1932

Abstract

Continuum robots can traverse anatomical pathways to intervene in regions deep inside the human body. They are able to steer along 3D curves in confined spaces and dexterously handle tissues. Concentric tube robots (CTRs) are continuum robots that comprise a series of precurved elastic tubes that can be translated and rotated with respect to each other to control the shape of the robot and tip pose. CTRs are a rapidly maturing technology that has seen extensive research over the past decade. Today, they are being evaluated as tools for a variety of surgical applications, as they can offer precision and manipulability in tight workspaces. This review provides an exhaustive classification of research on CTRs based on their clinical applications and highlights approaches for modeling, control, design, and sensing. Competing approaches are critically presented, leading to a discussion of future directions to address the limitations of current research and its translation to clinical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-042920-014147
2022-05-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-042920-014147.html?itemId=/content/journals/10.1146/annurev-control-042920-014147&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Vitiello V, Lee SL, Cundy TP, Yang GZ. 2013. Emerging robotic platforms for minimally invasive surgery. IEEE Rev. Biomed. Eng. 6:111–26
    [Google Scholar]
  2. 2. 
    Dupont PE, Lock J, Itkowitz B, Butler E 2010. Design and control of concentric tube robots. IEEE Trans. Robot. 26:209–25
    [Google Scholar]
  3. 3. 
    Webster RJ, Jones BA. 2010. Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29:1661–83
    [Google Scholar]
  4. 4. 
    Bates BL, Hall TA, Osborne TA. 1993. Guide for localizing a nonpalpable breast lesion US Patent 5,221,269
  5. 5. 
    Cuschieri A, Buess G, Perissat J 1992. Operative Manual of Endoscopic Surgery Berlin: Springer
  6. 6. 
    Daum WR, Schalgdorf N. 1995. Deflectable needle assembly US Patent 6,572,593
  7. 7. 
    Furusho J, Ono T, Murai R, Fujimoto T, Chiba Y, Horio H. 2005. Development of a curved multi-tube (CMT) catheter for percutaneous umbilical blood sampling and control methods of CMT catheters for solid organs. 2005 IEEE International Conference on Mechatronics and Automation 1410–15 Piscataway, NJ: IEEE
    [Google Scholar]
  8. 8. 
    Webster RJ, Okamura AM, Cowan NJ. 2006. Toward active cannulas: miniature snake-like surgical robots. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems2857–63 Piscataway, NJ: IEEE
    [Google Scholar]
  9. 9. 
    Sears P, Dupont PE. 2006. A steerable needle technology using curved concentric tubes. 2006 IEEE International Conference on Intelligent Robots and Systems2850–56 Piscataway, NJ: IEEE
    [Google Scholar]
  10. 10. 
    Bruns TL, Remirez AA, Emerson MA, Lathrop RA, Mahoney AW et al. 2021. A modular, multi-arm concentric tube robot system with application to transnasal surgery for orbital tumors. Int. J. Robot. Res. 40:521–33
    [Google Scholar]
  11. 11. 
    Gilbert HB, Rucker DC, Webster RJ III 2016. Concentric tube robots: the state of the art and future directions. Robotics Research: The 16th International Symposium ISRR M Inaba, P Corke 253–69 Cham, Switz: Springer
    [Google Scholar]
  12. 12. 
    Mahoney AW, Gilbert HB, Webster RJ III 2018. A review of concentric tube robots: modeling, control, design, planning, and sensing. The Encyclopedia of Medical Robotics 1 Minimally Invasive Surgical Robotics R Patel 181–202 Singapore: World Sci.
    [Google Scholar]
  13. 13. 
    Alfalahi H, Renda F, Stefanini C 2020. Concentric tube robots for minimally invasive surgery: current applications and future opportunities. IEEE Trans. Med. Robot. Bionics 2:410–24
    [Google Scholar]
  14. 14. 
    Gilbert HB, Webster RJ III 2016. Rapid, reliable shape setting of superelastic nitinol for prototyping robots. IEEE Robot. Autom. Lett. 1:98–105
    [Google Scholar]
  15. 15. 
    Alfalahi H, Renda F, Stefanini C 2020. Concentric tube robots for minimally invasive surgery: current applications and future opportunities. IEEE Trans. Med. Robot. Bionics 2:410–24
    [Google Scholar]
  16. 16. 
    Sears P, Dupont PE. 2007. Inverse kinematics of concentric tube steerable needles. 2007 IEEE International Conference on Robotics and Automation1887–92 Piscataway, NJ: IEEE
    [Google Scholar]
  17. 17. 
    Webster RJ, Romano JM, Cowan NJ, Webster RJ III, Romano JM, Cowan NJ. 2009. Mechanics of precurved-tube continuum robots. IEEE Trans. Robot. 25:67–78
    [Google Scholar]
  18. 18. 
    Rucker DC, Jones BA, Webster RJ. 2010. A geometrically exact model for externally loaded concentric tube continuum robots. IEEE Trans. Robot. 26:769–80
    [Google Scholar]
  19. 19. 
    Dupont PE, Lock J, Itkowitz B. 2010. Real-time position control of concentric tube robots. 2010 IEEE International Conference on Robotics and Automation562–68 Piscataway, NJ: IEEE
    [Google Scholar]
  20. 20. 
    Xu R, Asadian A, Naidu AS, Patel RV. 2013. Position control of concentric-tube continuum robots using a modified Jacobian-based approach. 2013 IEEE International Conference on Robotics and Automation5813–18 Piscataway, NJ: IEEE
    [Google Scholar]
  21. 21. 
    Baek C, Yoon K, Kim DN 2016. Finite element modeling of concentric-tube continuum robots. Struct. Eng. Mech. 57:809–21
    [Google Scholar]
  22. 22. 
    Pourafzal M, Talebi HA, Rabenorosoa K. 2021. Piecewise constant strain kinematic model of externally loaded concentric. Mechatronics 74:102502
    [Google Scholar]
  23. 23. 
    Renda F, Messer C, Rucker C, Boyer F. 2021. A sliding-rod variable-strain model for concentric tube robots. IEEE Robot. Autom. Lett. 6:3451–58
    [Google Scholar]
  24. 24. 
    Sadati S, Mitros Z, Henry R, Da Cruz L, Bergeles C 2020. Reduced-order real-time dynamics of concentric tube robots: a polynomial shape (PS) parametrization Tech. Rep. King's College London, London:
  25. 25. 
    Fagogenis G, Bergeles C, Dupont PE. 2016. Adaptive nonparametric kinematic modeling of concentric tube robots. 2016 IEEE International Conference on Intelligent Robots and Systems4324–29 Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26. 
    Grassmann R, Modes V, Burgner-Kahrs J. 2018. Learning the forward and inverse kinematics of a 6-DOF concentric tube continuum robot in SE(3). 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems5125–32 Piscataway, NJ: IEEE
    [Google Scholar]
  27. 27. 
    Kuntz A, Sethi A, Webster RJ, Alterovitz R. 2020. Learning the complete shape of concentric tube robots. IEEE Trans. Med. Robot. Bionics 2:140–47
    [Google Scholar]
  28. 28. 
    Rucker DC, Jones BA, Webster RJ. 2010. A model for concentric tube continuum robots under applied wrenches. 2010 IEEE International Conference on Robotics and Automation1047–52 Piscataway, NJ: IEEE
    [Google Scholar]
  29. 29. 
    Lock J, Laing G, Mahvash M, Dupont PE. 2010. Quasistatic modeling of concentric tube robots with external loads. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems2325–32 Piscataway, NJ: IEEE
    [Google Scholar]
  30. 30. 
    Webster RJ, Romano JM, Cowan NJ. 2008. Kinematics and calibration of active cannulas. 2008 IEEE International Conference on Robotics and Automation3888–95 Piscataway, NJ: IEEE
    [Google Scholar]
  31. 31. 
    Lyons LA, Webster RJ, Alterovitz R. 2009. Motion planning for active cannulas. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems801–6 Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32. 
    Rucker DC, Webster RJ. 2011. Computing Jacobians and compliance matrices for externally loaded continuum robots. 2011 IEEE International Conference on Robotics and Automation945–50 Piscataway, NJ: IEEE
    [Google Scholar]
  33. 33. 
    Torres LG, Baykal C, Alterovitz R. 2014. Interactive-rate motion planning for concentric tube robots. 2014 IEEE International Conference on Robotics and Automation1915–21 Piscataway, NJ: IEEE
    [Google Scholar]
  34. 34. 
    Xu R, Patel RV. 2012. A fast torsionally compliant kinematic model of concentric tube robots. 2012 IEEE International Conference of Engineering in Medicine and Biology904–7 Piscataway, NJ: IEEE
    [Google Scholar]
  35. 35. 
    Xu R, Asadian A, Atashzar SF, Patel RV. 2014. Real-time trajectory tracking for externally loaded concentric-tube robots. 2014 IEEE International Conference on Robotics and Automation4374–79 Piscataway, NJ: IEEE
    [Google Scholar]
  36. 36. 
    Ha J, Dupont PE. 2017. Designing stable concentric tube robots using piecewise straight tubes. IEEE Robot. Autom. Lett. 2:298–304
    [Google Scholar]
  37. 37. 
    Khadem M, O'Neill J, Mitros Z, Da Cruz L, Bergeles C 2020. Autonomous steering of concentric tube robots via nonlinear model predictive control. IEEE Trans. Robot. 36:1595–602
    [Google Scholar]
  38. 38. 
    Till J, Aloi V, Riojas KE, Anderson PL, Webster RJ, Rucker C. 2020. A dynamic model for concentric tube robots. IEEE Trans. Robot. 36:1704–18
    [Google Scholar]
  39. 39. 
    Leibrandt K, Bergeles C, Yang GZ. 2017. Concentric tube robots: rapid, stable path-planning and guidance for surgical use. IEEE Robot. Autom. Mag. 24:242–53
    [Google Scholar]
  40. 40. 
    Rucker DC, Webster RJ, Chirikjian GS, Cowan NJ. 2010. Equilibrium conformations of concentric-tube continuum robots. Int. J. Robot. Res. 29:1263–80
    [Google Scholar]
  41. 41. 
    Girerd C, Rabenorosoa K, Rougeot P, Renaud P 2017. Towards optical biopsy of olfactory cells using concentric tube robots with follow-the-leader deployment. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems5661–887 Piscataway, NJ: IEEE
    [Google Scholar]
  42. 42. 
    Kim C, Ryu SC, Dupont PE. 2015. Real-time adaptive kinematic model estimation of concentric tube robots. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems3214–19 Piscataway, NJ: IEEE
    [Google Scholar]
  43. 43. 
    Jang C, Ha J, Dupont PE, Park FC. 2016. Toward on-line parameter estimation of concentric tube robots using a mechanics-based kinematic model. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems2400–5 Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Ha J, Park FC, Dupont PE. 2017. Optimizing tube precurvature to enhance the elastic stability of concentric tube robots. IEEE Trans. Robot. 33:22–37
    [Google Scholar]
  45. 45. 
    Peyron Q, Rabenorosoa K, Andreff N, Renaud P 2019. A numerical framework for the stability and cardinality analysis of concentric tube robots: introduction and application to the follow-the-leader deployment. Mech. Mach. Theory 132:176–92
    [Google Scholar]
  46. 46. 
    Hendrick RJ, Gilbert HB, Webster RJ 2015. Designing snap-free concentric tube robots: a local bifurcation approach. 2015 IEEE International Conference on Robotics and Automation2256–63 Piscataway, NJ: IEEE
    [Google Scholar]
  47. 47. 
    Bergeles C, Dupont PE. 2013. Planning stable paths for concentric tube robots. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems3077–82 Piscataway, NJ: IEEE
    [Google Scholar]
  48. 48. 
    Xu R, Atashzar SF, Patel RV. 2014. Kinematic instability in concentric tube robots: modeling and analysis. 2014 IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics163–68 Piscataway, NJ: IEEE
    [Google Scholar]
  49. 49. 
    Ha J, Park FC, Dupont PE. 2014. Achieving elastic stability of concentric tube robots through optimization of tube precurvature. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems864–70 Piscataway, NJ: IEEE
    [Google Scholar]
  50. 50. 
    Gilbert HB, Hendrick RJ, Webster RJ III 2016. Elastic stability of concentric tube robots: a stability measure and design test. IEEE Trans. Robot. 32:20–35
    [Google Scholar]
  51. 51. 
    Ha J, Park FC, Dupont PE. 2016. Elastic stability of concentric tube robots subject to external loads. IEEE Trans. Biomed. Eng. 63:1116–28
    [Google Scholar]
  52. 52. 
    Riojas KE, Hendrick RJ, Webster RJ 2018. Can elastic instability be beneficial in concentric tube robots?. IEEE Robot. Autom. Lett. 3:1624–30
    [Google Scholar]
  53. 53. 
    Lock J, Dupont PE. 2011. Friction modeling in concentric tube robots. 2011 IEEE International Conference on Robotics and Automation1139–46 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54. 
    Ha J, Fagogenis G, Dupont PE. 2019. Modeling tube clearance and bounding the effect of friction in concentric tube robot kinematics. IEEE Trans. Robot. 35:353–70
    [Google Scholar]
  55. 55. 
    Childs JA, Rucker C. 2020. Concentric precurved bellows: new bending actuators for soft robots. IEEE Robot. Autom. Lett. 5:1215–22
    [Google Scholar]
  56. 56. 
    Wang J, Lu Y, Zhang C, Song S, Meng MQ 2017. Pilot study on shape sensing for continuum tubular robot with multi-magnet tracking algorithm. 2017 IEEE International Conference on Robotics and Biomimetics1165–70 Piscataway, NJ: IEEE
    [Google Scholar]
  57. 57. 
    Lobaton EJ, Fu J, Torres LG, Alterovitz R. 2013. Continuous shape estimation of continuum robots using X-ray images. 2013 IEEE International Conference on Robotics and Automation725–32 Piscataway, NJ: IEEE
    [Google Scholar]
  58. 58. 
    Vandini A, Bergeles C, Glocker B, Giataganas P, Yang GZ 2017. Unified tracking and shape estimation for concentric tube robots. IEEE Trans. Robot. 33:901–15
    [Google Scholar]
  59. 59. 
    Aloi VA, Rucker DC. 2019. Estimating loads along elastic rods. 2019 International Conference on Robotics and Automation2867–73 Piscataway, NJ: IEEE
    [Google Scholar]
  60. 60. 
    Wei W, Simaan N 2012. Modeling, force sensing, and control of flexible cannulas for microstent delivery. J. Dyn. Syst. Meas. Control 134:041004
    [Google Scholar]
  61. 61. 
    Fagogenis G, Mencattelli M, Machaidze Z, Rosa B, Price K et al. 2019. Autonomous robotic intracardiac catheter navigation using haptic vision. Sci. Robot. 4:eaaw1977
    [Google Scholar]
  62. 62. 
    Donat H, Lilge S, Burgner-Kahrs J, Steil JJ. 2020. Estimating tip contact forces for concentric tube continuum robots based on backbone deflection. IEEE Trans. Med. Robot. Bionics 2:619–30
    [Google Scholar]
  63. 63. 
    Wu K, Wu L, Lim CM, Ren H. 2015. Model-free image guidance for intelligent tubular robots with pre-clinical feasibility study: towards minimally invasive trans-orifice surgery. 2015 IEEE International Conference on Information and Automation749–54 Piscataway, NJ: IEEE
    [Google Scholar]
  64. 64. 
    Kudryavtsev AV, Chikhaoui MT, Liadov A, Rougeot P, Spindler F et al. 2018. Eye-in-hand visual servoing of concentric tube robots. IEEE Robot. Autom. Lett. 3:2315–21
    [Google Scholar]
  65. 65. 
    Li X, Choi T, Chun H, Gim S, Lee S et al. 2013. Active cannula robot with misorientation auto-recovery camera: a method to improve hand-eye coordination in minimally invasive surgery. 2013 International Conference on Control, Automation and Systems276–80 Piscataway, NJ: IEEE
    [Google Scholar]
  66. 66. 
    Wu L, Wu K, Ren H. 2016. Towards hybrid control of a flexible curvilinear surgical robot with visual/haptic guidance. IEEE/RSJ International Conference on Intelligent Robots and Systems501–7 Piscataway, NJ: IEEE
    [Google Scholar]
  67. 67. 
    Lyons LA, Webster RJ, Alterovitz R. 2010. Planning active cannula configurations through tubular anatomy. 2010 IEEE International Conference on Robotics and Automation2082–87 Piscataway, NJ: IEEE
    [Google Scholar]
  68. 68. 
    Kuntz A, Fu M, Alterovitz R. 2019. Planning high-quality motions for concentric tube robots in point clouds via parallel sampling and optimization. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems2205–12 Piscataway, NJ: IEEE
    [Google Scholar]
  69. 69. 
    Torres LG, Alterovitz R. 2011. Motion planning for concentric tube robots using mechanics-based models. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems5153–59 Piscataway, NJ: IEEE
    [Google Scholar]
  70. 70. 
    Baykal C, Alterovitz R 2017. Asymptotically optimal design of piecewise cylindrical robots using motion planning. Robotics: Science and Systems XIII N Amato, S Srinivasa, N Ayanian, S Kuindersma, pap. 20. N.p.: Robot. Sci. Syst. Found .
    [Google Scholar]
  71. 71. 
    Fu M, Kuntz A, Salzman O, Alterovitz R 2019. Toward asymptotically-optimal inspection planning via efficient near-optimal graph search. Robotics: Science and Systems XV A Bicchi, H Kress-Gazit, S Hutchinson, pap. 57. N.p.: Robot. Sci. Syst. Found .
    [Google Scholar]
  72. 72. 
    Baran Y, Rabenorosoa K, Laurent GJ, Rougeot P, Andreff N, Tamadazte B 2017. Preliminary results on OCT-based position control of a concentric tube robot. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems3000–5 Piscataway, NJ: IEEE
    [Google Scholar]
  73. 73. 
    Lu Y, Zhang C, Song S, Meng MQ 2017. Precise motion control of concentric-tube robot based on visual servoing. 2017 IEEE International Conference on Information and Automation299–304 Piscataway, NJ: IEEE
    [Google Scholar]
  74. 74. 
    Chikhaoui MT, Granna J, Starke J, Burgner-Kahrs J. 2018. Toward motion coordination control and design optimization for dual-arm concentric tube continuum robots. IEEE Robot. Autom. Lett. 3:1793–800
    [Google Scholar]
  75. 75. 
    Sabetian S, Looi T, Diller ED, Drake J. 2019. Self-collision detection and avoidance for dual-arm concentric tube robots. IEEE Robot. Autom. Lett. In press . https://doi.org/10.1109/LRA.2019.2933194
    [Crossref] [Google Scholar]
  76. 76. 
    Modes V, Burgner-Kahrs J. 2020. Calibration of concentric tube continuum robots: automatic alignment of precurved elastic tubes. IEEE Robot. Autom. Lett. 5:103–10
    [Google Scholar]
  77. 77. 
    Wu K, Zhu G, Wu L, Gao W, Song S et al. 2019. Safety-enhanced model-free visual servoing for continuum tubular robots through singularity avoidance in confined environments. IEEE Access 7:21539–58
    [Google Scholar]
  78. 78. 
    Leibrandt K, Bergeles C, Yang GZ. 2017. Implicit active constraints for concentric tube robots based on analysis of the safe and dexterous workspace. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems193–200 Piscataway, NJ: IEEE
    [Google Scholar]
  79. 79. 
    Khadem M, Da Cruz L, Bergeles C. 2018. Force/velocity manipulability analysis for 3D continuum robots. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems4920–26 Piscataway, NJ: IEEE
    [Google Scholar]
  80. 80. 
    Garriga-Casanovas A, Rodriguez y Baena F. 2018. Complete follow-the-leader kinematics using concentric tube robots. Int. J. Robot. Res. 37:197–222
    [Google Scholar]
  81. 81. 
    Bergeles C, Gosline AH, Vasilyev NV, Codd PJ, del Nido PJ, Dupont PE. 2015. Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans. Robot. 31:67–84
    [Google Scholar]
  82. 82. 
    Girerd C, Kudryavtsev AV, Rougeot P, Renaud P, Rabenorosoa K, Tamadazte B 2020. SLAM-based follow-the-leader deployment of concentric tube robots. IEEE Robot. Autom. Lett. 5:548–55
    [Google Scholar]
  83. 83. 
    Gilbert HB, Neimat J, Webster RJ. 2015. Concentric tube robots as steerable needles: achieving follow-the-leader deployment. IEEE Trans. Robot. 31:246–58
    [Google Scholar]
  84. 84. 
    Mahvash M, Dupont PE. 2011. Stiffness control of surgical continuum manipulators. IEEE Trans. Robot. 27:334–45
    [Google Scholar]
  85. 85. 
    Granna J, Burgner J. 2014. Characterizing the workspace of concentric tube continuum robots. ISR/Robotik 2014: 41st International Symposium on Robotics1–7 Piscataway, NJ: IEEE
    [Google Scholar]
  86. 86. 
    Granna J, Nabavi A, Burgner-Kahrs J. 2019. Computer-assisted planning for a concentric tube robotic system in neurosurgery. Int. J. Comput. Assist. Radiol. Surg. 14:335–44
    [Google Scholar]
  87. 87. 
    Morimoto T, Greer J, Hawkes E, Okamura A, Hsieh M. 2017. Design, fabrication, and testing of patient specific concentric tube robots for nonlinear renal access and mass ablation. J. Urol. 197:e817
    [Google Scholar]
  88. 88. 
    Zhang D, Wang J, Yang X, Song S, Meng MQ 2018. RRT*-smooth algorithm applied to motion planning of concentric tube robots. 2018 IEEE International Conference on Information and Automation487–93 Piscataway, NJ: IEEE
    [Google Scholar]
  89. 89. 
    Torres LG, Kuntz A, Gilbert HB, Swaney PJ, Hendrick RJ et al. 2015. A motion planning approach to automatic obstacle avoidance during concentric tube robot teleoperation. 2015 IEEE International Conference on Robotics and Automation2361–67 Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90. 
    Bergeles C, Lin FY, Yang GZ 2015. Concentric tube robot kinematics using neural networks. The Hamlyn Symposium on Medical Robotics GZ Yang, A Darzi 13–14 London: R. Geogr. Soc./Imp. Coll. Lond .
    [Google Scholar]
  91. 91. 
    Iyengar K, Dwyer G, Stoyanov D. 2020. Investigating exploration for deep reinforcement learning of concentric tube robot control. Int. J. Comput. Assist. Radiol. Surg. 15:1157–65
    [Google Scholar]
  92. 92. 
    Solberg FS. 2020. Effect of demonstrations for deep reinforcement learning-based control of concentric tube robots MS Thesis Stanford Univ. Stanford, CA:
  93. 93. 
    Grassmann R, Burgner-Kahrs J. 2019. On the merits of joint space and orientation representations in learning the forward kinematics in SE(3). Robotics: Science and Systems XV A Bicchi, H Kress-Gazit, S Hutchinson, pap. 17. N.p.: Robot. Sci. Syst. Found .
    [Google Scholar]
  94. 94. 
    Anor T, Madsen JR, Dupont P. 2011. Algorithms for design of continuum robots using the concentric tubes approach: a neurosurgical example. 2011 IEEE International Conference on Robotics and Automation667–73 Piscataway, NJ: IEEE
    [Google Scholar]
  95. 95. 
    Bedell C, Lock J, Gosline A, Dupont PE 2011. Design optimization of concentric tube robots based on task and anatomical constraints. 2011 IEEE International Conference on Robotics and Automation398–403 Piscataway, NJ: IEEE
    [Google Scholar]
  96. 96. 
    Burgner J, Swaney PJ, Rucker DC, Gilbert HB, Nill ST et al. 2011. A bimanual teleoperated system for endonasal skull base surgery. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems2517–23 Piscataway, NJ: IEEE
    [Google Scholar]
  97. 97. 
    Torres LG, Webster RJ, Alterovitz R. 2012. Task-oriented design of concentric tube robots using mechanics-based models. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems4449–55 Piscataway, NJ: IEEE
    [Google Scholar]
  98. 98. 
    Burgner J, Gilbert HB, Webster RJ 2013. On the computational design of concentric tube robots: incorporating volume-based objectives. 2013 IEEE International Conference on Robotics and Automation1193–98 Piscataway, NJ: IEEE
    [Google Scholar]
  99. 99. 
    Baykal C. 2015. Design optimization algorithms for concentric tube robots. MS Thesis Univ. N.C. Chapel Hill:
    [Google Scholar]
  100. 100. 
    Boushaki MN. 2016. Design optimization and control for concentric tube robot in assisted single-access laparoscopic surgery PhD Thesis Univ. Montpellier Montpellier, Fr:.
  101. 101. 
    Noh G, Yoon SY, Yoon S, Kim K, Lee W et al. 2016. Expeditious design optimization of a concentric tube robot with a heat-shrink plastic tube. 2016 IEEE International Conference on Intelligent Robots and Systems3671–76 Piscataway, NJ: IEEE
    [Google Scholar]
  102. 102. 
    Granna J, Guo Y, Weaver KD, Burgner-Kahrs J. 2016. Comparison of optimization algorithms for a tubular aspiration robot for maximum coverage in intracerebral hemorrhage evacuation. J. Med. Robot. Res. 02:1750004
    [Google Scholar]
  103. 103. 
    Ha J, Dupont PE 2017. Incorporating tube-to-tube clearances in the kinematics of concentric tube robots. 2017 IEEE International Conference on Robotics and Automation6730–36 Piscataway, NJ: IEEE
    [Google Scholar]
  104. 104. 
    Yang X, Song S, Liu L, Yan T, Meng MQ 2019. Design and optimization of concentric tube robots based on surgical tasks, anatomical constraints and follow-the-leader deployment. IEEE Access 7:173612–25
    [Google Scholar]
  105. 105. 
    Morimoto TK, Greer JD, Hsieh MH, Okamura AM. 2016. Surgeon design interface for patient-specific concentric tube robots. 2016 IEEE International Conference on Biomedical Robotics and Biomechatronics41–48 Piscataway, NJ: IEEE
    [Google Scholar]
  106. 106. 
    Azimian H, Francis P, Looi T, Drake J 2014. Structurally-redesigned concentric-tube manipulators with improved stability. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems2030–35 Piscataway, NJ: IEEE
    [Google Scholar]
  107. 107. 
    Lee D, Kim J, Kim J, Baek C, Noh G et al. 2015. Anisotropic patterning to reduce instability of concentric-tube robots. IEEE Trans. Robot. 31:1311–23
    [Google Scholar]
  108. 108. 
    Kim J, Choi WY, Kang S, Kim C, Cho KJ 2019. Continuously variable stiffness mechanism using nonuniform patterns on coaxial tubes for continuum microsurgical robot. IEEE Trans. Robot. 35:1475–87
    [Google Scholar]
  109. 109. 
    Ai Xin Jue Luo K, Looi T, Sabetian S, Drake J 2018. Designing concentric tube manipulators for stability using topology optimization. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems1764–69 Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110. 
    Khadem M, O'Neill J, Mitros Z, Da Cruz L, Bergeles C 2019. Autonomous steering of concentric tube robots for enhanced force/velocity manipulability. 2019 IEEE International Conference on Intelligent Robots and Systems2197–204 Piscataway, NJ: IEEE
    [Google Scholar]
  111. 111. 
    Gosline AH, Vasilyev NV, Veeramani A, Wu M, Schmitz G et al. 2012. Metal MEMS tools for beating-heart tissue removal. 2012 IEEE International Conference on Robotics and Automation1921–26 Piscataway, NJ: IEEE
    [Google Scholar]
  112. 112. 
    Gilbert HB. 2016. Concentric tube robots: design, deployment, and stability PhD Thesis Vanderbilt Univ. Nashville, TN:
  113. 113. 
    Mitros Z, Sadati S, Seneci C, Bloch E, Leibrandt K et al. 2020. Optic nerve sheath fenestration with a multi-arm continuum robot. IEEE Robot. Autom. Lett. 5:4874–81
    [Google Scholar]
  114. 114. 
    Wu L, Tan BLW, Ren H. 2015. Prototype development of a hand-held robotic light pipe for intraocular procedures. 2015 IEEE International Conference on Robotics and Biomimetics368–73 Piscataway, NJ: IEEE
    [Google Scholar]
  115. 115. 
    Hendrick RJ, Herrell SD, Webster RJ. 2014. A multi-arm hand-held robotic system for transurethral laser prostate surgery. 2014 IEEE International Conference on Robotics and Automation2850–55 Piscataway, NJ: IEEE
    [Google Scholar]
  116. 116. 
    Girerd C, Morimoto TK. 2021. Design and control of a hand-held concentric tube robot for minimally invasive surgery. IEEE Trans. Robot. 37:1022–38
    [Google Scholar]
  117. 117. 
    Burgner J, Swaney PJ, Lathrop RA, Weaver KD, Webster RJ. 2013. Debulking from within: a robotic steerable cannula for intracerebral hemorrhage evacuation. IEEE Trans. Biomed. Eng. 60:2567–75
    [Google Scholar]
  118. 118. 
    Burgner J, Rucker DC, Gilbert HB, Swaney PJ, Russell PT et al. 2014. A telerobotic system for transnasal surgery. IEEE/ASME Trans. Mechatron. 19:996–1006
    [Google Scholar]
  119. 119. 
    Swaney PJ, Mahoney AW, Remirez AA, Lamers E, Hartley BI et al. 2015. Tendons, concentric tubes, and a bevel tip: three steerable robots in one transoral lung access system. 2015 IEEE International Conference on Robotics and Automation5378–83 Piscataway, NJ: IEEE
    [Google Scholar]
  120. 120. 
    Wei W, Goldman R, Simaan N, Fine H, Chang S. 2007. Design and theoretical evaluation of micro-surgical manipulators for orbital manipulation and intraocular dexterity. 2007 IEEE International Conference on Robotics and Automation3389–95 Piscataway, NJ: IEEE
    [Google Scholar]
  121. 121. 
    Wei W, Goldman RE, Fine HF, Chang S, Simaan N 2009. Performance evaluation for multi-arm manipulation of hollow suspended organs. IEEE Trans. Robot. 25:147–57
    [Google Scholar]
  122. 122. 
    Lin FY, Bergeles C, Yang GZ. 2015. Biometry-based concentric tubes robot for vitreoretinal surgery. 2015 IEEE International Conference on Engineering in Medicine and Biology5280–84 Piscataway, NJ: IEEE
    [Google Scholar]
  123. 123. 
    Dwyer G, Chadebecq F, Amo MT, Bergeles C, Maneas E et al. 2017. A continuum robot and control interface for surgical assist in fetoscopic interventions. IEEE Robot. Autom. Lett. 2:1656–63
    [Google Scholar]
  124. 124. 
    Vandebroek T, Ourak M, Gruijthuijsen C, Javaux A, Legrand J et al. 2019. Macro-micro multi-arm robot for single-port access surgery. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems425–32 Piscataway, NJ: IEEE
    [Google Scholar]
  125. 125. 
    Gosline AH, Vasilyev NV, Butler EJ, Folk C, Cohen A et al. 2012. Percutaneous intracardiac beating-heart surgery using metal MEMS tissue approximation tools. Int. J. Robot. Res. 31:1081–93
    [Google Scholar]
  126. 126. 
    Vasilyev NV, Gosline AH, Veeramani A, Wu MT, Schmitz GP et al. 2014. Tissue removal inside the beating heart using a robotically delivered metal MEMS tool. Int. J. Robot. Res. 34:236–47
    [Google Scholar]
  127. 127. 
    Amack S, Rox MF, Emerson M, Webster RJ, Alterovitz R et al. 2019. Design and control of a compact modular robot for transbronchial lung biopsy. Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling B Fei, CA Linte, pap. 109510I. SPIE Proc. 1095 Bellingham, WA: SPIE
    [Google Scholar]
  128. 128. 
    Hendrick RJ, Mitchell CR, Herrell SD, Webster RJ III 2015. Hand-held transendoscopic robotic manipulators: a transurethral laser prostate surgery case study. Int. J. Robot. Res. 34:1559–72
    [Google Scholar]
  129. 129. 
    Morimoto TK, Hawkes EW, Okamura AM. 2017. Design of a compact actuation and control system for flexible medical robots. IEEE Robot. Autom. Lett. 2:1579–85
    [Google Scholar]
/content/journals/10.1146/annurev-control-042920-014147
Loading
/content/journals/10.1146/annurev-control-042920-014147
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error