1932

Abstract

Complex systems are characterized by many interacting units that give rise to emergent behavior. A particularly advantageous way to study these systems is through the analysis of the networks that encode the interactions among the system constituents. During the past two decades, network science has provided many insights in natural, social, biological, and technological systems. However, real systems are often interconnected, with many interdependencies that are not properly captured by single-layer networks. To account for this source of complexity, a more general framework, in which different networks evolve or interact with each other, is needed. These are known as multilayer networks. Here, we provide an overview of the basic methodology used to describe multilayer systems as well as of some representative dynamical processes that take place on top of them. We round off the review with a summary of several applications in diverse fields of science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013259
2019-03-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-031218-013259.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013259&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Anderson PW 1972. Science 177:393–96
  2. 2.  Falkenburg B, Morrison M 2015. Why More Is Different? Heidelberg: Springer
  3. 3.  Mack G 2001. Commun. Math. Phys. 219:141
  4. 4.  Newman M 2010. Networks: An Introduction Oxford, UK: Oxford Univ. Press
  5. 5.  Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA 2014. J. Complex Netw. 2:203–71
  6. 6.  Barabsi AL 2016. Network Science Cambridge, UK: Cambridge Univ. Press
  7. 7.  De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y et al. 2013. Phys. Rev. X 3:041022
  8. 8.  Bianconi G 2015. Europhys. Lett. 111:56001
  9. 9.  De Domenico M, Nicosia V, Arenas A, Latora V 2015. Nat. Commun. 6:6864
  10. 10.  Menichetti G, Remondini D, Panzarasa P, Mondragón RJ, Bianconi G 2014. PLOS ONE 9:e97857
  11. 11.  Kleineberg KK, Boguná M, Serrano , Papadopoulos F 2016. Nat. Phys. 12:1076
  12. 12.  Cozzo E, de Arruda GF, Rodrigues FA, Moreno Y 2016. See Reference 93 17–35
  13. 13.  Boccaletti S, Bianconi G, Criado R, Del Genio CI, Gómez-Gardenes J et al. 2014. Phys. Rep. 544:1–122
  14. 14.  Battiston F, Nicosia V, Latora V 2014. Phys. Rev. E 89:032804
  15. 15.  Aleta A, Meloni S, Moreno Y 2017. Sci. Rep. 7:44359
  16. 16.  Cozzo E, Kivelä M, De Domenico M, Solé-Ribalta A, Arenas A et al. 2015. New J. Phys. 17:073029
  17. 17.  de Arruda GF, Cozzo E, Moreno Y, Rodrigues FA 2016. Phys. D: Nonlinear Phenom. 323:5–11
  18. 18.  Nicosia V, Latora V 2015. Phys. Rev. E 92:032805
  19. 19.  Battiston F, Nicosia V, Latora V 2016. New J. Phys. 18:043035
  20. 20.  Solé-Ribalta A, De Domenico M, Gómez S, Arenas A 2016. Phys. D: Nonlinear Phenom. 323:73–79
  21. 21.  Tu X, Jiang GP, Song Y, Zhang X 2018. IEEE Access 6:12530–38
  22. 22.  Solé-Ribalta A, De Domenico M, Gómez S, Arenas A 2014. Proceedings of the 2014 ACM Conference on Web Science, Bloomington, IL, June 23–26149–55 New York: Assoc. Comput. Mach.
  23. 23.  Solá L, Romance M, Criado R, Flores J, García del Amo A, Boccaletti S 2013. Chaos: Interdiscip. J. Nonlinear Sci. 23:033131
  24. 24.  Buldú JM, Sevilla-Escoboza R, Aguirre J, Papo D, Gutiérrez R 2016. See Reference 93 61–77
  25. 25.  De Domenico M, Solé-Ribalta A, Omodei E, Gómez S, Arenas A 2015. Nat. Commun. 6:6868
  26. 26.  Reiffers-Masson A, Labatut V 2017. Netw. Sci. 5:213–34
  27. 27.  Cozzo E, Baños RA, Meloni S, Moreno Y 2013. Phys. Rev. E 88:050801
  28. 28.  Sánchez-García RJ, Cozzo E, Moreno Y 2014. Phys. Rev. E 89:052815
  29. 29.  Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP 2010. Science 328:876–78
  30. 30.  Pramanik S, Tackx R, Navelkar A, Guillaume JL, Mitra B 2017. 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, Oct. 19–21611–20 Washington, DC: IEEE
  31. 31.  De Domenico M, Lancichinetti A, Arenas A, Rosvall M 2015. Phys. Rev. X 5:011027
  32. 32.  Jeub LGS, Mahoney MW, Mucha PJ, Porter MA 2017. Netw. Sci. 5:144–63
  33. 33.  Kuncheva Z, Montana G 2015. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, FAB 2015, FOSINT-SI 2015, NIBIBI 2015, Paris, France, Aug. 25–281308–15 New York: Assoc. Comput. Mach.
  34. 34.  Wilson JD, Palowitch J, Bhamidi S, Nobel AB 2017. J. Mach. Learn. Res. 18:5458–506
  35. 35.  Taylor D, Shai S, Stanley N, Mucha PJ 2016. Phys. Rev. Lett. 116:228301
  36. 36.  De Bacco C, Power EA, Larremore DB, Moore C 2017. Phys. Rev. E 95:042317
  37. 37.  Peixoto TP 2015. Phys. Rev. E 92:042807
  38. 38.  Vallès-Català T, Massucci FA, Guimerà R, Sales-Pardo M 2016. Phys. Rev. X 6:011036
  39. 39.  Lee KM, Min B, Goh KI 2015. Eur. Phys. J. B 88:48
  40. 40.  Schneider CM, Araújo NA, Herrmann HJ 2013. Phys. Rev. E 87:043302
  41. 41.  Hwang S, Choi S, Lee D, Kahng B 2015. Phys. Rev. E 91:022814
  42. 42.  Baxter G, Dorogovtsev S, Goltsev A, Mendes J 2012. Phys. Rev. Lett. 109:248701
  43. 43.  Danziger MM, Shekhtman LM, Bashan A, Berezin Y, Havlin S 2016. See Reference 93 79–99
  44. 44.  Huang X, Shao S, Wang H, Buldyrev SV, Stanley HE, Havlin S 2013. Europhys. Lett. 101:18002
  45. 45.  Shao S, Huang X, Stanley HE, Havlin S 2014. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 89:032812
  46. 46.  Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S 2010. Nature 464:1025
  47. 47.  Min B, Goh KI 2014. Phys. Rev. E 89:040802
  48. 48.  Shao J, Buldyrev SV, Havlin S, Stanley HE 2011. Phys. Rev. E 83:036116
  49. 49.  Son SW, Bizhani G, Christensen C, Grassberger P, Paczuski M 2012. Europhys. Lett. 97:16006
  50. 50.  Grassberger P 2015. Phys. Rev. E 91:062806
  51. 51.  Zhao Dw, Wang Lh, Zhi Y, Zhang J, Wang Z 2016. Sci. Rep. 6:24304
  52. 52.  Cellai D, Dorogovtsev SN, Bianconi G 2016. Phys. Rev. E 94:032301
  53. 53.  Min B, Do Yi S, Lee KM, Goh KI 2014. Phys. Rev. E 89:042811
  54. 54.  Lee KM, Goh KI 2016. Sci. Rep. 6:26346
  55. 55.  Reis SDS, Hu Y, Babino A, Andrade José S Jr., Canals S et al. 2014. Nat. Phys. 10:762–67
  56. 56.  Brummitt CD, Kobayashi T 2015. Phys. Rev. E 91:062813
  57. 57.  Baggio JA, BurnSilver SB, Arenas A, Magdanz JS, Kofinas GP, De Domenico M 2016. PNAS 113:13708–13
  58. 58.  De Domenico M, Granell C, Porter MA, Arenas A 2016. Nat. Phys. 12:901–6
  59. 59.  Amato R, Kouvaris NE, Miguel MS, Díaz-Guilera A 2017. New J. Phys. 19:123019
  60. 60.  Buono C, Alvarez-Zuzek LG, Macri PA, Braunstein LA 2014. PLOS ONE 9:e92200
  61. 61.  Gómez S, Arenas A, Borge-Holthoefer J, Meloni S, Moreno Y 2010. Europhys. Lett. 89:38009
  62. 62.  de Arruda GF, Cozzo E, Peixoto TP, Rodrigues FA, Moreno Y 2017. Phys. Rev. X 7:011014
  63. 63.  Valdano E, Ferreri L, Poletto C, Colizza V 2015. Phys. Rev. X 5:021005
  64. 64.  Min B, Gwak SH, Lee N, Goh KI 2016. Sci. Rep. 6:21392
  65. 65.  Zuzek LGA, Buono C, Braunstein LA 2015. J. Phys. Conf. Ser. 640:012007
  66. 66.  Kouvaris NE, Hata S, Guilera AD 2015. Sci. Rep. 5:10840
  67. 67.  Biondo AE, Pluchino A, Rapisarda A 2017. Ital. Econ. J. 3:343–66
  68. 68.  Nicosia V, Skardal PS, Arenas A, Latora V 2017. Phys. Rev. Lett. 118:138302
  69. 69.  Pilosof S, Porter MA, Pascual M, Kéfi S 2017. Nat. Ecol. Evol. 1:0101
  70. 70.  Finn KR, Silk MJ, Porter MA, Pinter-Wollman N 2017. arXiv:1712.01790
    [Google Scholar]
  71. 71.  Gosak M, Markovič R, Dolenšek J, Slak Rupnik M, Marhl M et al. 2018. Phys. Life Rev. 24:118–35
  72. 72.  Shinde P, Jalan S 2015. Europhys. Lett. 112:58001
  73. 73.  Zitnik M, Leskovec J 2017. Bioinformatics 33:i190–98
  74. 74.  Gallotti R, Barthelemy M 2015. Sci. Data 2:140056
  75. 75.  Gallotti R, Barthelemy M 2014. Sci. Rep. 4:6911
  76. 76.  Strano E, Shai S, Dobson S, Barthelemy M 2015. J. R. Soc. Interface 12:20150651
  77. 77.  Cardillo A, Zanin M, Gómez-Gardenes J, Romance M, del Amo AJG, Boccaletti S 2013. Eur. Phys. J. Spec. Top. 215:23–33
  78. 78.  Tsiotas D, Polyzos S 2015. J. Complex Netw. 3:642–70
  79. 79.  Hong C, Zhang J, Cao XB, Du WB 2016. Chaos, Solitons Fractals 86:28–34
  80. 80.  Jiang J, Zhang R, Guo L, Li W, Cai X 2016. Chin. Phys. Lett. 33:108901
  81. 81.  Betzel RF, Bassett DS 2017. NeuroImage 160:73–83
  82. 82.  De Domenico M 2017. Giga Sci. 6:1–8
  83. 83.  Battiston F, Nicosia V, Chavez M, Latora V 2017. Chaos: Interdiscip. J. Nonlinear Sci. 27:047404
  84. 84.  Musmeci N, Nicosia V, Aste T, Di Matteo T, Latora V 2017. Complexity 2017:
  85. 85.  Bargigli L, Di Iasio G, Infante L, Lillo F, Pierobon F 2015. Quant. Finance 15:673–91
  86. 86.  Zeng A, Battiston S 2016. PLOS ONE 11:e0158062
  87. 87.  Condorelli D, Galeotti A, Renou L 2016. Rev. Econ. Stud. 84:82–105
  88. 88.  Santana J, Hoover R, Vengadasubbu M 2017. Soc. Netw. 48:256–69
  89. 89.  Battiston S, Caldarelli G, D'Errico M 2016. See Reference 93 195–229
  90. 90.  Wang Z, Wang L, Szolnoki A, Perc M 2015. Eur. Phys. J. B 88:124
  91. 91.  Wang Z, Szolnoki A, Perc M 2013. Sci. Rep. 3:2470
  92. 92.  Battiston F, Perc M, Latora V 2017. New J. Phys. 19:073017
  93. 93.  Garas A 2016. Interconnected Networks Cham: Springer
/content/journals/10.1146/annurev-conmatphys-031218-013259
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error