law: All things fall. On Earth, most things fall in air or water, and their motions are thus subject to the laws of hydrodynamics. Through trial and error, animals have found ways to interact with fluid so they can float, drift, swim, sail, glide, soar, and fly. This elementary struggle to escape the fate of falling shapes the development of motors, sensors, and mind. Perhaps we can deduce parts of their neural computations by understanding what animals must do so as not to fall. Here I discuss recent developments along this line of inquiry in the case of insect flight. Asking how often a fly must sense its orientation in order to balance in air has shed new light on the role of motor neurons and steering muscles responsible for flight stability.

Associated Article

There are media items related to this article:
Insect Flight: From Newton's Law to Neurons: Video 2

Associated Article

There are media items related to this article:
Insect Flight: From Newton's Law to Neurons: Video 1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031113-133853
2016-03-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/7/1/annurev-conmatphys-031113-133853.html?itemId=/content/journals/10.1146/annurev-conmatphys-031113-133853&mimeType=html&fmt=ahah

Literature Cited

  1. Chang S, Wang ZJ. 1.  2014. PNAS 111:3111246–51
  2. Bergou AJ, Ristroph L, Guckenheimer JM, Cohen I, Wang ZJ. 2.  2010. Phys. Rev. Lett. 104:148101
  3. Collins S, Ruina A, Russ T, Martijn W. 3.  2005. Science 307:1082–85
  4. Cook MV. 4.  1997. Flight Dynamics: Principles London: Arnold
  5. Etkin B. 5.  1983. Dynamics of Flight Stability and Control Hoboken, NJ: John Wiley and Sons
  6. Wang ZJ, Birch JM, Dickinson MH. 6.  2004. J. Exp. Biol. 207:449–60
  7. Prandtl L, Tietjens OG. 7.  1934. Applied Hydro- and Aeromechanics New York: McGraw-Hill
  8. Beatus T, Guckenheimer JM, Cohen I. 8.  2015. J. R. Soc. Interface 12:10520150075
  9. Ristroph L, Ristroph G, Morozova S, Bergou AJ, Chang S. 9.  et al. 2013. J. R. Soc. Interface 10:8520130237
  10. Wu JH, Sun M. 10.  2012. J. R. Soc. Interface 9:742033–46
  11. Faruque I, Humbert JS. 11.  2010. J. Theor. Biol. 264:538–52
  12. Sun M, Wang JK. 12.  2007. J. Exp. Biol. 210:2714–22
  13. Sun M, Xiong Y. 13.  2005. J. Exp. Biol. 208:447–59
  14. Taylor GK, Thomas ALR. 14.  2003. J. Exp. Biol. 206:2803–29
  15. Sun M. 15.  2014. Rev. Mod. Phys. 86:615
  16. Cheng B, Deng X. 16.  2011. IEEE. Trans. Robot. 27:849
  17. Hedrick TL, Cheng B, Deng X. 17.  2009. Science 5924:252–55
  18. Hesselberg T, Lehmann FO. 18.  2007. J. Exp. Biol. 210:4319–34
  19. Ristroph L, Bergou AJ, Ristroph G, Coumes K, Berman G. 19.  et al. 2010. PNAS 107:114820–24
  20. Fry SN, Sayaman R, Dickinson MH. 20.  2003. Science 300:495–98
  21. Reichardt W, Poggio T. 21.  1976. Q. Rev. Biophys. 9:311–75
  22. Ma KY, Chirarattananon P, Fuller SB, Wood RJ. 22.  2013. Science 340:6132603–7
  23. Chang S, Wang ZJ. 22a.  2011. The timing in the control of insect flight instability Presented at Annu. Meet. APS Fluid Dyn., 64th, Baltimore
  24. Wang ZJ. 23.  2000. J. Fluid Mech. 410:323–41
  25. Wang ZJ. 24.  2000. Phys. Rev. Lett. 85:102035
  26. Wang ZJ, Russell D. 25.  2007. Phys. Rev. Lett. 99:148101
  27. Andersen A, Pesavento U, Wang ZJ. 26.  2005. J. Fluid Mech. 541:65–69
  28. Pesavento U, Wang ZJ. 27.  2004. Phys. Rev. Lett. 93:14144501
  29. Wang ZJ. 28.  2005. Annu. Rev. Fluid Mech. 37:183–210
  30. Ellington CP. 29.  1984. Philos. Trans. R. Soc. Lond. B 305:1–181
  31. Sane S. 30.  2003. J. Exp. Biol. 206:4191–208
  32. Weis-Fogh T, Jensen M. 31.  1953. Proc. R. Soc. B 239:415–58
  33. Lamb H. 32.  Hydrodynamics Cambridge, UK: Cambridge Univ. Press
  34. Berman G, Wang ZJ. 33.  2007. J. Fluid Mech. 582:153–67
  35. Varshney K, Chang S, Wang ZJ. 34.  2012. Nonlinearity 25:C1–8
  36. Wang ZJ. 35.  2004. J. Exp. Biol. 207:4147–55
  37. Dickson WB, Straw AD, Dickinson MH. 36.  2008. AIAA J. 46:92150–64
  38. Dalton S. 37.  1975. Borne on the Wind New York: Reader's Digest
  39. Marey EJ. 38.  1868. C. R. Acad. Sci. Paris 67:1341–45
  40. Greenewalt CH. 39.  1962. Dimensional relationships for flying animals 144:, No. 2: Smithson. Misc. Coll., Washington, DC
  41. Fontaine EI, Zabala F, Dickinson MH, Burdick JW. 40.  2009. J. Exp. Biol. 212:1307–23
  42. Hedrick TL. 41.  2008. Bioinspir. Biomimet. 3:034001
  43. Ristroph L, Berman GJ, Bergou AJ, Wang ZJ, Cohen I. 42.  2009. J. Exp. Biol. 212:1324–35
  44. Walker SM, Thomas ALR, Taylor GK. 43.  2009. J. R. Soc. Interface 6:351–66
  45. Hollick FSJ. 44.  1940. Philos. Trans. R. Soc. B 230:357–90
  46. Cheng B, Deng X, Hedrick TL. 45.  2011. J. Exp. Biol. 214:4092–106
  47. Land M, Nilsson DE. 46.  2012. Animal Eyes Oxford, UK: Oxford Univ. Press
  48. Taylor GK, Krapp HG. 47.  2007. Adv. Insect Physiol. 34:231–316
  49. Dickinson MH. 48.  2005. Integr. Comp. Biol. 45:274–81
  50. Pringle J. 49.  1957. Insect Flight Cambridge, UK: Cambridge Univ. Press
  51. Derham W. 50.  1713. Physico-Theology (Boyle lecture for 1711) London: W. Innys [Google Scholar]
  52. Fraenkel G, Pringle JWS. 51.  1938. Nature 141:919–20
  53. Pringle JWS. 52.  1948. Philos. Trans. R. Soc. B 233:602347–84
  54. Nalbach G. 53.  1993. J. Comp. Physiol. A 173:299–304
  55. Nalbach G. 54.  1994. Neuroscience 61:155–63
  56. Nalbach G, Hengstenberg G. 55.  1994. J. Comp. Physiol. A 175:708–9
  57. Sandeman DC, Markl H. 56.  1980. J. Exp. Biol. 202:1481–90
  58. Faust R. 57.  1952. Zool. Jahr. 63:325–66
  59. Dickinson MH. 58.  1999. Philos. Trans. R. Soc. Lond. B 354:973–80
  60. Chan WP, Dickinson MH. 59.  1996. J. Comp. Neurol. 369:405–18
  61. Strausfeld NJ, Seyan HS. 60.  1985. Cell Tissue Res. 240:601–15
  62. Pflugstaedt H. 61.  1912. Z. wiss. Zool. 100:1–59
  63. Fayyazuddin A, Dickinson MH. 62.  1996. J. Neurosci. 16:5225–32
  64. Tu MS, Dickinson MH. 63.  1996. J. Comp. Physiol. 178:833–45
  65. Heide G. 64.  1983. BIONA report 2, ed. W Nachtigall 35–52 Mainz, Ger: Gustav Fischer Akad. Wiss.
  66. Fayyazuddin A, Dickinson MH. 65.  1999. J. Neurophysiol. 82:1916–26
  67. Mayer MK, Vogtmann B, Bausenwein R, Wolf R, Heisenberg M. 66.  1988. J. Comp. Physiol. A 163:389–99
  68. Sherman A, Dickinson MH. 67.  2003. J Exp. Biol. 206:295–302
  69. Heide G, Götz KG. 68.  1996. J. Exp. Biol. 199:1711–26
  70. Wang ZJ, Melfi J Jr. 69.  2015. The initial observations of fruit fly's flight with its Mb1 motor neuron altered 60: No. 21. Presented at Annu. Meet. APS Div. Fluid Dyn., 68th, Boston (Flies are supplied by Troy Shirangi of Janelia Research Campus.)
  71. Bottiger EG, Furshpan E. 70.  1952. Biol. Bull. 102:200–11
  72. Chabrier J. 71.  1822. Essai sur le Vol des Insects, et Observations Paris: Kessinger
  73. Miyan JA, Ewing AW. 72.  1985. Philos. Trans. R. Soc. Lond. B 311:271–302
  74. Ritter W. 73.  1912. The flying apparatus of the blow-fly Vol. 56, No. 12, Smithson. Misc. Coll., Washington, DC
  75. Nachtigall W, Wilson DM. 74.  1967. J. Exp. Biol. 47:77–97
  76. Dickinson MH, Lighton JRB. 75.  1995. Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 128:87–89 [Google Scholar]
  77. Walker SM, Schwyn DA, Mokso R, Wicklein T, Müller T. 76.  et al. 2014. PLOS Biol. 12:e1001823
  78. Dickinson MH, Tu M. 77.  1997. Comp. Biochem. Physiol. 116A:3223–38
  79. Dudley R. 78.  2000. The Biomechanics of Insect Flight: Form, Function, Evolution Princeton, NJ: Princeton Univ. Press
  80. Bergou AJ, Xu S, Wang ZJ. 79.  2007. J. Fluid Mech. 591:321–37
  81. Schrödinger E. 80.  1992 (1944). What Is life? Based on 1943 Lectures at Trinity College, Dublin Book version Cambridge, UK: Cambridge Univ. Press
  82. White JG, Southgate E, Thomson JN, Brenner S. 81.  1986. Philos. Trans. R. Soc. B 314:11651–340
/content/journals/10.1146/annurev-conmatphys-031113-133853
Loading
/content/journals/10.1146/annurev-conmatphys-031113-133853
Loading

Data & Media loading...

Supplemental Material

    A model fly hovers briefly and succumbs to pitching instability. This is an example of flight instability with feedback control (1; also see Section 2).

    With a time-delayed discrete feedback control scheme, the model fly can hover stably (1; also see Section 3.4).

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error