1932

Abstract

Life depends as much on the flow of information as on the flow of energy. Here we review the many efforts to make this intuition precise. Starting with the building blocks of information theory, we explore examples where it has been possible to measure, directly, the flow of information in biological networks, or more generally where information-theoretic ideas have been used to guide the analysis of experiments. Systems of interest range from single molecules (the sequence diversity in families of proteins) to groups of organisms (the distribution of velocities in flocks of birds), and all scales in between. Many of these analyses are motivated by the idea that biological systems may have evolved to optimize the gathering and representation of information, and we review the experimental evidence for this optimization, again across a wide range of scales.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031214-014803
2016-03-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/7/1/annurev-conmatphys-031214-014803.html?itemId=/content/journals/10.1146/annurev-conmatphys-031214-014803&mimeType=html&fmt=ahah

Literature Cited

  1. Bialek W. 1.  2012. Biophysics: Searching for Principles. Princeton, NJ: Princeton Univ. Press
  2. Shannon CE. 2.  1948. Bell Syst. Tech. J. 27:379–423, 623–56
  3. Cover TM, Thomas JA. 3.  1991. Elements of Information Theory New York: Wiley
  4. Mezard M, Montanari A. 4.  2009. Information, Physics, and Computation Oxford/New York: Oxford Univ. Press
  5. Kullback S. 5.  1968. Information Theory and Statistics. New York: Dover
  6. Berger T. 6.  1971. Rate–Distortion Theory: A Mathematical Basis for Data Compression Englewood Cliffs, NJ: Prentice-Hall
  7. Shannon CE. 7.  1959. IRE Natl. Conv. Rec. 4:142–63
  8. Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D. 8.  1991. Science 252:1854–57
  9. Marre O, Soler VB, Simmons KD, Mora T, Tkačik G, Berry MJ II. 9.  2015. PLOS Comput. Biol. 11:e1004304
  10. Schwartz AB. 10.  1994. Science 265:540–42
  11. Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W. 11.  1997. Spikes: Exploring the Neural Code. Cambridge, MA: MIT Press
  12. Miller GA. 12.  1955. Note on the bias of information estimates. Information Theory in Psychology: Problems and Methods, II-B H Quastler 95–100 Glencoe, IL: Free [Google Scholar]
  13. Panzeri S, Treves A. 13.  1995. Neural Comput. 7:399–407
  14. Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W. 14.  1998. Phys. Rev. Lett. 80:197–200
  15. Paninski L. 15.  2003. Neural Comput. 15:1191–253
  16. Nemenman I, Shafee F, Bialek W. 16.  2002. Entropy and inference, revisited. Advances in Neural Information Processing Systems 14 TG Dietterich, S Becker, Z Ghahramani 471–78 Cambridge, MA: MIT Press [Google Scholar]
  17. Nemenman I, Bialek W, de Ruyter van Steveninck RR. 17.  2004. Phys. Rev. E 69:056111
  18. Archer E, Park I, Pillow JW. 18.  2012. Bayesian estimation of discrete entropy with mixtures of stick-breaking priors. Advances in Neural Information Processing Systems 25 F Pereira, CJC Burges, L Bottou, KQ Weinberger 2024–32 Cambridge, MA: MIT Press [Google Scholar]
  19. Archer E, Park I, Pillow JW. 19.  2013. Bayesian entropy estimation for binary spike train data using parametric prior knowledge. Advances in Neural Information Processing Systems 26 CJC Burges, L Bottou, M Welling, Z Ghahramani, KQ Weinberger 1700–8 Cambridge, MA: MIT Press [Google Scholar]
  20. Victor JD. 20.  2002. Phys. Rev. E 66:51903
  21. Kinney JB, Atwal GS. 21.  2014. PNAS 111:3354–59
  22. Ma S-K. 22.  1981. J. Stat. Phys. 26:221–40
  23. Berg OG, von Hippel PH. 23.  1987. J. Mol. Biol. 193:723–50
  24. Schneider TD, Stephens RM. 24.  1990. Nucleic Acids Res. 18:6097–100
  25. Wunderlich Z, Mirny LA. 25.  2009. Trends Genet. 25:434–40
  26. Adrian ED. 26.  1928. The Basis of Sensation: The Action of the Sense Organs New York: W.W. Norton
  27. Dubuis JO, Samanta R, Gregor T. 27.  2013. Mol. Syst. Biol. 9:639
  28. Tsien RY. 28.  1998. Annu. Rev. Biochem. 67:509–44
  29. Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW. 29.  2007. Cell 130:141–52
  30. Morrison AH, Scheeler M, Dubuis J, Gregor T. 30.  2012. Quantifying the Bicoid morphogen gradient in living fly embryos. Imaging in Developmental Biology J Sharpe, RO Wang 398–406 Cold Spring Harbor, NY: Cold Spring Harbor Lab. [Google Scholar]
  31. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. 31.  2008. Nat. Methods 5:877–79
  32. Little SC, Tikhonov M, Gregor T. 32.  2013. Cell 154:789–800
  33. Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A. 33.  2011. Science 334:354–58
  34. Selimkhanov J, Taylor B, Yao J, Pilko A, Albeck J. 34.  et al. 2014. Science 346:1370–73
  35. Slonim N, Atwal GS, Tkačik G, Bialek W. 35.  2005. PNAS 102:18297–302
  36. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G. 36.  et al. 2006. BMC Bioinform. 7:Suppl. 1S7
  37. Bowers PM, Cokus SJ, Eisenberg D, Yeates TO. 37.  2004. Science 306:2246–49
  38. Slonim N, Elemento O, Tavazoie S. 38.  2006. Mol. Syst. Biol. 2:2006.0005
  39. Hopfield JJ. 39.  1982. PNAS 79:2554–58
  40. Amit DJ. 40.  1989. Modeling Brain Function: The World of Attractor Neural Networks Cambridge, UK: Cambridge Univ. Press
  41. Hertz J, Krogh A, Palmer RG. 41.  1991. Introduction to the Theory of Neural Computation Redwood City, CA: Addison-Wesley
  42. Toner J, Tu Y. 42.  1995. Phys. Rev. Lett. 75:4326–29
  43. Toner J, Tu Y. 43.  1998. Phys. Rev. E 58:4828–58
  44. Ramaswamy S. 44.  2010. Annu. Rev. Condens. Matter Phys. 1:323–45
  45. Jaynes ET. 45.  1957. Phys. Rev. 106:620–30
  46. Schneidman E, Still S, Berry MJ II, Bialek W. 46.  2003. Phys. Rev. Lett. 91:238701
  47. Keller JB, Zumino B. 47.  1959. J. Chem. Phys. 30:1351–53
  48. Chayes JT, Chayes L, Lieb E. 48.  1984. Commun. Math. Phys. 93:57–121
  49. Caglioti E, Kuna T, Lebowitz J, Speer E. 49.  2006. J. Markov Process. Relat. Fields 12:257–72
  50. Tishby N, Levin E, Solla SA. 50.  1990. Proc. IEEE 78:1568–80
  51. Yedidia JS, Freeman WT, Weiss Y. 51.  2003. Understanding belief propagation and its generalizations. Exploring Artificial Intelligence in the New Millennium G Lakemeyer, B Nebel 239–69 San Francisco, CA: Morgan Kaufmann [Google Scholar]
  52. Mézard M. 52.  2003. Science 301:1685–86
  53. Schneidman E, Berry MJ II, Segev R, Bialek W. 53.  2006. Nature 440:1007–12
  54. Shlens J, Field GD, Gaulthier JL, Grivich MI, Petrusca D. 54.  et al. 2006. J. Neurosci. 26:8254–66
  55. Tang A, Jackson D, Hobbs J, Chen W, Smith JL. 55.  et al. 2008. J. Neurosci. 28:505–18
  56. Shlens J, Field GD, Gaulthier JL, Greschner M, Sher A. 56.  et al. 2009. J. Neurosci. 29:5022–31
  57. Ohiorhenuan IE, Mechler F, Purpura KP, Schmid AM, Hu Q, Victor JD. 57.  2010. Nature 466:617–21
  58. Ganmor E, Segev R, Schniedman E. 58.  2011. PNAS 108:9679–84
  59. Tkačik G, Marre O, Mora T, Amodei D, Berry MJ II, Bialek W. 59.  2013. J. Stat. Mech. 2013:P03011
  60. Granot-Atedgi E, Tkačik G, Segev R, Schneidman E. 60.  2013. PLOS Comput. Biol. 9:e1002922
  61. Tkačik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry MJ II. 61.  2014. PLOS Comput. Biol. 10:e1003408
  62. Mora T, Deny S, Marre O. 62.  2015. Phys. Rev. Lett. 114:078105
  63. Tkačik G, Mora T, Marre O, Amodei D, Palmer SE. 63.  et al. 2015. PNAS 112:11508–13
  64. Socolich M, Lockless SW, Russ WP, Lee H, Gardner KH, Ranganathan R. 64.  2005. Nature 437:512–18
  65. Russ WP, Lowery DM, Mishra P, Yaffe MB, Ranganathan R. 65.  2005. Nature 437:579–83
  66. Weigt M, White RA, Szurmant H, Hoch JA, Hwa T. 66.  2009. PNAS 106:67–72
  67. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A. 67.  et al. 2011. PLOS ONE 6:e28766
  68. Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS. 68.  2012. Cell 149:1607–162
  69. Sulkowska JI, Morocos F, Weigt M, Hwa T, Onuchic JN. 69.  2012. PNAS 109:10340–45
  70. Mora T, Walczak AM, Bialek W, Callan CG. 70.  2010. PNAS 107:5405–10
  71. Ferguson AL, Mann JK, Omarjee S, Ndung'u T, Walker BD, Chakraborty AK. 71.  2013. Immunity 38:606–17
  72. Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E. 72.  et al. 2012. PNAS 109:4786–91
  73. Bialek W, Cavagna A, Giardina I, Mora T, Pohl O. 73.  et al. 2014. PNAS 111:7212–17
  74. Cavagna A, Giardina I. 74.  2014. Annu. Rev. Condens. Matter Phys. 5:183–207
  75. Cavagna A, Del Castillo L, Dey S, Giardina I, Melillo S. 75.  et al. 2015. Phys. Rev. E 92:012705
  76. Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R. 76.  et al. 2010. PNAS 107:11865–70
  77. Attanasi A, Cavagna A, Del Castello L, Giardina I, Melillo S. 77.  et al. 2014. Phys. Rev. Lett. 113:238102
  78. Guttal V, Couzin ID. 78.  2010. PNAS 107:16172–77
  79. Sharpee TO, Rust NC, Bialek W. 79.  2004. Neural Comput. 16:223–50
  80. Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, Miller KD. 80.  2006. Nature 439:936–42
  81. Fitzgerald JD, Rowekamp RJ, Sincich LC, Sharpee TO. 81.  2011. PLOS Comput. Biol. 7:e1002249
  82. Rajan K, Bialek W. 82.  2013. PLOS ONE 8:e71959
  83. Eickenberg M, Rowekamp RJ, Kouh M, Sharpee TO. 83.  2012. Neural Comput. 24:2384–421
  84. Rajan K, Marre O, Tkačik G. 84.  2013. Neural Comput. 25:1661–92
  85. Kinney JB, Tkačik G, Callan CG Jr. 85.  2007. PNAS 104:501–6
  86. Kinney JB, Murugan A, Callan CG Jr, Cox EC. 86.  2010. PNAS 107:9158–63
  87. Elemento O, Slonim N, Tavazoie S. 87.  2007. Mol. Cell 28:337–50
  88. Crick FHC. 88.  1958. Symp. Soc. Exp. Biol. 12:138–63
  89. Crick FHC. 89.  1963. Prog. Nucleic Acids Res. Mol. Biol. 1:163–217
  90. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR. 90.  et al. 1977. Nature 265:687–95
  91. Freeland SJ, Hurst LD. 91.  1998. J. Mol. Evol. 47:238–48
  92. Freeland SJ, Knight RD, Landweber LF, Hurst LD. 92.  2000. Mol. Biol. Evol. 17:511–18
  93. Tlusty T. 93.  2008. Phys. Rev. Lett. 100:048101
  94. Hopfield JJ. 94.  1974. PNAS 71:4135–39
  95. Ninio J. 95.  1975. Biochimie 57:587–95
  96. Ehrenberg M, Kurland CG. 96.  1984. Q. Rev. Biophys. 17:45–82
  97. MacKay D, McCulloch WS. 97.  1952. Bull. Math. Biophys. 14:127–35
  98. Barlow HB. 98.  1959. Sensory mechanisms, the reduction of redundancy, and intelligence. Mechanisation of Thought Processes: Proceedings of a Symposium Held at the National Physical Laboratory on 24th, 25th, 26th and 27th November 1958, Volume 2 DV Blake, AM Uttley 537–74 London: HM Station. Off.
  99. Barlow HB. 99.  1961. Possible principles underlying the transformation of sensory messages. Sensory Communication W Rosenblith 217–34 Cambridge, MA: MIT Press [Google Scholar]
  100. Simoncelli EP, Olshausen BA. 100.  2001. Annu. Rev. Neurosci. 24:1193–216
  101. Geisler WS. 101.  2008. Annu. Rev. Psychol. 59:167–92
  102. Laughlin SB. 102.  1981. Z. Naturforsch. Teil C 36:910–12
  103. Rieke F, Warland D, Bialek W. 103.  1993. Europhys. Lett. 22:151–56
  104. Borst A, Theunissen FE. 104.  1999. Nat. Neurosci. 2:947–57
  105. de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W. 105.  1997. Science 275:1805–8
  106. Koch K, McLean J, Segev R, Freed MA, Berry MJ II. 106.  et al. 2006. Curr. Biol. 16:1428–34
  107. Reinagel P, Reid RC. 107.  2000. J. Neurosci. 20:5392–400
  108. Liu RC, Tzonev S, Rebrik S, Miller KD. 108.  2001. J. Neurophysiol. 86:2789–806
  109. Rieke F, Bodnar DA, Bialek W. 109.  1995. Proc. R. Soc. Lond. Ser. B 262:259–65
  110. Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR. 110.  2008. PLOS Comput. Biol. 4:e1000025
  111. Buračas GT, Zador AM, DeWeese MR, Albright TD. 111.  1998. Neuron 20:959–69
  112. Kara P, Reinagel P, Reid RC. 112.  2000. Neuron 27:635–46
  113. Ruderman DL, Bialek W. 113.  1994. Phys. Rev. Lett. 73:814–17
  114. Smirnakis S, Berry MJ II, Warland DK, Bialek W, Meister M. 114.  1997. Nature 386:69–73
  115. Gollisch T, Meister M. 115.  2010. Neuron 65:15–164
  116. Wark B, Lundstrom BN, Fairhall AL. 116.  2007. Curr. Opin. Neurobiol. 17:423–29
  117. Brenner N, Bialek W, de Ruyter van Steveninck RR. 117.  2000. Neuron 26:695–702
  118. Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR. 118.  2001. Nature 412:787–92
  119. Kvale MN, Schreiner CE. 119.  2004. J. Neurophysiol. 91:604–12
  120. Dean I, Harper NS, McAlpine D. 120.  2005. Nat. Neurosci. 8:1684–89
  121. Nagel KI, Doupe AJ. 121.  2006. Neuron 21:845–59
  122. Wen B, Wang GI, Dean I, Delgutte B. 122.  2009. J. Neurosci. 29:13797–808
  123. Rahmen JC, Keating P, Nodal FR, Schulz AL, King AJ. 123.  2010. Neuron 66:937–48
  124. Rabinowitz NC, Willmore BDB, Schnup JWH, King AJ. 124.  2011. Neuron 70:1178–92
  125. Maravall M, Petersen RS, Fairhall AL, Arabzadeh E, Diamond ME. 125.  2007. PLOS Biol. 5:e19
  126. De Baene W, Premereur E, Vogels R. 126.  2007. J. Neurophysiol. 97:2900–16
  127. Wark B, Fairhall AL, Rieke F. 127.  2009. Neuron 61:750–61
  128. Atick JJ, Redlich AN. 128.  1990. Neural Comput. 2:308–20
  129. Laughlin SB, de Ruyter van Steveninck RR. 129.  1996. J. Physiol. 494:P19
  130. de Ruyter van Steveninck RR, Laughlin SB. 130.  1996. Nature 379:642–45
  131. Chittka L, Menzel R. 131.  1992. J. Comp. Physiol. A 171:171–81
  132. Garrigan P, Ratliff CP, Klein JM, Sterling P, Brainard DH, Balasubramanian V. 132.  2010. PLOS Comput. Biol. 6:e1000677
  133. Ratliff CP, Borghuis BG, Kao Y-H, Sterling P, Balasubramanian V. 133.  2010. PNAS 107:17368–73
  134. Borghuis BG, Ratliff CP, Smith RG, Sterling P, Balasubramanian V. 134.  2008. J. Neurosci. 28:3178–89
  135. Liu YS, Stevens CF, Sharpee TO. 135.  2009. PNAS 106:16499–514
  136. Iyengar G, Rao M. 136.  2014. PNAS 111:12402–7
  137. Smith EC, Lewicki MS. 137.  2005. Neural Comput. 17:19–45
  138. Smith EC, Lewicki MS. 138.  2006. Nature 439:978–82
  139. van Hateren JH. 139.  1992. Biol. Cybern. 68:23–29
  140. Olshausen BA, Field DJ. 140.  1996. Nature 381:607
  141. Bell AJ, Sejnowski TJ. 141.  1997. Vis. Res. 23:3327–38
  142. Linsker R. 142.  1989. Neural Comput. 1:402–11
  143. Barlow H. 143.  2001. Network 12:241–53
  144. Puchalla JL, Schneidman E, Harris RA, Berry MJ II. 144.  2005. Neuron 46:493–504
  145. Tkačik G, Marre O, Amodei A, Schneidman E, Bialek W. 145.  et al. 2014. PLOS Comput. Biol. 10:e1003408
  146. Karklin Y, Simoncelli E. 146.  2011. Efficient coding of natural images with a population of noisy linear-nonlinear neurons. Advances in Neural Information Processing Systems 24 J Shawe-Taylor, RS Zemel, PL Bartlett, F Pereira, KQ Weinberger 999–1007 Cambridge, MA: MIT Press [Google Scholar]
  147. Balasubramanian V, Kimber D, Berry MJ II. 147.  2001. Neural Comput. 13:799–815
  148. Tkačik G, Prentice JS, Balasubramanian V, Schneidman E. 148.  2010. PNAS 107:14419–24
  149. Osborne LC, Palmer SE, Lisberger SG, Bialek W. 149.  2008. J. Neurosci. 28:13522–31
  150. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. 150.  2005. Nature 436:801–6
  151. Fiete IR, Burak Y, Brookings T. 151.  2008. J. Neurosci. 28:6856–71
  152. Sreenivasan S, Fiete IR. 152.  2011. Nat. Neurosci. 14:1330–37
  153. Elowitz MB, Levine AJ, Siggia ED, Swain PD. 153.  2002. Science 297:1183–86
  154. Ozbudak E, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A. 154.  2002. Nat. Genet. 31:69–73
  155. Blake WJ, Kaern M, Cantor CR, Collins JJ. 155.  2003. Nature 422:633–37
  156. Tkačik G, Callan CG Jr, Bialek W. 156.  2008. Phys. Rev. E 78:011910
  157. Tkačik G, Walczak AM. 157.  2011. J. Phys. Condens. Matter 23:153102
  158. Gregor T, Tank DW, Wieschaus EF, Bialek W. 158.  2007. Cell 130:153–64
  159. Tkačik G, Callan CG Jr, Bialek W. 159.  2008. PNAS 105:12265–70
  160. Wolpert L. 160.  1969. J. Theor. Biol. 25:1–47
  161. Dubuis JO, Tkačik G, Wieschaus EF, Gregor T, Bialek W. 161.  2013. PNAS 110:16301–8
  162. Tkačik G, Dubuis JO, Petkova MD, Gregor T. 162.  2015. Genetics 199:39–59
  163. François P, Siggia ED. 163.  2010. Development 137:2385–95
  164. Tkačik G, Walczak AM, Bialek W. 164.  2009. Phys. Rev. E 80:031920
  165. Walczak AM, Tkačik G, Bialek W. 165.  2010. Phys. Rev. E 81:041905
  166. Tkačik G, Walczak AM, Bialek W. 166.  2012. Phys. Rev. E 85:041903
  167. Sokolowski TR, Tkačik G. 167.  2015. Phys. Rev. E 91:062710
  168. Ziv E, Nemenman I, Wiggins CH. 168.  2007. PLOS ONE 2e1007
  169. Tostevin F, ten Wolde PR. 169.  2009. Phys. Rev. Lett. 102:21801
  170. de Ronde WH, Tostevin F, ten Wolde PR. 170.  2010. Phys. Rev. E 82:031914
  171. Bowsher CG, Swain PS. 171.  2014. Curr. Opin. Biotechnol. 28:149–55
  172. Lestas I, Vinnicombe G, Paulsson J. 172.  2010. Nature 467:174–78
  173. Kelly JL Jr. 173.  1956. Bell Syst. Tech. J. 35:917–26
  174. Donaldson-Matasci MC, Bergstrom CT, Lachmann M. 174.  2010. Oikos 119:219–30
  175. Kussell EL, Leibler S. 175.  2005. Science 309:2075–78
  176. Rivoire O, Leibler S. 176.  2011. J. Stat. Phys. 142:1124–66
  177. Vergassola M, Villermaux E, Shraiman BI. 177.  2007. Nature 445:406–9
  178. Mafra-Neto A, Cardé RT. 178.  1994. Nature 369:142–44
  179. Attneave F. 179.  1954. Psychol. Rev. 61:183–93
  180. Shannon CE. 180.  1951. Bell Syst. Tech. J. 30:50–64
  181. Chomsky N. 181.  1956. IRE Trans. Inf. Theory IT-2:113–24
  182. Pereira F. 182.  2000. Philos. Trans. R. Soc. Lond. A 358:1239–53
  183. Pereira F, Tishby N, Lee L. 183.  1993. Distributional clustering of English words. Proc. 31st Annu. Meet. Assoc. Comput. Linguist. LK Schubert 183–90 Stroudsburg, PA: Assoc. Comput. Linguist. [Google Scholar]
  184. Tishby N, Pereira FC, Bialek W. 184.  1999. The information bottleneck method. Proc. 37th Annu. Allerton Conf. Commun. Control Comput. B Hajek, RS Sreenivas 368–77 Champaign: Univ. Ill. Press [Google Scholar]
  185. Bialek W, de Ruyter van Steveninck RR, Tishby N. 185.  2007. Presented at 2006 IEEE International Symposium on Information Theory, Seattle, WA. arXiv:0712.4381 [q-bio.NC]
  186. Bialek W, Nemenman I, Tishby N. 186.  2001. Neural Comput. 13:2409–63
  187. Bialek W, Nemenman I, Tishby N. 187.  2001. Physica A 302:89–99
  188. Creutzig F, Globerson A, Tishby N. 188.  2009. Phys. Rev. E 79:041925
  189. Palmer SE, Marre O, Berry MJ II, Bialek W. 189.  2015. PNAS 112:6908–13
/content/journals/10.1146/annurev-conmatphys-031214-014803
Loading
/content/journals/10.1146/annurev-conmatphys-031214-014803
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error