1932

Abstract

When the complete understanding of a complex system is not available, as, e.g., for systems considered in the real world, we need a top-down approach to complexity. In this approach, one may desire to understand general multipoint statistics. Here, such a general approach is presented and discussed based on examples from turbulence and sea waves. Our main idea is based on the cascade picture of turbulence, entangling fluctuations from large to small scales. Inspired by this cascade picture, we express the general multipoint statistics by the statistics of scale-dependent fluctuations of variables and relate it to a scale-dependent process, which finally is a stochastic cascade process. We show how to extract from empirical data a Fokker–Planck equation for this cascade process, which allows the generation of surrogate data to forecast extreme events as well as to develop a nonequilibrium thermodynamics for the complex systems. For each cascade event, an entropy production can be determined. These entropies accurately fulfill a rigorous law, namely the integral fluctuations theorem.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-033117-054252
2019-03-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/10/1/annurev-conmatphys-033117-054252.html?itemId=/content/journals/10.1146/annurev-conmatphys-033117-054252&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Argyris J, Faust G, Haase M, Friedrich R 2015. An Exploration of Dynamical Systems and Chaos New York: Springer
  2. 2.  Heslot F, Castaing B, Libchaber A 1987. Phys. Rev. A 36:5870
  3. 3.  Haken H 2004. Synergetics, Introduction and Advanced Topics Heidelberg, New York: Springer
  4. 4.  Bar-Yam Y 1997. Dynamics of Complex Systems 213 Reading, MA: Addison-Wesley
  5. 5.  Friedrich R, Peinke J, Sahimi M, Tabar MRR 2011. Phys. Rep. 506:87–162
  6. 6.  Frisch U 2001. Turbulence: The Legacy of A. N. Kolmogorov Cambridge, UK: Cambridge Univ. Press
  7. 7.  Davidson PA 2004. Turbulence: An Introduction for Scientists and Engineers Oxford, UK: Oxford Univ. Press
  8. 8.  Pope SB 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press
  9. 9. Clay 2000. Millennium problems. Clay Mathematics Institute. http://www.claymath.org/millennium-problems
  10. 10.  Nazarenko S, Lukaschuk S 2016. Annu. Rev. Condens. Matter Phys. 7:61–88
  11. 11.  Onorato M, Residori S, Bortolozzo U, Montina A, Arecchi T 2013. Phys. Rep. 528:47–89
  12. 12.  Akhmediev N, Ankiewicz A, Taki M 2009. Phys. Lett. A 373:675–78
  13. 13.  Hussain AF 1983. Phys. Fluids 26:2816–50
  14. 14.  Kantz H, Schreiber T 2004. Nonlinear Time Series Analysis. Cambridge Nonlinear Science Series Cambridge, UK: Cambridge Univ. Press
  15. 15.  Friedrich R, Peinke J 1997. Phys. Rev. Lett. 78:863
  16. 16.  Peinke J, Friedrich R, Chillà F, Chabaud B, Naert A 1996. Z. Phys. B Condens. Matter 101:157–59
  17. 17.  Friedrich R, Peinke J 1997. Physica D 102:147
  18. 18.  Amblard PO, Brossier JM 1999. Eur. Phys. J. B-Condens. Matter Complex Syst. 12:579–82
  19. 19.  Castaing B, Gagne Y, Hopfinger E 1990. Phys. D: Nonlinear Phenom. 46:177–200
  20. 20.  Friedrich R, Peinke J, Reza Rahimi Tabar M 2012. Computational Complexity R Meyers113154 New York, NY: Springer
  21. 21.  Nawroth A, Peinke J 2006. Phys. Lett. A 360:234–37
  22. 22.  Nawroth AP, Friedrich R, Peinke J 2010. New J. Phys. 12:083021
  23. 23.  Stresing R, Peinke J 2010. New J. Phys. 12:103046
  24. 24.  Taylor GI 1938. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 164:476–90
  25. 25.  Waechter M, Kouzmitchev A, Peinke J 2004. Phys. Rev. E 70:055103(R)
  26. 26.  Waechter M, Riess F, Schimmel T, Wendt U, Peinke J 2004. Eur. Phys. J. B 41:259
  27. 27.  Muzy JF, Bacry E, Arneodo A 1993. Phys. Rev. E 47:875
  28. 28.  Farge M, Schneider K 2006. Encyclopedia of Mathematical Physics JP Françoise, G Naber, TS Tsun40820 Amsterdam: Elsevier
  29. 29.  Lovejoy S, Schertzer D 2013. The Weather and Climate: Emergent Laws and Multifractal Cascades Cambridge, UK: Cambridge Univ. Press
  30. 30.  Friedrich J 2017. Closure of the Lundgren-Monin-Novikov hierarchy in turbulence via a Markov property of velocity increments in scale PhD Dissertation, Ruhr-Universität Bochum, Germany
  31. 31.  Renner C, Peinke J, Friedrich R 2001. J. Fluid Mech. 433:383–409
  32. 32.  Friedrich R, Zeller J, Peinke J 1998. Europhys. Lett. 41:153
  33. 33.  Tutkun M, Mydlarski L 2004. New J. Phys. 6:49
  34. 34.  Lück S, Renner C, Peinke J, Friedrich R 2006. Phys. Lett. A 359:335–38
  35. 35.  Marcq P, Naert A 2001. Phys. Fluids 13:2590–95
  36. 36.  Hadjihosseini A, Wächter M, Hoffmann NP, Peinke J 2016. New J. Phys. 18:013017
  37. 37.  Risken H 1984. The Fokker-Planck Equation Heidelberg: Springer
  38. 38.  Hänggi P, Thomas H 1982. Phys. Rep. 88:207–319
  39. 39.  Gardiner CW 1998. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences Berlin: Springer-Verlag
  40. 40.  Renner C 2002. Markowanalysen stochastisch fluktuierender Zeitserien PhD Dissertation, Universität Oldenburg, Germany
  41. 41.  Renner C, Peinke J, Friedrich R 2001. Phys. A: Stat. Mech. Appl. 298:499–520
  42. 42.  Einstein A 1905. Ann. Phys. 322:549–60
  43. 43.  Dubrulle B 2000. Eur. Phys. J. B 14:757–71
  44. 44.  Kolmogorov AN 1931. Math. Ann. 104:415–58
  45. 45.  Anvari M, Tabar MRR, Peinke J, Lehnertz K 2016. Sci. Rep. 6:35435
  46. 46.  Davoudi J, Tabar MRR 2000. Phys. Rev. E 61:6563
  47. 47.  Friedrich J, Margazoglou G, Biferale L, Grauer R 2018. Phys. Rev. E 98:023104
  48. 48.  Gottschall J, Peinke J 2008. New J. Phys. 10:083034
  49. 49.  Honisch C, Friedrich R 2011. Phys. Rev. E 83:066701
  50. 50.  Siefert M, Kittel A, Friedrich R, Peinke J 2003. Europhys. Lett. 61:466
  51. 51.  Böttcher F, Peinke J, Kleinhans D, Friedrich R, Lind PG, Haase M 2006. Phys. Rev. Lett. 97:090603
  52. 52.  Lehle B 2011. Phys. Rev. E 83:021113
  53. 53.  Lehle B, Peinke J 2018. Phys. Rev. E 97:012113
  54. 54.  Nawroth AP, Peinke J, Kleinhans D, Friedrich R 2007. Phys. Rev. E 76:056102
  55. 55.  Castaing B 1996. J. Phys. II France 6:105–14
  56. 56.  Friedrich R, Peinke J, Naert A 1997. Z. Naturforsch. 52a:588–92
  57. 57.  Kolmogorov AN 1962. J. Fluid Mech. 13:82–85
  58. 58.  Nickelsen D 2014. Markov processes in thermodynamics and turbulence PhD Dissertation, Universität Oldenburg, Germany
  59. 59.  Hallerberg S, Altmann EG, Holstein D, Kantz H 2007. Phys. Rev. E 75:016706
  60. 60.  Hadjihoseini A, Lind PG, Mori N, Hoffmann NP, Peinke J 2017. Europhys. Lett. 120:30008
  61. 61.  Laval JP, Dubrulle B, Nazarenko S 2001. Phys. Fluids 13:1995–2012
  62. 62.  Brown TM 1982. J. Phys. A: Math. Gen. 15:2285
  63. 63.  Seifert U 2012. Rep. Prog. Phys. 75:126001
  64. 64.  Nickelsen D, Engel A 2013. Phys. Rev. Lett. 110:214501
  65. 65.  Reinke N, Nickelsen D, Engel A, Peinke J 2016. Progress in Turbulence VI, Proceedings of the iTi Conference on Turbulence 2014, Springer Proceedings in Physics 165 J Peinke, G Kampers, M Oberlack, M Waclawcayk, A Talamelli1925 Heidelberg: Springer
  66. 66.  Reinke N, Fuchs A, Nickelsen D, Peinke J 2018. J. Fluid Mech. 848:117–53
  67. 67.  Sekimoto K 1998. Prog. Theor. Phys. Suppl. 130:17–27
  68. 68.  Renner C, Peinke J, Friedrich R 2002. arXiv:physics/0211121
  69. 69.  Gagne Y, Marchand M, Castaing B 1994. J. Phys. II 4:1–8
  70. 70.  Naert A, Friedrich R, Peinke J 1997. Phys. Rev. E 56:6719–22
  71. 71.  Fuchs A, Reinke N, Nickelsen D, Peinke J 2018. Proceedings of EUROMECH-ERCOFTAC Colloquium 589: Turbulent Cascades II M Gorokhovski Berlin New York: Springer In press
  72. 72.  Siefert M, Peinke J 2006. J. Turbul. 7:N50
/content/journals/10.1146/annurev-conmatphys-033117-054252
Loading
/content/journals/10.1146/annurev-conmatphys-033117-054252
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error