1932

Abstract

Cuprates exhibit exceptionally strong superconductivity. To understand why, it is essential to elucidate the nature of the electronic interactions that cause pairing. Superconductivity occurs on the backdrop of several underlying electronic phases, including a doped Mott insulator at low doping, a strange metal at high doping, and an enigmatic pseudogap phase in between—inside which a phase of charge-density wave order appears. In this article, we shed light on the nature of these remarkable phases by focusing on the limit as , where experimental signatures and theoretical statements become sharper. We therefore survey the ground-state properties of cuprates once superconductivity has been removed by the application of a magnetic field and distill their key universal features.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013210
2019-03-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-031218-013210.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013210&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Collignon C, Badoux S, Afshar SAA, Michon B, Laliberté F et al. 2017. Phys. Rev. B 95:224517
  2. 2.  Matt CE, Fatuzzo CG, Sassa Y, Månsson M, Fatale S et al. 2015. Phys. Rev. B 92:134524
  3. 3.  Monthoux P, Pines D, Lonzarich GG 2007. Nature 450:1177–83
  4. 4.  Taillefer L 2010. Annu. Rev. Condens. Matter Phys. 1:51–70
  5. 5.  Lebed AG The Physics of Organic Superconductors and Conductors 110 Springer Series in Materials Science pp. 357–418. Heidelberg: Springer. arXiv:0904.0617
  6. 6.  Armitage NP, Fournier P, Greene RL 2010. Rev. Mod. Phys. 82:2421–87
  7. 7.  Motoyama EM et al. 2007. Nature 445:186–89
  8. 8.  Dagan Y et al. 2004. Phys. Rev. Lett. 92:167001
  9. 9.  Helm T et al. 2009. Phys. Rev. Lett. 103:157002
  10. 10.  Armitage NP et al. 2002. Phys. Rev. Lett. 88:257001
  11. 11.  Matsui H et al. 2007. Phys. Rev. B 75:224514
  12. 12.  Fournier P et al. 1998. Phys. Rev. Lett. 81:4720
  13. 13.  Jin K et al. 2011. Nature 476:73–75
  14. 14.  Sarkar T et al. 2017. Phys. Rev. B 96:155449
  15. 15.  Tafti FF et al. 2014. Phys. Rev. B 90:024519
  16. 16.  Kyung B et al. 2004. Phys. Rev. Lett. 93:147004
  17. 17.  Grissonnanche G et al. 2014. Nat. Commun. 5:3280Detected the critical field Hc2 as a sharp drop in the thermal conductivity due to vortex scattering.
  18. 18.  Kačmarčík J, Vinograd I, Michon B, Rydh A, Demuer A et al. 2018. Phys. Rev. Lett. 112:167002
  19. 19.  Zhou R et al. 2017. PNAS 114:13148–53
  20. 20.  Tallon JL et al. 1997. Phys. Rev. Lett. 79:5294–97
  21. 21.  Badoux S et al. 2016. Nature 531:201–14Found that a loss of carrier density occurs at the pseudogap critical point of YBCO.
  22. 22.  Proust C et al. 2002. Phys. Rev. Lett. 89:147003
  23. 23.  Manako T et al. 1992. Phys. Rev. B 46:11019–24
  24. 24.  Nakamae S et al. 2003. Phys. Rev. B 68:100502
  25. 25.  Harrison N, Sebastian SE 2012. New J. Phys. 14:095023
  26. 26.  Hussey NE et al. 2003. Nature 425:814–17Measured a large FS in overdoped Tl2201 by ADMR, which was later confirmed by ARPES and QOs.
  27. 27.  Platé M et al. 2005. Phys. Rev. Lett. 95:077001
  28. 28.  Vignolle B et al. 2013. C. R. Phys. 14:39–52
  29. 29.  Barisic N et al. 2013. Nat. Phys. 9:761–64
  30. 30.  Vignolle B et al. 2008. Nature 455:952–55
  31. 31.  Mackenzie AP et al. 1996. Phys. Rev. B 53:5848–55
  32. 32.  Bangura AF et al. 2010. Phys. Rev. B 82:140501
  33. 33.  Singh DJ, Pickett WE 1992. Physica C 203:193–99
  34. 34.  Tranquada JM et al. 1995. Nature 375:561–63
  35. 35.  Hoffman JE et al. 2002. Science 295:466–69
  36. 36.  Hanaguri T et al. 2004. Nature 430:1001–5
  37. 37.  Wise WD et al. 2008. Nat. Phys. 4:696–99
  38. 38.  Doiron-Leyraud N et al. 2007. Nature 447:565–69Discovered QOs in an underdoped cuprate show that coherent quasiparticles do exist inside the PG phase.
  39. 39.  LeBoeuf D et al. 2007. Nature 450:533–37Found a negative Hall coefficient to show that the FS is reconstructed by some density-wave order.
  40. 40.  LeBoeuf D et al. 2011. Phys. Rev. B 83:054506
  41. 41.  Jaudet C et al. 2008. Phys. Rev. Lett. 100:187005
  42. 42.  Laliberté F et al. 2011. Nat. Commun. 2:432
  43. 43.  Doiron-Leyraud N et al. 2015. Nat. Commun. 6:6034
  44. 44.  Riggs SC et al. 2011. Nat. Phys. 7:332–35
  45. 45.  Sebastian SE et al. 2010. PNAS 107:6175–79
  46. 46.  Ramshaw BJ et al. 2015. Science 348:317–20
  47. 47.  Chang J et al. 2010. Phys. Rev. Lett. 104:057005
  48. 48.  Wu T et al. 2011. Nature 477:191–94Discovered CDW order by NMR to establish a universal mechanism for FS reconstruction.
  49. 49.  Wu T, Mayaffre H, Krämer S, Horvatic M, Berthier C et al. 2015. Nat. Commun. 6:6438
  50. 50.  Blanco-Canosa S et al. 2014. Phys. Rev. B 90:054513
  51. 51.  Hücker M et al. 2014. Phys. Rev. B 90:054514
  52. 52.  Wu T, Mayaffre H, Krämer S, Horvatic M, Berthier C et al. 2013. Nat. Commun. 4:2113
  53. 53.  Laliberté F et al. 2018. Nat. Quantum Mater. 3:11
  54. 54.  Gerber S et al. 2015. Science 350:949
  55. 55.  Chang J et al. 2016. Nat. Commun. 7:11494
  56. 56.  Tabis W et al. 2014. Nat. Commun. 5:5875
  57. 57.  Croft T et al. 2014. Phys. Rev. B 89:224513
  58. 58.  Thampy V et al. 2014. Phys. Rev. B 90:100510
  59. 59.  da Silva Neto E et al. 2014. Science 343:393–96
  60. 60.  Comin R et al. 2014. Science 343:390–92
  61. 61.  Comin R et al. 2015. Nat. Mater. 14:796–800
  62. 61a.  Fujita K, Hamidian MH, Edkins SD, Kim CK, Kohsaka Y et al. 2014. PNAS 111:E3026
  63. 62.  Doiron-Leyraud N et al. 2013. Phys. Rev. X 3:021019
  64. 63.  Yao H et al. 2011. Phys. Rev. B 84:012507
  65. 64.  Marcenat C et al. 2016. Nat. Commun. 6:7927
  66. 65.  Proust C et al. 2016. PNAS 113:13654–59
  67. 66.  Badoux S et al. 2016. Phys. Rev. X 6:021004
  68. 67.  Daou R et al. 2009. Nat. Phys. 5:31–34Found T-linear resistivity and loss of carrier density at the PG critical point of Nd-LSCO.
  69. 68.  Sebastian SE et al. 2010. Phys. Rev. B 81:140505
  70. 69.  Grissonnanche G et al. 2016. Phys. Rev. B 93:064513
  71. 70.  Michon B, Girod C, Badoux S, Kačmarčík J, Ma Q, et al 2018. arXiv:1804.08502 Showed thermodynamic signatures of a QCP in the specific heat: a peak at p* and a TlogT dependence.
  72. 71.  Wade JM et al. 1994. J. Supercond. 7:261–64
  73. 72.  Horio M, Hauser K, Sassa Y, Mingazheva Z, Sutter D et al. 2018. Phys. Rev. Lett. 121:077004
  74. 73.  Luo JL et al. 2000. Physica C 341–48:1837–40
  75. 74.  Loram JW et al. 2000. Physica C 341–48:831–34
  76. 75.  Hufner S et al. 2008. Rep. Prog. Phys. 71:062501
  77. 76.  Peets DC et al. 2007. New J. Phys. 9:28
  78. 77.  Komiya S, Tsukada S 2009. J. Phys. Conf. Ser. 150:052118
  79. 78.  Momono N et al. 1994. Physica C 233:395–401
  80. 79.  Walmsley P et al. 2013. Phys. Rev. Lett. 110:257002
  81. 80.  Löhneysen HV et al. 1994. Phys. Rev. Lett. 72:3262–65
  82. 81.  Michon B, Ataei A, Bourgeois-Hope P, Collignon C, Li SY et al. 2018. Phys. Rev. X 8:041010
  83. 82.  Cooper RA et al. 2009. Science 323:603–7Showed that T-linear resistivity persists over an anomalously wide range of doping in LSCO.
  84. 83.  Segawa K et al. 2004. Phys. Rev. B 69:104521
  85. 84.  Ando Y et al. 2004. Phys. Rev. Lett. 92:197001
  86. 85.  Balakirev FF et al. 2003. Nature 424:912–15
  87. 86.  Balakirev FF et al. 2009. Phys. Rev. Lett. 102:017004
  88. 87.  Storey J et al. 2016. Europhys. Lett. 113:27003
  89. 88.  Maharaj AV et al. 2017. Phys. Rev. B 96:045132
  90. 89.  Behnia K et al. 2004. J. Phys.: Condens. Matter 16:5187–98
  91. 90.  Daou R et al. 2009. Phys. Rev. B 79:180505
  92. 91.  Doiron-Leyraud N et al. 2017. Nat. Commun. 8:2044
  93. 92.  Laliberté F, Tabis W, Badoux S, Vignolle B, Destraz D, et al 2016. arXiv:1606.04491
  94. 93.  Boebinger GS et al. 1996. Phys. Rev. Lett. 77:5417–20Showed that upturn in the resistivity at low temperature reveals a change of electronic ground state near optimal doping.
  95. 94.  Ando Y et al. 1995. Phys. Rev. Lett. 75:4662–65
  96. 95.  Scalapino DJ et al. 2012. Rev. Mod. Phys. 84:1383
  97. 96.  Benhabib S et al. 2015. Phys. Rev. Lett. 114:147001
  98. 97.  Cyr-Choinière O et al. 2018. Phys. Rev. B 97:064502
  99. 98.  Fujita K et al. 2014. Science 344:612–16
  100. 99.  Vilk YM et al. 1997. J. Phys. I France 7:1309–68
  101. 100.  Gull E et al. 2010. Phys. Rev. B 82:155101
  102. 101.  Sordi G et al. 2012. Sci. Rep. 2:547
  103. 102.  Wu W, Scheurer MS, Chatterjee S, Sachdev S, Georges A, Ferrero M 2017. Phys. Rev. X 8:021048
  104. 103.  Braganca H et al. 2018. Phys. Rev. Lett. 120:067002
  105. 104.  Scheurer M et al. 2018. PNAS 115:E3665
  106. 105.  Fauqué B et al. 2006. Phys. Rev. Lett. 96:197001
  107. 106.  Sato Y et al. 2017. Nat. Phys. 13:1074–78
  108. 107.  Varma C 2016. Rep. Prog. Phys. 79:082501
  109. 108.  Nie L et al. 2014. PNAS 111:7980–85
  110. 109.  Doiron-Leyraud N et al. 2009. Phys. Rev. B 80:214531
  111. 110.  Hussey NE et al. 2013. J. Phys.: Conf. Ser. 449:012004
  112. 111.  Abdel-Jawad M et al. 2007. Phys. Rev. Lett. 99:107002
  113. 112.  Legros A, et al 2018. Nat. Phys. https://doi.org/10.1038/s41567-018-0334-2
  114. 113.  Zaanen J 2004. Nature 430:512–13
  115. 114.  Bruin JAN et al. 2013. Science 339:804–7
/content/journals/10.1146/annurev-conmatphys-031218-013210
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013210
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error