1932

Abstract

The fracture of highly deformable soft materials is of great practical importance in a wide range of technological applications, emerging in fields such as soft robotics, stretchable electronics, and tissue engineering. From a basic physics perspective, the failure of these materials poses fundamental challenges due to the strongly nonlinear and dissipative deformation involved. In this review, we discuss the physics of cracks in soft materials and highlight two length scales that characterize the strongly nonlinear elastic and dissipation zones near crack tips in such materials. We discuss physical processes, theoretical concepts, and mathematical results that elucidate the nature of the two length scales and show that the two length scales can classify a wide range of materials. The emerging multiscale physical picture outlines the theoretical ingredients required for the development of predictive theories of the fracture of soft materials. We conclude by listing open challenges and directions for future investigations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042020-023937
2021-03-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-042020-023937.html?itemId=/content/journals/10.1146/annurev-conmatphys-042020-023937&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Polygerinos P, Correll N, Morin SA, Mosadegh B, Onal CD et al. 2017. Adv. Eng. Mater. 19:1700016
  2. 2. 
    Cianchetti M, Laschi C, Menciassi A, Dario P 2018. Nat. Rev. Mater. 3:143–53
  3. 3. 
    Wallin TJ, Pikul J, Shepherd RF 2018. Nat. Rev. Mater. 3:84–100
  4. 4. 
    Rogers JA, Someya T, Huang Y 2010. Science 327:1603–7
  5. 5. 
    Lin S, Yuk H, Zhang T, Parada GA, Koo H et al. 2016. Adv. Mater. 28:4497–505
  6. 6. 
    Yang C, Suo Z 2018. Nat. Rev. Mater. 3:125–42
  7. 7. 
    Drury JL, Mooney DJ 2003. Biomaterials 24:4337–51
  8. 8. 
    Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Tanabe Y et al. 2005. Biomaterials 26:4468–75
  9. 9. 
    Stapleton F, Stretton S, Papas E, Skotnitsky C, Sweeney DF 2006. Ocular Surf. 4:24–43
  10. 10. 
    Li J, Celiz AD, Yang J, Yang Q, Wamala I et al. 2017. Science 357:378–81
  11. 11. 
    Blacklow SO, Li J, Freedman BR, Zeidi M, Chen C, Mooney DJ 2019. Sci. Adv. 5:eaaw3963
  12. 12. 
    Orowan E 1949. Rep. Prog. Phys. 12:185–232
  13. 13. 
    Freund LB 1998. Dynamic Fracture Mechanics Cambridge, UK: Cambridge Univ. Press
  14. 14. 
    Broberg KB 1999. Cracks and Fracture San Diego: Academic
  15. 15. 
    Bouchbinder E, Fineberg J, Marder M 2010. Annu. Rev. Condens. Matter Phys. 1:371–95
  16. 16. 
    Bouchbinder E, Goldman T, Fineberg J 2014. Rep. Prog. Phys. 77:046501
  17. 17. 
    Littleton JT 1923. Phys. Rev. 22:510–16
  18. 18. 
    Kasunic KJ 2015. Optomechanical Systems Engineering Hoboken, NJ: Wiley
  19. 19. 
    Griffith AA 1921. Philos. Trans. R. Soc. Lond. A 221:163–98
  20. 20. 
    Anderson T 2017. Fracture Mechanics: Fundamentals and Applications Boca Raton, FL: CRC Press
  21. 21. 
    Zehnder AT 2012. Fracture Mechanics London: Springer
  22. 22. 
    Rivlin RS, Thomas AG 1953. J. Polym. Sci. 10:291–318
  23. 23. 
    Zhao X 2014. Soft Matter 10:672–87
  24. 24. 
    Creton C, Ciccotti M 2016. Rep. Prog. Phys. 79:046601
  25. 25. 
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y 2003. Adv. Mater. 15:1155–58
  26. 26. 
    Gong JP 2010. Soft Matter 6:2583–90
  27. 27. 
    Haque MA, Kamita G, Kurokawa T, Tsujii K, Gong JP 2010. Adv. Mater. 22:5110–14
  28. 28. 
    Haque MA, Kurokawa T, Kamita G, Gong JP 2011. Macromolecules 44:8916–24
  29. 29. 
    Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH et al. 2012. Nature 489:133–36
  30. 30. 
    Shull KR 2012. Nature 489:36–37
  31. 31. 
    Livne A, Bouchbinder E, Svetlizky I, Fineberg J 2010. Science 327:1359–63
  32. 32. 
    Lefranc M, Bouchaud E 2014. Extrem. Mech. Lett. 1:97–103
  33. 33. 
    Lake GJ, Thomas AG 1967. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 300:108–19
  34. 34. 
    Baumberger T, Caroli C, Martina D 2006. Nat. Mater. 5:552–55
  35. 35. 
    Baumberger T, Caroli C, Martina D 2006. Eur. Phys. J. E 21:81–89
  36. 36. 
    Brown HR 2007. Macromolecules 40:3815–18
  37. 37. 
    Tanaka Y 2007. EPL 78:56005
  38. 38. 
    Zhang T, Lin S, Yuk H, Zhao X 2015. Extrem. Mech. Lett. 4:1–8
  39. 39. 
    Hui CY, Jagota A, Bennison SJ, Londono JD 2003. Proc. R. Soc. A: Math., Phys. Eng. Sci. 459:1489–516
  40. 40. 
    Seitz ME, Martina D, Baumberger T, Krishnan VR, Hui CY, Shull KR 2009. Soft Matter 5:447–56
  41. 41. 
    Long R, Hui CY 2015. Extrem. Mech. Lett. 4:131–55
  42. 42. 
    Long R, Hui CY 2016. Soft Matter 12:8069–86
  43. 43. 
    Bai R, Yang J, Suo Z 2019. Eur. J. Mech., A Solids 74:337–70
  44. 44. 
    Hui CY, Ruina A 1985. Int. J. Fract. 72:97–120
  45. 45. 
    Bouchbinder E, Livne A, Fineberg J 2009. J. Mech. Phys. Solids 57:1568–77
  46. 46. 
    Livne A, Bouchbinder E, Fineberg J 2008. Phys. Rev. Lett. 101:264301
  47. 47. 
    Bouchbinder E, Livne A, Fineberg J 2008. Phys. Rev. Lett. 101:264302
  48. 48. 
    Shull KR, Creton C 2004. J. Polym. Sci., Part B: Polym. Phys. 42:4023–43
  49. 49. 
    Bažant ZP 1997. Int. J. Fract. 83:19–40
  50. 50. 
    Berry J 1964. J. Polym. Sci. Part A: Gen. Pap. 2:4069–76
  51. 51. 
    Berry J 1961. J. Polym. Sci. 50:313–21
  52. 52. 
    Brown HR 1991. Macromolecules 24:2752–56
  53. 53. 
    De Silva CW 2013. Mechanics of Materials Boca Raton, FL: CRC Press
  54. 54. 
    Li X, Yang Q, Zhao Y, Long S, Zheng J 2017. Soft Matter 13:911–20
  55. 55. 
    Takahashi R, Shimano K, Okazaki H, Kurokawa T, Nakajima T et al. 2018. Adv. Mater. Interfaces 5:1801018
  56. 56. 
    Chen C, Wang Z, Suo Z 2017. Extrem. Mech. Lett. 10:50–57
  57. 57. 
    Yang C, Yin T, Suo Z 2019. J. Mech. Phys. Solids 131:43–55
  58. 58. 
    Long R, Lefranc M, Bouchaud E, Hui CY 2016. Extrem. Mech. Lett. 9:66–73
  59. 59. 
    Akagi Y, Sakurai H, Gong JP, Chung UI, Sakai T 2013. J. Chem. Phys. 139:144905
  60. 60. 
    Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C 2014. Science 344:186–89
  61. 61. 
    Nakajima T, Kurokawa T, Ahmed S, Wu WL, Gong JP 2013. Soft Matter 9:1955–66
  62. 62. 
    Ahmed S, Nakajima T, Kurokawa T, Haque MA, Gong JP 2014. Polymer 55:914–23
  63. 63. 
    Thomas AG 1958. J. Polym. Sci. 31:467–80
  64. 64. 
    Greensmith HW 1960. J. Appl. Polym. Sci. 3:183–93
  65. 65. 
    Millereau P, Ducrot E, Clough JM, Wiseman ME, Brown HR et al. 2018. PNAS 115:9110–15
  66. 66. 
    Knowles JK 1977. Int. J. Fract. 13:611–39
  67. 67. 
    Holzapfel GA 2000. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Chichester, UK: Wiley
  68. 68. 
    Qi Y, Zou Z, Xiao J, Long R 2019. J. Mech. Phys. Solids 125:326–46
  69. 69. 
    Geubelle PH, Knauss WG 1994. J. Elast. 35:61–98
  70. 70. 
    Long R, Krishnan VR, Hui CY 2011. J. Mech. Phys. Solids 59:672–95
  71. 71. 
    Knowles JK, Sternberg E 1973. J. Elast. 3:67–107
  72. 72. 
    Rice JR 1968. J. Appl. Mech. Trans. ASME 35:379–86
  73. 73. 
    Shih CF 1981. J. Mech. Phys. Solids 29:305–26
  74. 74. 
    MacDonald KA, Ravichandran G 2020. Int. J. Fract. 222:37–52
  75. 75. 
    Bouchbinder E 2009. Phys. Rev. Lett. 103:164301
  76. 76. 
    Livne A, Ben-David O, Fineberg J 2007. Phys. Rev. Lett. 98:124301
  77. 77. 
    Goldman T, Harpaz R, Bouchbinder E, Fineberg J 2012. Phys. Rev. Lett. 108:104303
  78. 78. 
    Chen CH, Bouchbinder E, Karma A 2017. Nat. Phys. 13:1186–90
  79. 79. 
    Lubomirsky Y, Chen CH, Karma A, Bouchbinder E 2018. Phys. Rev. Lett. 121:134301
  80. 80. 
    Kolvin I, Kolinski JM, Gong JP, Fineberg J 2018. Phys. Rev. Lett. 121:135501
  81. 81. 
    Sakai T, Akagi Y, Matsunaga T, Kurakazu M, Chung Ui, Shibayama M 2010. Macromol. Rapid Commun. 31:1954–59
  82. 82. 
    Tang J, Li J, Vlassak JJ, Suo Z 2017. Extrem. Mech. Lett. 10:24–31
  83. 83. 
    Hoshino KI, Nakajima T, Matsuda T, Sakai T, Gong JP 2018. Soft Matter 14:9693–701
  84. 84. 
    Sakai T, Kurakazu M, Akagi Y, Shibayama M, Chung U 2012. Soft Matter 8:2730–36
  85. 85. 
    Cai S, Suo Z 2012. EPL 97:34009
  86. 86. 
    Trabelsi S, Albouy PA, Rault J 2002. Macromolecules 35:10054–61
  87. 87. 
    Persson BNJ, Albohr O, Heinrich G, Ueba H 2005. J. Phys.: Condens. Matter 17:R1071–142
  88. 88. 
    Wang Z, Xiang C, Yao X, Le Floch P, Mendez J, Suo Z 2019. PNAS 116:5967–72
  89. 89. 
    Xiang C, Wang Z, Yang C, Yao X, Wang Y, Suo Z 2020. Mater. Today. 34:7–16
  90. 90. 
    King DR, Sun TL, Huang Y, Kurokawa T, Nonoyama T et al. 2015. Mater. Horiz. 2:584–91
  91. 91. 
    Huang Y, King DR, Cui W, Sun TL, Guo H et al. 2019. J. Mater. Chem. A 7:13431–40
  92. 92. 
    Hui CY, Liu Z, Phoenix SL 2019. Extrem. Mech. Lett. 33:100573
  93. 93. 
    Mullins L 1969. Rubber Chem. Technol. 42:339–62
  94. 94. 
    Diani J, Fayolle B, Gilormini P 2009. Eur. Polym. J. 45:601–12
  95. 95. 
    Qi Y, Caillard J, Long R 2018. J. Mech. Phys. Solids 118:341–64
  96. 96. 
    Persson B, Brener E 2005. Phys. Rev. E 71:036123
  97. 97. 
    Knauss WG. 1973. Deformation and Fracture of High Polymers H Kausch, J Hassell, R Jaffee 501–41 New York: Springer
  98. 98. 
    Schapery RA 1975. Int. J. Fract. 11:141–59
  99. 99. 
    de Gennes PG 1996. Langmuir 12:4497–500
  100. 100. 
    Rice J. 1979. Proceedings of the U.S. National Congress of Applied Mechanics, 8th, Los Angeles, June 26–30, 1978 RE Kelly 191–216 North Hollywood, CA: West. Period.
  101. 101. 
    Knauss WG 2015. Int. J. Fract. 196:99–146
  102. 102. 
    Hui CY, Xu DB, Kramer EJ 1992. J. Appl. Phys. 72:3294–304
  103. 103. 
    Saulnier F, Ondarçuhu T, Aradian A, Raphaël E 2004. Macromolecules 37:1067–75
  104. 104. 
    Xu DB, Hui CY, Kramer EJ 1992. J. Appl. Phys. 72:3305–16
  105. 105. 
    Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T et al. 2013. Nat. Mater. 12:932–37
  106. 106. 
    Wineman A 2009. Math. Mech. Solids 14:300–66
  107. 107. 
    Bergström JS, Boyce MC 1998. J. Mech. Phys. Solids 46:931–54
  108. 108. 
    Vernerey FJ, Long R, Brighenti R 2017. J. Mech. Phys. Solids 107:1–20
  109. 109. 
    Mao Y, Lin S, Zhao X, Anand L 2017. J. Mech. Phys. Solids 100:103–30
  110. 110. 
    Guo J, Liu M, Zehnder AT, Zhao J, Narita T et al. 2018. J. Mech. Phys. Solids 120:79–95
  111. 111. 
    Liu M, Guo J, Hui CY, Zehnder A 2019. Extrem. Mech. Lett. 29:100457
  112. 112. 
    Gent AN 1996. Langmuir 12:4492–95
/content/journals/10.1146/annurev-conmatphys-042020-023937
Loading
/content/journals/10.1146/annurev-conmatphys-042020-023937
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error