1932

Abstract

The measurement of superconductivity at above 200 K in compressed samples of hydrogen sulfide and in lanthanum hydride at 250 K is reinvigorating the search for conventional high temperature superconductors. At the same time, it exposes a fascinating interplay between theory, computation, and experiment. Conventional superconductivity is well understood, and theoretical tools are available for accurate predictions of the superconducting critical temperature. These predictions depend on knowing the microscopic structure of the material under consideration, which can now be provided by computational first-principles structure predictions. The experiments at the megabar pressures required are extremely challenging, but, for some groups at least, permit the experimental exploration of materials space. We discuss the prospects for the search for new superconductors, ideally at lower pressures.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031218-013413
2020-03-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/11/1/annurev-conmatphys-031218-013413.html?itemId=/content/journals/10.1146/annurev-conmatphys-031218-013413&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Van Delft D, Kes P 2010. Phys. Today 63:38–43
  2. 2. 
    Meissner W, Ochsenfeld R. 1933. Naturwissenschaften 21:787–88
  3. 3. 
    Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI 2015. Nature 525:73–76
  4. 4. 
    Drozdov AP, Kong PP, Minkov VS, Besedin SP, Kuzovnikov MA et al. 2019. Nature 569:528–31
  5. 5. 
    Matthias B, Geballe T, Geller S, Corenzwit E 1954. Phys. Rev. 95:1435
  6. 6. 
    London F, London H. 1935. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci. 149:71–88
  7. 7. 
    Maxwell E. 1950. Phys. Rev. 79:173
  8. 8. 
    Reynolds C, Serin B, Wright W, Nesbitt L 1950. Phys. Rev. 78:487
  9. 9. 
    Bardeen J, Cooper LN, Schrieffer JR 1957. Phys. Rev. 106:162
  10. 10. 
    Bardeen J, Cooper LN, Schrieffer JR 1957. Phys. Rev. 108:1175
  11. 11. 
    Wigner E, Huntington HB. 1935. J. Chem. Phys. 3:764–70
  12. 12. 
    McMahon JM, Morales MA, Pierleoni C, Ceperley DM 2012. Rev. Mod. Phys. 84:1607
  13. 13. 
    Zaghoo M, Silvera IF. 2017. PNAS 114:11873–77
  14. 14. 
    Celliers PM, Millot M, Brygoo S, McWilliams RS, Fratanduono DE et al. 2018. Science 361:677–82
  15. 15. 
    Knudson MD, Desjarlais MP, Becker A, Lemke RW, Cochrane KR et al. 2015. Science 348:1455–60
  16. 16. 
    Dias RP, Silvera IF. 2017. Science 355:715–18
  17. 17. 
    Cudazzo P, Profeta G, Sanna A, Floris A, Continenza A et al. 2008. Phys. Rev. Lett. 100:257001
  18. 18. 
    Monserrat B, Drummond ND, Dalladay-Simpson P, Howie RT, Ríos PL et al. 2018. Phys. Rev. Lett. 120:255701
  19. 19. 
    Azadi S, Monserrat B, Foulkes WMC, Needs RJ 2014. Phys. Rev. Lett. 112:165501
  20. 20. 
    Ashcroft NW. 1968. Phys. Rev. Lett. 21:1748
  21. 21. 
    Pickard CJ, Needs RJ. 2007. Nat. Phys. 3:473
  22. 22. 
    Merriam M, Schreiber D. 1963. J. Phys. Chem. Solids 24:1375–77
  23. 23. 
    Gupta M, Burger J. 1980. Phys. Rev. B 22:6074
  24. 24. 
    Satterthwaite CB, Toepke IL. 1970. Phys. Rev. Lett. 25:741–43
  25. 25. 
    Skoskiewicz T. 1973. Phys. Status Solidi (b) 59:329–34
  26. 26. 
    Stritzker B, Buckel W. 1972. Z. Phys. A Hadrons Nuclei 257:1–8
  27. 27. 
    Bednorz JG, Müller KA. 1986. Z. Phys. B Condens. Matter 64:189–93
  28. 28. 
    Gao L, Xue YY, Chen F, Xiong Q, Meng RL et al. 1994. Phys. Rev. B 50:4260–63
  29. 29. 
    Zaanen J. 2010. 100 Years of Superconductivity H Rogalla, PH Kes 92–114 Boca Raton, FL: CRC Press
  30. 30. 
    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H et al. 2006. J. Am. Chem. Soc. 128:10012–13
  31. 31. 
    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008. J. Am. Chem. Soc. 130:3296–97
  32. 32. 
    Vojta M. 2003. Rep. Progress Phys. 66:2069
  33. 33. 
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001. Nature 410:63–64
  34. 34. 
    Tomsic M, Rindfleisch M, Yue J, McFadden K, Phillips J et al. 2007. Int. J. Appl. Ceram. Technol. 4:250–59
  35. 35. 
    Weller TE, Ellerby M, Saxena SS, Smith RP, Skipper NT 2005. Nat. Phys. 1:39–41
  36. 36. 
    Ashcroft NW. 2004. Phys. Rev. Lett. 92:187002
  37. 37. 
    Feng J, Grochala W, Jaroń T, Hoffmann R, Bergara A, Ashcroft NW 2006. Phys. Rev. Lett. 96:017006
  38. 38. 
    Capitani F, Langerome B, Brubach JB, Roy P, Drozdov A et al. 2017. Nat. Phys. 13:859–63
  39. 39. 
    Hohenberg P, Kohn W. 1964. Phys. Rev. 136:B864–71
  40. 40. 
    Kohn W, Sham LJ. 1965. Phys. Rev. 140:A1133–38
  41. 41. 
    Perdew JP, Burke K, Ernzerhof M 1996. Phys. Rev. Lett. 77:3865–68
  42. 42. 
    Needs RJ, Pickard CJ. 2016. APL Mater 4:053210
  43. 43. 
    Oganov AR, Glass CW. 2006. J. Chem. Phys. 124:244704
  44. 44. 
    Pickard CJ, Needs RJ. 2006. Phys. Rev. Lett. 97:045504
  45. 45. 
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI et al. 2005. Z. Krist. Cryst. Mater. 220:567–70
  46. 46. 
    Kresse G, Furthmüller J. 1996. Phys. Rev. B 54:11169
  47. 47. 
    Pickard CJ, Needs RJ. 2011. J. Phys.: Condens. Matter 23:053201
  48. 48. 
    Wang Y, Lv J, Zhu L, Ma Y 2012. Comput. Phys. Commun. 183:2063–70
  49. 49. 
    Li Y, Wang L, Liu H, Zhang Y, Hao J et al. 2016. Phys. Rev. B 93:020103
  50. 50. 
    Peng F, Sun Y, Pickard CJ, Needs RJ, Wu Q, Ma Y 2017. Phys. Rev. Lett. 119:107001
  51. 51. 
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R et al. 2009. J. Phys.: Condens. Matter 21:395502
  52. 52. 
    Lejaeghere K, Bihlmayer G, Björkman T, Blaha P, Blügel S et al. 2016. Science 351:aad3000
  53. 53. 
    Oganov A, Pickard CJ, Zhu Q, Needs RJ 2019. Nat. Rev. Mater. 4:331–48
  54. 54. 
    Jain A, Shin Y, Persson KA 2016. Nat. Rev. Mater. 1:15004
  55. 55. 
    Zhang L, Wang Y, Lv J, Ma Y 2017. Nat. Rev. Mater. 2:17005
  56. 56. 
    Eremets M, Troyan I. 2011. Nat. Mater. 10:927
  57. 57. 
    Howie RT, Guillaume CL, Scheler T, Goncharov AF, Gregoryanz E 2012. Phys. Rev. Lett. 108:125501
  58. 58. 
    Feng J, Hennig RG, Ashcroft N, Hoffmann R 2008. Nature 451:445
  59. 59. 
    Pickard CJ, Martinez-Canales M, Needs RJ 2013. Phys. Rev. Lett. 110:245701
  60. 60. 
    Giustino F. 2017. Rev. Mod. Phys. 89:015003
  61. 61. 
    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001. Rev. Mod. Phys. 73:515–62
  62. 62. 
    Frederiksen T, Paulsson M, Brandbyge M, Jauho AP 2007. Phys. Rev. B 75:205413
  63. 63. 
    Mauri F, Zakharov O, de Gironcoli S, Louie SG, Cohen ML 1996. Phys. Rev. Lett. 77:1151–54
  64. 64. 
    Monserrat B. 2018. J. Phys.: Condens. Matter 30:083001
  65. 65. 
    Allen PB, Dynes RC. 1975. Phys. Rev. B 12:905–22
  66. 66. 
    Sanna A, Flores-Livas JA, Davydov A, Profeta G, Dewhurst K et al. 2018. J. Phys. Soc. Jpn. 87:041012
  67. 67. 
    Yildirim T, Gülseren O, Lynn JW, Brown CM, Udovic TJ et al. 2001. Phys. Rev. Lett. 87:037001
  68. 68. 
    Calandra M, Mauri F. 2005. Phys. Rev. Lett. 95:237002
  69. 69. 
    Calandra M, Mauri F. 2008. Phys. Rev. Lett. 101:016401
  70. 70. 
    Allen PB, Mitrovicć B. 1983. Solid State Physics, Vol. 37 H Ehrenreich, F Seitz, D Turnbull 1–92 New York: Academic
  71. 71. 
    Oliveira LN, Gross EKU, Kohn W 1988. Phys. Rev. Lett. 60:2430–33
  72. 72. 
    Errea I, Calandra M, Pickard CJ, Nelson J, Needs RJ et al. 2015. Phys. Rev. Lett. 114:157004
  73. 73. 
    Rousseau B, Bergara A. 2010. Phys. Rev. B 82:104504
  74. 74. 
    Errea I, Calandra M, Mauri F 2013. Phys. Rev. Lett. 111:177002
  75. 75. 
    Errea I, Calandra M, Mauri F 2014. Phys. Rev. B 89:064302
  76. 76. 
    Errea I, Calandra M, Pickard CJ, Nelson JR, Needs RJ et al. 2016. Nature 532:81
  77. 77. 
    Sano W, Koretsune T, Tadano T, Akashi R, Arita R 2016. Phys. Rev. B 93:094525
  78. 78. 
    Borinaga M, Riego P, Leonardo A, Calandra M, Mauri F et al. 2016. J. Phys.: Condens. Matter 28:494001
  79. 79. 
    Borinaga M, Errea I, Calandra M, Mauri F, Bergara A 2016. Phys. Rev. B 93:174308
  80. 80. 
    Scheler T, Degtyareva O, Marqués M, Guillaume CL, Proctor JE et al. 2011. Phys. Rev. B 83:214106
  81. 81. 
    Eremets M, Trojan I, Medvedev S, Tse J, Yao Y 2008. Science 319:1506–9
  82. 82. 
    Gao G, Oganov AR, Bergara A, Martinez-Canales M, Cui T et al. 2008. Phys. Rev. Lett. 101:107002
  83. 83. 
    Pickard CJ, Needs R. 2007. Phys. Rev. B 76:144114
  84. 84. 
    Goncharenko I, Eremets M, Hanfland M, Tse J, Amboage M et al. 2008. Phys. Rev. Lett. 100:045504
  85. 85. 
    Wang H, John ST, Tanaka K, Iitaka T, Ma Y 2012. PNAS 109:6463–66
  86. 86. 
    Li Y, Hao J, Liu H, Li Y, Ma Y 2014. J. Chem. Phys. 140:174712
  87. 87. 
    Ma Y, Eremets M, Oganov AR, Xie Y, Trojan I et al. 2009. Nature 458:182
  88. 88. 
    Duan D, Liu Y, Tian F, Li D, Huang X et al. 2014. Sci. Rep. 4:6968
  89. 89. 
    Liu H, Naumov II, Hoffmann R, Ashcroft N, Hemley RJ 2017. PNAS 114:6990–95
  90. 90. 
    Duan D, Huang X, Tian F, Li D, Yu H et al. 2015. Phys. Rev. B 91:180502
  91. 91. 
    Akashi R, Kawamura M, Tsuneyuki S, Nomura Y, Arita R 2015. Phys. Rev. B 91:224513
  92. 92. 
    Flores-Livas JA, Sanna A, Gross EK 2016. Eur. Phys. J. B 89:63
  93. 93. 
    Akashi R, Sano W, Arita R, Tsuneyuki S 2016. Phys. Rev. Lett. 117:075503
  94. 94. 
    Bianco R, Errea I, Calandra M, Mauri F 2018. Phys. Rev. B 97:214101
  95. 95. 
    Einaga M, Sakata M, Ishikawa T, Shimizu K, Eremets MI et al. 2016. Nat. Phys. 12:835–38
  96. 96. 
    Goncharov AF, Lobanov SS, Prakapenka VB, Greenberg E 2017. Phys. Rev. B 95:140101
  97. 97. 
    Guigue B, Marizy A, Loubeyre P 2017. Phys. Rev. B 95:020104
  98. 98. 
    Troyan I, Gavriliuk A, Rüffer R, Chumakov A, Mironovich A et al. 2016. Science 351:1303–6
  99. 99. 
    Mozaffari S, Sun D, Minkov VS, Drozdov AP, Knyazev D et al. 2019. Nat. Commun. 10:2522
  100. 100. 
    Schirber JE, Northrup CJM. 1974. Phys. Rev. B 10:3818–20
  101. 101. 
    Somayazulu M, Ahart M, Mishra AK, Geballe ZM, Baldini M et al. 2019. Phys. Rev. Lett. 122:027001
  102. 102. 
    Schilling A, Cantoni M, Guo JD, Ott HR 1993. Nature 363:56–58
  103. 103. 
    Wu G, Xie YL, Chen H, Zhong M, Liu RH et al. 2009. J. Phys.: Condens. Matter 21:142203
  104. 104. 
    Bi T, Zarifi N, Terpstra T, Zurek E 2019. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering https://doi.org/10.1016/B978-0-12-409547-2.11435-0
    [Crossref]
  105. 105. 
    Drozdov AP, Eremets MI, Troyan IA 2015. arXiv e-prints arXiv:1508.06224
  106. 106. 
    Flores-Livas JA, Amsler M, Heil C, Sanna A, Boeri L et al. 2016. Phys. Rev. B 93:020508
  107. 107. 
    Drozdov AP, Minkov VS, Besedin SP, Kong PP, Kuzovnikov MA et al. 2018. arXiv e-prints arXiv:1808.07039
  108. 108. 
    Geballe ZM, Liu H, Mishra AK, Ahart M, Somayazulu M et al. 2018. Angew. Chem. Int. Ed. 57:688–92
  109. 109. 
    Hirsch JE. 2009. Phys. Scr. 80:035702
  110. 110. 
    Zarifi N, Bi T, Liu H, Zurek E 2018. J. Phys. Chem. C 122:24262–69
/content/journals/10.1146/annurev-conmatphys-031218-013413
Loading
/content/journals/10.1146/annurev-conmatphys-031218-013413
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error