1932

Abstract

Polyelectrolyte complex coacervates represent a wide class of materials with applications ranging from coatings and adhesives to pharmaceutical technologies. They also underpin multiple biological processes, which are only now beginning to be deciphered. The means by which molecular-scale architecture propagates into macroscopic structure, thermodynamics, and dynamics in complex coacervates is of central concern in physics, chemistry, biology, and materials science. How does polyion charge sequence dictate thermodynamic behavior? How does one tailor rheology or interfacial tension using macromolecular architecture? What emergent functionality from polymer complex coacervates has biological consequences? Recent developments in coacervate science shed light on many of these issues and raise exciting new challenges for the close integration of theory, simulations, and experiment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-042020-113457
2021-03-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/12/1/annurev-conmatphys-042020-113457.html?itemId=/content/journals/10.1146/annurev-conmatphys-042020-113457&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brangwynne CP, Tompa P, Pappu RV 2015. Nat. Phys. 11:899–904
  2. 2. 
    Shin Y, Brangwynne CP. 2017. Science 357:1253
  3. 3. 
    Aumiller WM, Keating CD. 2016. Nat. Chem. 8:129–37
  4. 4. 
    Uversky VN. 2017. Adv. Colloid Interface Sci. 239:97–114
  5. 5. 
    Oparin AI. 1924. The Origin of Life Transl. S Morgulis, 1936 New York: Macmillan (From Russian)
  6. 6. 
    Koga S, Williams DS, Perriman AW, Mann S 2011. Nat. Chem. 3:720–24
  7. 7. 
    Keating CD. 2012. Acc. Chem. Res. 45:122114–24
  8. 8. 
    Tang TYD, Che Hak CR, Thompson AJ, Kuimova MK, Williams DS et al. 2014. Nat. Chem. 6:527–33
  9. 9. 
    Schmitt C, Turgeon SL. 2011. Adv. Colloid Interface Sci. 167:63–70
  10. 10. 
    Veis A. 1960. J. Phys. Chem. 64:1203–10
  11. 11. 
    Stewart RJ, Wang CS, Shao H 2011. Adv. Colloid Interface Sci. 167:85–93
  12. 12. 
    Kaur S, Weerasekare GM, Stewart RJ 2011. ACS Appl. Mater. Interfaces 3:941–44
  13. 13. 
    Zhao Q, Lee DW, Ahn BK, Seo S, Kaufman Y et al. 2016. Nat. Mater. 15:407–12
  14. 14. 
    Danielsen SPO, Nguyen TQ, Fredrickson GH, Segalman RA 2019. ACS Macro Lett 8:88–94
  15. 15. 
    Hollingsworth WR, Segura C, Balderrama J, Lopez N, Schleissner P, Ayzner AL 2016. J. Phys. Chem. B 120:7767–74
  16. 16. 
    Black KA, Priftis D, Perry SL, Yip J, Byun WY, Tirrell M 2014. ACS Macro Lett 3:1088–91
  17. 17. 
    Obermeyer AC, Mills CE, Dong X-H, Flores RJ, Olsen BD 2016. Soft Matter 12:3570–81
  18. 18. 
    van der Gucht J, Spruijt E, Lemmers M, Cohen Stuart MA 2011. J. Colloid Interface Sci. 361:407–22
  19. 19. 
    Sing CE. 2017. Adv. Colloid Interface Sci. 239:2–16
  20. 20. 
    Wang Q, Schlenoff JB. 2014. Macromolecules 47:3108–16 https://pubs.acs.org/doi/abs/10.1021/ma500500q
  21. 21. 
    Fares HM, Ghoussoub YE, Delgado JD, Fu J, Urban VS, Schlenoff JB 2018. Macromolecules 51:4945–55
  22. 22. 
    Fares HM, Wang Q, Yang M, Schlenoff JB 2019. Macromolecules 52:610–19
  23. 23. 
    Zhang Y, Li F, Valenzuela LD, Sammalkorpi M, Lutkenhaus JL 2016. Macromolecules 49:7563–70
  24. 24. 
    Zhang Y, Batys P, O'Neal JT, Li F, Sammalkorpi M, Lutkenhaus JL 2018. ACS Cent. Sci. 4:638–44
  25. 25. 
    Perry SL, Leon L, Hoffmann KQ, Kade MJ, Priftis D et al. 2015. Nat. Commun. 6:6052
  26. 26. 
    Schlenoff JB. 2018. J. Chem. Phys. 149:163314
  27. 27. 
    Fu J, Schlenoff JB. 2016. J. Am. Chem. Soc. 138:980–90
  28. 28. 
    Tirrell M. 2018. ACS Cent. Sci. 4:532–33
  29. 29. 
    Salehi A, Larson RG. 2016. Macromolecules 49:9706–19
  30. 30. 
    Fu J, Fares HM, Schlenoff JB 2017. Macromolecules 50:1066–74
  31. 31. 
    Spruijt E, Westphal AH, Borst JW, Cohen Stuart MA, van der Gucht J 2019. Macromolecules 43:6476–84
  32. 32. 
    Lou J, Friedowitz S, Qin J, Xia Y 2019. ACS Cent. Sci. 5:549–57
  33. 33. 
    Li L, Srivastava S, Andreev M, Marciel AB, de Pablo JJ, Tirrell MV 2018. Macromolecules 51:2988–95
  34. 34. 
    Ali S, Bleuel M, Prabhu VM 2019. ACS Macro Lett 8:289–93
  35. 35. 
    Adhikari S, Prabhu VM, Muthukumar M 2019. Macromolecules 52:6998–7004
  36. 36. 
    Li L, Rumyantsev AM, Srivastava S, Meng S, de Pablo JJ, Tirrell MV 2020. MacromoleculesIn press. https://doi.org/10.1021/acs.macromol.0c01000
  37. 37. 
    Rumyantsev AM, Zhulina EB, Borisov OV 2018. Macromolecules 51:3788–801
  38. 38. 
    Kudlay A, Olvera de la Cruz M 2004. J. Chem. Phys. 120:404–12
  39. 39. 
    Kudlay A, Ermoshkin AV, Olvera de la Cruz M 2004. Macromolecules 37:9231–41
  40. 40. 
    Zhang P, Shen K, Alsaifi NM, Wang ZG 2018. Macromolecules 51:5586–93
  41. 41. 
    Shen K, Wang ZG. 2018. Macromolecules 51:1706–17
  42. 42. 
    Perry SL, Sing CE. 2015. Macromolecules 48:5040–53
  43. 43. 
    Radhakrishna M, Basu K, Liu Y, Shamsi R, Perry SL, Sing CE 2017. Macromolecules 50:3030–37
  44. 44. 
    Borue VY, Erukhimovich IY. 1990. Macromolecules 23:3625–32
  45. 45. 
    Shusharina NP, Zhulina EB, Dobrynin AV, Rubinstein M 2005. Macromolecules 38:8870–81
  46. 46. 
    Wang Z, Rubinstein M. 2006. Macromolecules 39:5897–912
  47. 47. 
    de Gennes PG, Pincus P, Velasco RM, Brochard F 1976. J. Phys. (Paris) 37:1461–73
  48. 48. 
    Rubinstein M, Liao Q, Panyukov S 2018. Macromolecules 51:9572–88
  49. 49. 
    Oskolkov NN, Potemkin II 2006. Macromolecules 39:3648–54
  50. 50. 
    Castelnovo M, Joanny JF. 2000. Langmuir 16:7524–32
  51. 51. 
    Marciel AB, Srivastava S, Tirrell MV 2018. Soft Matter 14:2454–64
  52. 52. 
    Spruijt E, Leermakers FAM, Fokkink R, Schweins R, van Well AA et al. 2013. Macromolecules 46:4596–605
  53. 53. 
    Pergushov DV, Müller AHE, Schacher FH 2012. Chem. Soc. Rev. 41:6888–901
  54. 54. 
    Voets IK, de Keizer A, Cohen Stuart MA 2009. Adv. Colloid Interface Sci. 147–48:300–18
  55. 55. 
    Spruijt E, Sprakel J, Cohen Stuart MA, van der Gucht J 2010. Soft Matter 6:172–78
  56. 56. 
    Priftis D, Farina R, Tirrell M 2012. Langmuir 28:8721–29
  57. 57. 
    Ali S, Prabhu VM. 2019. Macromolecules 52:7495–502
  58. 58. 
    Demond AH, Lindner AS. 1993. Environ. Sci. Technol. 27:2318–31
  59. 59. 
    Oskolkov NN, Potemkin II 2007. Macromolecules 40:8423–29
  60. 60. 
    Riggleman RA, Kumar R, Fredrickson GH 2012. J. Chem. Phys. 136:024903
  61. 61. 
    Lytle TK, Salazar AJ, Sing CE 2018. J. Chem. Phys. 149:163315
  62. 62. 
    Qin J, Priftis D, Farina R, Perry SL, Leon L et al. 2014. ACS Macro Lett 3:565–68
  63. 63. 
    Overbeek JTG, Voorn MJ. 1957. J. Cell. Physiol. Suppl. 49:7–26
  64. 64. 
    Cahn JW, Hilliard JE. 1958. J. Chem. Phys. 28:258–67
  65. 65. 
    Widom B. 1965. J. Chem. Phys. 43:3892–97
  66. 66. 
    Landau LD, Lifshitz EM. 1970. Statistical Physics, Part 1 NY: Pergamon
  67. 67. 
    Pande VS, Grosberg AY, Tanaka T 2000. Rev. Mod. Phys. 72:259–314
  68. 68. 
    Quiroz FG, Chilkoti A. 2015. Nat. Mater. 14:1164–71
  69. 69. 
    Shakya A, King JT. 2018. Biophys. J. 115:1840–47 https://www.sciencedirect.com/science/article/pii/S0006349518311032
  70. 70. 
    Shakya A, Girard M, King JT, Olvera de la Cruz M 2020. Macromolecules 53:1258–69
  71. 71. 
    Qin J, de Pablo JJ 2016. Macromolecules 49:8789–800
  72. 72. 
    Rumyantsev AM, de Pablo JJ 2019. Macromolecules 52:5140–56
  73. 73. 
    Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A et al. 2016. Mol. Cell. 63:72–85
  74. 74. 
    Chang LW, Lytle TK, Radhakrishna M, Madinya JJ, Vélez J et al. 2018. Nat. Commun. 8:1273
  75. 75. 
    Lytle TK, Sing CE. 2017. Soft Matter 13:7001–12
  76. 76. 
    Lytle TK, Chang LW, Markiewicz N, Perry SL, Sing CE 2019. ACS Cent. Sci. 5:709–18
  77. 77. 
    Rumyantsev AM, Jackson NE, Yu B, Ting JM, Chen W et al. 2019. ACS Macro Lett 8:1296–302
  78. 78. 
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E et al. 2015. Mol. Cell. 57:936–47
  79. 79. 
    Lin YH, Forman-Kay JD, Chan HS 2016. Phys. Rev. Lett. 117:178101
  80. 80. 
    McCarty J, Delaney KT, Danielsen SPO, Fredrickson GH, Shea JE 2019. J. Phys. Chem. Lett. 10:1644–52
  81. 81. 
    Danielsen SPO, McCarty J, Shea JE, Delaney KT, Fredrickson GH 2019. PNAS 116:8224–32
  82. 82. 
    Madinya JJ, Chang LW, Perry SL, Sing CE 2020. Mol. Syst. Des. Eng. 5:632–44
  83. 83. 
    Wittmer J, Johner A, Joanny JF 1993. Eur. Phys. Lett. 24:263–68
  84. 84. 
    Moldakarimov S, Johner A, Joanny J-F 2003. Eur. Phys. J. E 10:303–18
  85. 85. 
    Lee J, Popov YO, Fredrickson GH 2008. J. Chem. Phys. 128:224908
  86. 86. 
    Rumyantsev AM, Potemkin II 2017. Phys. Chem. Chem. Phys. 19:27580–92
  87. 87. 
    Kapelner RA, Obermeyer AC. 2019. Chem. Sci. 10:2700–7
  88. 88. 
    Das RK, Pappu RV. 2013. PNAS 110:13392–97
  89. 89. 
    Sawle L, Ghosh K. 2015. J. Chem. Phys. 143:085101
  90. 90. 
    Lutz JF, Ouchi M, Liu DR, Sawamoto M 2013. Science 341:1238149
  91. 91. 
    Perry SL, Sing CE. 2020. ACS Macro Lett 9:216–25
  92. 92. 
    Hoffmann KQ, Perry SL, Leon L, Priftis D, Tirrell M, de Pablo JJ 2015. Soft Matter 11:1525–38
  93. 93. 
    Pacalin NM, Leon L, Tirrell M 2016. Eur. Phys. J. Spec. Top. 225:1805–15
  94. 94. 
    Vieregg JR, Lueckheide M, Marciel AB, Leon L, Bologna AJ et al. 2018. J. Am. Chem. Soc. 140:1632–38
  95. 95. 
    Lueckheide M, Vieregg JR, Bologna AJ, Leon L, Tirrell MV 2018. Nano Lett 18:7111–17
  96. 96. 
    Marras AE, Vieregg JR, Ting JM, Rubien JD, Tirrell JM 2019. Polymers 11:83
  97. 97. 
    Potemkin II, Limberger RE, Kudlay AN, Khokhlov AR 2002. Phys. Rev. E 66:011802
  98. 98. 
    Kumar R, Audus D, Fredrickson GH 2010. J. Phys. Chem. B 114:9956–76
  99. 99. 
    Rubinstein M, Colby RH. 2003. Polymer Physics Oxford, UK: Oxford Univ. Press
  100. 100. 
    Aponte-Rivera C, Rubinstein M. 2019. Presented at 2019 AIChE Annual Meeting, Orlando, FL. https://aiche.confex.com/aiche/2019/meetingapp.cgi/Paper/574902
  101. 101. 
    Yang M, Shi J, Schlenoff JB 2019. Macromolecules 52:1930–41
  102. 102. 
    Yu B, Rauscher PM, Jackson NE, Rumyantsev AM, de Pablo JJ 2020. ACS Macro Lett 9:1318–24
  103. 103. 
    Diddens D, Baschnagel J, Johner A 2019. ACS Macro Lett 8:123–27
  104. 104. 
    Leibler L, Rubinstein M, Colby RH 1991. Macromolecules 24:4701–7
  105. 105. 
    Rubinstein M, Semenov AN. 1998. Macromolecules 31:1386–97
  106. 106. 
    Rubinstein M, Semenov AN. 2001. Macromolecules 34:1058–68
  107. 107. 
    Liu Y, Winter HH, Perry SL 2017. Adv. Colloid Interface Sci. 239:46–60
  108. 108. 
    Andreev M, Prabhu VM, Douglas JF, Tirrell M, de Pablo JJ 2018. Macromolecules 51:6717–23
  109. 109. 
    Spruijt E, Sprakel J, Lemmers M, Stuart MAC, van der Gucht J 2010. Phys. Rev. Lett. 105:208301
  110. 110. 
    Spruijt E, Cohen Stuart MA, van der Gucht J 2013. Macromolecules 46:1633–41
  111. 111. 
    Ali S, Prabhu VM. 2018. Gels 4:11
  112. 112. 
    Hamad FG, Chen Q, Colby RH 2018. Macromolecules 51:5547–55
  113. 113. 
    Leclerc M. 1999. Adv. Mater. 11:1491–98
  114. 114. 
    Ho HA, Boissinot M, Bergeron MG, Corbeil G, Doré K et al. 2002. Angew. Chem. Int. Ed. 41:1548–51
  115. 115. 
    Gaylord BS, Heeger AJ, Bazan GC 2003. J. Am. Chem. Soc. 125:896–900
  116. 116. 
    Ho HA, Najari A, Leclerc M 2008. Acc. Chem. Res. 41:168–78
  117. 117. 
    Bock LC, Griffin LG, Latham JA, Vermaas EH, Toole JJ 1992. Nature 355:564–66
  118. 118. 
    Delaney KT, Fredrickson GH. 2017. J. Chem. Phys. 146:224902
  119. 119. 
    Hollingsworth WR, Magnanelli TJ, Segura C, Young JD, Bragg AE, Ayzner AL 2018. J. Phys. Chem. C 122:22280–93
  120. 120. 
    Schleissner P, Ayzner AL. 2018. Polymer 136:114–20
  121. 121. 
    Segura C, Lucero M, Ayzner AL 2019. ACS Appl. Polym. Mater. 1:1034–44
  122. 122. 
    Horn J, Kapelner R, Obermeyer A 2019. Polymers 11:578
  123. 123. 
    Rumyantsev AM, Zhulina EB, Borisov OV 2018. ACS Macro Lett 7:811–16
  124. 124. 
    Kramarenko EYU, Khokhlov AR, Reineker P 2006. J. Chem. Phys. 125:194902
  125. 125. 
    Semenov AN. 1985. Sov. Phys. JETP 61:733–42
  126. 126. 
    Borisov OV, Zhulina EB, Leermakers FAM, Müller AHE 2011. Adv. Polym. Sci. 241:57–129
  127. 127. 
    van der Kooij HM, Spruijt E, Voets IK, Fokkink R, Cohen Stuart MA, van der Gucht J 2012. Langmuir 28:14180–91
  128. 128. 
    Nakata M, Zanchetta G, Chapman BD, Jones CD, Cross JO et al. 2007. Science 318:1276–79
  129. 129. 
    Aloi A, Guibert C, Olijve LLC, Voets IK 2016. Polymer 107:450–55
  130. 130. 
    Wu H, Ting JM, Werba O, Meng S, Tirrell MV 2018. J. Chem. Phys. 149:163330
  131. 131. 
    Bos I, Sprakel J. 2019. Macromolecules 52:8923–31
  132. 132. 
    Lemmers M, Sprakel J, Voets K, van der Gucht J, Cohen Stuart MA 2010. Angew. Chem. Int. Ed. 49:708–11
  133. 133. 
    Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM et al. 2011. Adv. Mater. 23:2327–31
  134. 134. 
    Audus DJ, Gopez JD, Krogstad DV, Lynd NA, Kramer EJ et al. 2015. Soft Matter 11:1214–25
  135. 135. 
    Srivastava S, Andreev M, Levi AE, Goldfeld DJ, Mao J et al. 2017. Nat. Commun. 8:14131
  136. 136. 
    Rahalkar A, Wei G, Nieuwendaal R, Prabhu VM, Srivastava S et al. 2018. J. Chem. Phys. 149:16163310
  137. 137. 
    Sing CE. 2020. J. Chem. Phys. 152:024902
  138. 138. 
    Rumyantsev AM, Gavrilov AA, Kramarenko EYU 2019. Macromolecules 52:7167–74
  139. 139. 
    Rumyantsev AM, Kramarenko EYU, Borisov OV 2018. Macromolecules 51:6587–601
  140. 140. 
    Rumyantsev AM, de Pablo JJ 2020. Macromolecules 53:1281–92
  141. 141. 
    Castelnovo M, Joanny J-F. 2001. Eur. Phys. J. E 6:377–86
  142. 142. 
    Mountain GA, Keating CD. 2020. Biomacromolecules 21:630–40
  143. 143. 
    Lu T, Spruijt E. 2020. J. Am. Chem. Soc. 142:2905–14
  144. 144. 
    Spoelstra WK, van der Sluis EO, Dogterom M, Reese L 2020. Langmuir 36:1956–64
  145. 145. 
    Nakashima KK, Baaij JF, Spruijt E 2018. Soft Matter 14:361–67
  146. 146. 
    Martin N. 2019. ChemBioChem 20:2553–68
/content/journals/10.1146/annurev-conmatphys-042020-113457
Loading
/content/journals/10.1146/annurev-conmatphys-042020-113457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error