1932

Abstract

Inversion and time reversal are essential symmetries for the structure of Cooper pairs in superconductors. The loss of one or both leads to modifications to this structure and can change the properties of the superconducting phases in profound ways. Superconductivity in materials lacking inversion symmetry, or noncentrosymmetric materials, has become an important topic. These materials show unusual magnetic and magnetoelectric properties and can host topological superconductivity. Recently, crystal structures with local, but not global, inversion-symmetry breaking have attracted attention. Here, superconductivity can exhibit phenomena not naively expected in centrosymmetric materials. In this review, we first introduce the concept of locally noncentrosymmetric crystals and different material realizations. We then discuss consequences of such local symmetry breaking on the normal state electronic structure and the classification of superconducting order parameters. Finally, we review the expected and, in parts, already observed phenomenology of unconventional superconductivity and possible topological superconducting phases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-040521-042511
2023-03-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/14/1/annurev-conmatphys-040521-042511.html?itemId=/content/journals/10.1146/annurev-conmatphys-040521-042511&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Anderson PW. 1959. J. Phys. Chem. Solids 11:1–226–30
  2. 2.
    Anderson PW. 1984. Phys. Rev. B 30:74000–2
  3. 3.
    Bauer E, Hilscher G, Michor H, Paul C, Scheidt EW et al. 2004. Phys. Rev. Lett. 92:2027003
  4. 4.
    Gor'kov LP, Rashba EI 2001. Phys. Rev. Lett. 87:3037004
  5. 5.
    Frigeri PA, Agterberg DF, Koga A, Sigrist M. 2004. Phys. Rev. Lett. 92:9097001 See also Erratum 93, 099903(E) (2004)
  6. 6.
    Frigeri PA, Agterberg DF, Sigrist M. 2004. New J. Phys. 6:1115
  7. 7.
    Edel'shtein V. 1989. Sov. Phys. JETP 68:61244–49
  8. 8.
    Mineev K, Samokhin K. 1994. JETP 78:401
  9. 9.
    Kaur RP, Agterberg DF, Sigrist M. 2005. Phys. Rev. Lett. 94:13137002
  10. 10.
    Sato M, Takahashi Y, Fujimoto S. 2009. Phys. Rev. Lett. 103:2020401
  11. 11.
    Sato M, Fujimoto S. 2009. Phys. Rev. B 79:9094504
  12. 12.
    Schnyder AP, Brydon PMR. 2015. J. Phys.: Condens. Matter 27:24243201
  13. 13.
    Chiu CK, Teo JCY, Schnyder AP, Ryu S. 2016. Rev. Mod. Phys. 88:3035005
  14. 14.
    Baltensperger W, Strässler S. 1962. Phys. kondensierten Mater. 1:120–26
  15. 15.
    Dzyaloshinsky I. 1958. J. Phys. Chem. Solids 4:4241–55
  16. 16.
    Moriya T. 1960. Phys. Rev. 120:191–98
  17. 17.
    Fischer MH, Sigrist M. 2010. Phys. Rev. B 81:6064435
  18. 18.
    Fischer MH, Loder F, Sigrist M. 2011. Phys. Rev. B 84:184533
  19. 19.
    Zhang X, Liu Q, Luo JW, Freeman AJ, Zunger A. 2014. Nat. Phys. 10:5387–93
  20. 20.
    Železný J, Gao H, Výborný K, Zemen J, Mašek J et al. 2014. Phys. Rev. Lett. 113:157201
  21. 21.
    Wadley P, Howells B, Železný J, Andrews C, Hills V et al. 2016. Science 351:6273587–90
  22. 22.
    Watanabe H, Yanase Y. 2017. Phys. Rev. B 96:6064432
  23. 23.
    Shiomi Y, Watanabe H, Masuda H, Takahashi H, Yanase Y, Ishiwata S. 2019. Phys. Rev. Lett. 122:12127207
  24. 24.
    Zhang Y, Holder T, Ishizuka H, de Juan F, Nagaosa N et al. 2019. Nat. Commun. 10:13783
  25. 25.
    Ahn J, Guo GY, Nagaosa N. 2020. Phys. Rev. X 10:4041041
  26. 26.
    Watanabe H, Yanase Y. 2021. Phys. Rev. X 11:1011001
  27. 27.
    Dresselhaus M, Dresselhaus G, Jorio A. 2007. Group Theory: Application to the Physics of Condensed Matter Berlin: Springer-Verlag
  28. 28.
    Sigrist M, Ueda K. 1991. Rev. Mod. Phys. 63:2239–311
  29. 29.
    Miles P, Kennedy S, McIntyre G, Gu G, Russell G, Koshizuka N 1998. Phys. C: Superconductivity 294:3275–88
  30. 30.
    Gotlieb K, Lin CY, Serbyn M, Zhang W, Smallwood CL et al. 2018. Science 362:64201271–75
  31. 31.
    Atkinson WA. 2020. Phys. Rev. B 101:2024513
  32. 32.
    Lu X, Sénéchal D. 2021. Phys. Rev. B 104:2054512
  33. 33.
    Madar R, Chaudouet P, Senateur J, Zemni S, Tranqui D. 1987. J. Less Common Metals 133:2303–11
  34. 34.
    Hoshi K, Kurihara R, Goto Y, Tokunaga M, Mizuguchi Y. 2022. Sci. Rep. 12:1288
  35. 35.
    Shishido H, Shibauchi T, Yasu K, Kato T, Kontani H et al. 2010. Science 327:5968980–83
  36. 36.
    Nakosai S, Tanaka Y, Nagaosa N. 2012. Phys. Rev. Lett. 108:147003
  37. 37.
    Wu SL, Sumida K, Miyamoto K, Taguchi K, Yoshikawa T et al. 2017. Nat. Commun. 8:11919
  38. 38.
    Hor YS, Williams AJ, Checkelsky JG, Roushan P, Seo J et al. 2010. Phys. Rev. Lett. 104:5057001
  39. 39.
    Wenski G, Mewis A. 1986. Z. Anorganische Allgemeine Chem. 535:4110–22
  40. 40.
    Wilson J, Yoffe A. 1969. Adv. Phys. 18:73193–335
  41. 41.
    Devarakonda A, Inoue H, Fang S, Ozsoy-Keskinbora C, Suzuki T et al. 2020. Science 370:6513231–36
  42. 42.
    Johrendt D, Hosono H, Hoffmann RD, Pöttgen R. 2011. Z. Krist. 226:4435–46
  43. 43.
    Hutanu V, Deng H, Ran S, Fuhrman WT, Thoma H, Butch NP. 2020. Acta Crystallogr. Sect. B 76:1137–43
  44. 44.
    Joynt R, Taillefer L. 2002. Rev. Mod. Phys. 74:1235–94
  45. 45.
    Canepa F, Manfrinetti P, Pani M, Palenzona A. 1996. J. Alloys Compd. 234:2225–30
  46. 46.
    Ivanov AA, Ivanov VG, Menushenkov AP, Wilhelm F, Rogalev A et al. 2018. J. Supercond. Novel Magn. 31:3663–70
  47. 47.
    Nishikubo Y, Kudo K, Nohara M. 2011. J. Phys. Soc. Jpn. 80:5055002
  48. 48.
    Youn SJ, Fischer MH, Rhim SH, Sigrist M, Agterberg DF. 2012. Phys. Rev. B 85:220505
  49. 49.
    Di Salvo F, Bagley B, Voorhoeve J, Waszczak J. 1973. J. Phys. Chem. Solids 34:81357–62
  50. 50.
    Biswas PK, Luetkens H, Neupert T, Stürzer T, Baines C et al. 2013. Phys. Rev. B 87:180503
  51. 51.
    Ribak A, Skiff RM, Mograbi M, Rout PK, Fischer MH et al. 2020. Sci. Adv. 6:13aax9480
  52. 52.
    Fischer MH. 2013. New J. Phys. 15:7073006
  53. 53.
    Cvetkovic V, Vafek O. 2013. Phys. Rev. B 88:13134510
  54. 54.
    Ran S, Eckberg C, Ding QP, Furukawa Y, Metz T et al. 2019. Science 365:6454684–87
  55. 55.
    Aoki D, Brison JP, Flouquet J, Ishida K, Knebel G et al. 2022. J. Phys.: Condens. Matter 34:24243002
  56. 56.
    Aoki D, Ishida K, Flouquet J. 2019. J. Phys. Soc. Jpn. 88:2022001
  57. 57.
    Anderson PW. 1985. Phys. Rev. B 32:1499–99
  58. 58.
    Fu L. 2015. Phys. Rev. Lett. 115:2026401
  59. 59.
    Smidman M, Salamon MB, Yuan HQ, Agterberg DF. 2017. Rep. Prog. Phys. 80:3036501
  60. 60.
    Sigrist M, Agterberg DF, Fischer MH, Goryo J, Loder F et al. 2014. J. Phys. Soc. Jpn. 83:6061014
  61. 61.
    Yanase Y. 2016. Phys. Rev. B 94:17174502
  62. 62.
    Yanase Y, Shiozaki K. 2017. Phys. Rev. B 95:22224514
  63. 63.
    Shishidou T, Suh HG, Brydon PMR, Weinert M, Agterberg DF. 2021. Phys. Rev. B 103:10104504
  64. 64.
    Kimura N, Ito K, Aoki H, Uji S, Terashima T. 2007. Phys. Rev. Lett. 98:19197001
  65. 65.
    Settai R, Miyauchi Y, Takeuchi T, Lévy F, Sheikin I, Ōnuki Y. 2008. J. Phys. Soc. Jpn. 77:7073705
  66. 66.
    Skurativska A, Sigrist M, Fischer MH. 2021. Phys. Rev. Res. 3:3033133
  67. 67.
    de la Barrera SC, Sinko MR, Gopalan DP, Sivadas N, Seyler KL et al. 2018. Nat. Commun. 9:11427
  68. 68.
    Chan YC, Yip KY, Cheung YW, Chan YT, Niu Q et al. 2018. Phys. Rev. B 97:104509
  69. 69.
    Shao J, Liu Z, Yao X, Zhang L, Pi L et al. 2014. EPL (Europhys. Lett.) 107:337006
  70. 70.
    Kase N, Terui Y, Nakano T, Takeda N. 2017. Phys. Rev. B 96:21214506
  71. 71.
    Mizukami Y, Shishido H, Shibauchi T, Shimozawa M, Yasumoto S et al. 2011. Nat. Phys. 7:11849–53
  72. 72.
    Shimozawa M, Goh SK, Shibauchi T, Matsuda Y. 2016. Rep. Prog. Phys. 79:7074503
  73. 73.
    Maruyama D, Sigrist M, Yanase Y. 2012. J. Phys. Soc. Jpn. 81:3034702
  74. 74.
    Clogston AM. 1962. Phys. Rev. Lett. 9:6266–67
  75. 75.
    Chandrasekhar BS. 1962. Appl. Phys. Lett. 1:17–8
  76. 76.
    Maki K. 1966. Phys. Rev. 148:1362–69
  77. 77.
    Yoshida T, Sigrist M, Yanase Y. 2012. Phys. Rev. B 86:134514
  78. 78.
    Khim S, Landaeta JF, Banda J, Bannor N, Brando M et al. 2021. Science 373:65581012–16
  79. 79.
    Möckli D, Yanase Y, Sigrist M. 2018. Phys. Rev. B 97:144508
  80. 80.
    Schertenleib EG, Fischer MH, Sigrist M. 2021. Phys. Rev. Res. 3:2023179
  81. 81.
    Nogaki K, Daido A, Ishizuka J, Yanase Y. 2021. Phys. Rev. Res. 3:3L032071
  82. 82.
    Adenwalla S, Lin SW, Ran QZ, Zhao Z, Ketterson JB et al. 1990. Phys. Rev. Lett. 65:182298–301
  83. 83.
    Michaeli K, Potter AC, Lee PA. 2012. Phys. Rev. Lett. 108:117003
  84. 84.
    Barzykin V, Gor'kov LP 2002. Phys. Rev. Lett. 89:227002
  85. 85.
    Fulde P, Ferrell RA. 1964. Phys. Rev. 135:3AA550–63
  86. 86.
    Agterberg DF. 2003. Phys. C: Supercond. 387:113–16
  87. 87.
    Edelstein VM. 1996. J. Phys.: Condens. Matter 8:3339–49
  88. 88.
    Aoyama K, Sigrist M. 2012. Phys. Rev. Lett. 109:23237007
  89. 89.
    Larkin A, Ovchinnikov Y. 1965. Sov. Phys. JETP 20:762
  90. 90.
    Yoshida T, Sigrist M, Yanase Y. 2013. J. Phys. Soc. Jpn. 82:7074714
  91. 91.
    Masutomi R, Okamoto T, Yanase Y. 2020. Phys. Rev. B 101:18184502
  92. 92.
    Watanabe T, Yoshida T, Yanase Y. 2015. Phys. Rev. B 92:17174502
  93. 93.
    Ryu S, Schnyder AP, Furusaki A, Ludwig AWW. 2010. N. J. Phys. 12:6065010
  94. 94.
    Schnyder AP, Ryu S, Furusaki A, Ludwig AWW. 2008. Phys. Rev. B 78:19195125
  95. 95.
    Fu L, Berg E. 2010. Phys. Rev. Lett. 105:097001
  96. 96.
    Fu L, Kane CL. 2007. Phys. Rev. B 76:4045302
  97. 97.
    Sato M. 2010. Phys. Rev. B 81:22220504
  98. 98.
    Skurativska A, Neupert T, Fischer MH. 2020. Phys. Rev. Res. 2:1013064
  99. 99.
    Ono S, Yanase Y, Watanabe H. 2019. Phys. Rev. Res. 1:1013012
  100. 100.
    Ono S, Po HC, Watanabe H. 2020. Sci. Adv. 6:18eaaz8367
  101. 101.
    Yoshida T, Sigrist M, Yanase Y. 2015. Phys. Rev. Lett. 115:027001
  102. 102.
    Shiozaki K, Sato M. 2014. Phys. Rev. B 90:16165114
  103. 103.
    Fidkowski L, Kitaev A. 2010. Phys. Rev. B 81:13134509
  104. 104.
    Yoshida T, Daido A, Yanase Y, Kawakami N. 2017. Phys. Rev. Lett. 118:14147001
  105. 105.
    Shiozaki K, Sato M, Gomi K. 2016. Phys. Rev. B 93:19195413
  106. 106.
    Scheurer MS, Agterberg DF, Schmalian J. 2017. NPJ Quantum Mater. 2:19
  107. 107.
    Fischer MH, Neupert T, Platt C, Schnyder AP, Hanke W et al. 2014. Phys. Rev. B 89:020509
  108. 108.
    Fischer MH, Goryo J. 2015. J. Phys. Soc. Jpn. 84:5054705
  109. 109.
    Xie YM, Zhou BT, Law KT. 2020. Phys. Rev. Lett. 125:10107001
  110. 110.
    Bradley CJ, Cracknell AP. 1972. The Mathematical Theory of Symmetry in Solids Oxford, UK: Oxford Univ. Press
  111. 111.
    Sumita S, Yanase Y. 2016. Phys. Rev. B 93:22224507
  112. 112.
    Cavanagh DC, Shishidou T, Weinert M, Brydon PMR, Agterberg DF. 2022. Phys. Rev. B 105:2L020505
  113. 113.
    Micklitz T, Norman MR. 2009. Phys. Rev. B 80:10100506
  114. 114.
    Blount EI. 1985. Phys. Rev. B 32:52935–44
  115. 115.
    Daido A, Yoshida T, Yanase Y. 2019. Phys. Rev. Lett. 122:22227001
  116. 116.
    Ishizuka J, Yanase Y. 2018. Phys. Rev. B 98:22224510
/content/journals/10.1146/annurev-conmatphys-040521-042511
Loading
/content/journals/10.1146/annurev-conmatphys-040521-042511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error