1932

Abstract

A common way to represent a system's dynamics is to specify how the state evolves in time. An alternative viewpoint is to specify how functions of the state evolve in time. This evolution of functions is governed by a linear operator called the Koopman operator, whose spectral properties reveal intrinsic features of a system. For instance, its eigenfunctions determine coordinates in which the dynamics evolve linearly. This review discusses the theoretical foundations of Koopman operator methods, as well as numerical methods developed over the past two decades to approximate the Koopman operator from data, for systems both with and without actuation. We pay special attention to ergodic systems, for which especially effective numerical methods are available. For nonlinear systems with an affine control input, the Koopman formalism leads naturally to systems that are bilinear in the state and the input, and this structure can be leveraged for the design of controllers and estimators.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071020-010108
2021-05-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-071020-010108.html?itemId=/content/journals/10.1146/annurev-control-071020-010108&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Koopman BO. 1931. Hamiltonian systems and transformations in Hilbert space. PNAS 17:315–18
    [Google Scholar]
  2. 2. 
    von Neumann J. 1932. Proof of the quasi-ergodic hypothesis. PNAS 18:70–82
    [Google Scholar]
  3. 3. 
    Giannakis D. 2019. Data-driven spectral decomposition and forecasting of ergodic dynamical systems. Appl. Comput. Harmon. Anal. 47:338–96
    [Google Scholar]
  4. 4. 
    Reed M, Simon B. 1980. Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis San Diego, CA: Academic
    [Google Scholar]
  5. 5. 
    Mezić I. 2020. Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space geometry. J. Nonlinear Sci. 30:2091–45
    [Google Scholar]
  6. 6. 
    Lusch B, Kutz JN, Brunton SL. 2018. Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9:4950
    [Google Scholar]
  7. 7. 
    Koopman BO, von Neumann J 1932. Dynamical systems of continuous spectra. PNAS 18:255–63
    [Google Scholar]
  8. 8. 
    Das S, Giannakis D, Slawinska J. 2018. Reproducing kernel Hilbert space compactification of unitary evolution groups. arXiv:1808.01515 [math.DS]
  9. 9. 
    Korda M, Putinar M, Mezić I. 2020. Data-driven spectral analysis of the Koopman operator. Appl. Comput. Harmon. Anal. 48:599–629
    [Google Scholar]
  10. 10. 
    Cornfeld IP, Fomin SV, Sinai YG. 1982. Ergodic Theory New York: Springer
  11. 11. 
    Pavliotis GA. 2014. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations New York: Springer
  12. 12. 
    Mezić I. 2005. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn 41:309–25
    [Google Scholar]
  13. 13. 
    Froyland G, Gottwald GA, Hammerlindl A. 2014. A computational method to extract macroscopic variables and their dynamics in multiscale systems. SIAM J. Appl. Dyn. Syst. 13:1816–46
    [Google Scholar]
  14. 14. 
    Wu H, Noé F. 2020. Variational approach for learning Markov processes from time series data. J. Nonlinear Sci. 30:23–66
    [Google Scholar]
  15. 15. 
    Lan Y, Mezić I. 2013. Linearization in the large of nonlinear systems and Koopman operator spectrum. Phys. D 242:42–53
    [Google Scholar]
  16. 16. 
    Mauroy A, Mezić I. 2016. Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 61:3356–69
    [Google Scholar]
  17. 17. 
    Mauroy A, Mezić I. 2012. On the use of Fourier averages to compute the global isochrons of (quasi) periodic dynamics. Chaos 22:033112
    [Google Scholar]
  18. 18. 
    Mauroy A, Mezić I, Moehlis J. 2013. Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Phys. D 261:19–30
    [Google Scholar]
  19. 19. 
    Dellnitz M, Junge O. 1999. On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36:491–515
    [Google Scholar]
  20. 20. 
    Froyland G, Dellnitz M. 2003. Detecting and locating near-optimal almost-invariant sets and cycles. SIAM J. Sci. Comput. 24:1839–63
    [Google Scholar]
  21. 21. 
    Froyland G, Padberg K, England MH, Treguier AM. 2007. Detection of coherent oceanic structures via transfer operators. Phys. Rev. Lett. 98:224503
    [Google Scholar]
  22. 22. 
    Froyland G. 2013. An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems. Phys. D 250:1–19
    [Google Scholar]
  23. 23. 
    Froyland G, González-Tokman C, Quas A. 2014. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. J. Comput. Dyn. 1:249–78
    [Google Scholar]
  24. 24. 
    Schmid PJ. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28
    [Google Scholar]
  25. 25. 
    Rowley CW, Mezić I, Bagheri S, Schlatter P, Henningson DS. 2009. Spectral analysis of nonlinear flows. J. Fluid Mech. 641:115–27
    [Google Scholar]
  26. 26. 
    Williams MO, Kevrekidis IG, Rowley CW. 2015. A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25:1307–46
    [Google Scholar]
  27. 27. 
    Brunton SL, Brunton BW, Proctor JL, Kaiser E, Kutz JN. 2017. Chaos as an intermittently forced linear system. Nat. Commun. 8:19
    [Google Scholar]
  28. 28. 
    Williams MO, Rowley CW, Kevrekidis IG. 2015. A kernel-based method for data-driven Koopman spectral analysis. J. Comput. Dyn. 2:247–65
    [Google Scholar]
  29. 29. 
    Klus S, Koltai P, Schütte C. 2016. On the numerical approximation of the Perron-Frobenius and Koopman operator. J. Comput. Dyn. 3:51–79
    [Google Scholar]
  30. 30. 
    Klus S, Nüske F, Koltai P, Wu H, Kevrekidis I et al. 2018. Data-driven model reduction and transfer operator approximation. J. Nonlinear Sci. 28:985–1010
    [Google Scholar]
  31. 31. 
    Klus S, Nüske F, Peitz S, Niemann JH, Clementi C, Schütte C. 2020. Data-driven approximation of the Koopman generator: model reduction, system identification, and control. Phys. D 406:132416
    [Google Scholar]
  32. 32. 
    Korda M, Mezić I. 2018. On convergence of extended dynamic mode decomposition to the Koopman operator. J. Nonlinear Sci. 28:687–710
    [Google Scholar]
  33. 33. 
    Hemati MS, Rowley CW, Deem EA, Cattafesta LN. 2017. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets. Theor. Comput. Fluid Dyn. 31:349–68
    [Google Scholar]
  34. 34. 
    Jovanović MR, Schmid PJ, Nichols JW. 2014. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26:024103
    [Google Scholar]
  35. 35. 
    Li Q, Dietrich F, Bollt EM, Kevrekidis IG. 2017. Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27:103111
    [Google Scholar]
  36. 36. 
    Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning Cambridge, MA: MIT Press
  37. 37. 
    Takeishi N, Kawahara Y, Yairi T 2017. Learning Koopman invariant subspaces for dynamic mode decomposition. Advances in Neural Information Processing Systems 30 I Guyon, UV Luxburg, S Bengio, H Wallach, R Fergus et al.1130–40 Red Hook, NY: Curran
    [Google Scholar]
  38. 38. 
    Wehmeyer C, Noé F. 2018. Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 148:241703
    [Google Scholar]
  39. 39. 
    Morton J, Jameson A, Kochenderfer MJ, Witherden F 2018. Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett 9258–68 Red Hook, NY: Curran
    [Google Scholar]
  40. 40. 
    Yeung E, Kundu S, Hodas N. 2019. Learning deep neural network representations for Koopman operators of nonlinear dynamical systems. 2019 American Control Conference4832–39 Piscataway, NJ: IEEE
    [Google Scholar]
  41. 41. 
    Otto SE, Rowley CW. 2019. Linearly recurrent autoencoder networks for learning dynamics. SIAM J. Appl. Dyn. Syst. 18:558–93
    [Google Scholar]
  42. 42. 
    Pan S, Duraisamy K. 2020. Physics-informed probabilistic learning of linear embeddings of nonlinear dynamics with guaranteed stability. SIAM J. Appl. Dyn. Syst. 19:480–509
    [Google Scholar]
  43. 43. 
    Champion K, Lusch B, Kutz JN, Brunton SL 2019. Data-driven discovery of coordinates and governing equations. PNAS 116:22445–51
    [Google Scholar]
  44. 44. 
    Chen TQ, Rubanova Y, Bettencourt J, Duvenaud DK 2018. Neural ordinary differential equations. Advances in Neural Information Processing Systems 31 S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett 6571–83 Red Hook, NY: Curran
    [Google Scholar]
  45. 45. 
    Berry T, Giannakis D, Harlim J. 2015. Nonparameteric forecasting of low-dimensional dynamical systems. Phys. Rev. E 91:032915
    [Google Scholar]
  46. 46. 
    Das S, Giannakis D. 2019. Delay-coordinate maps and the spectra of Koopman operators. J. Stat. Phys. 175:1107–45
    [Google Scholar]
  47. 47. 
    Das S, Giannakis D. 2020. Koopman spectra in reproducing kernel Hilbert spaces. Appl. Comput. Harmon. Anal. 49:573–607
    [Google Scholar]
  48. 48. 
    Giannakis D, Kolchinskaya A, Krasnov D, Schumacher J. 2018. Koopman analysis of the long-term evolution in a turbulent convection cell. J. Fluid Mech. 847:735–67
    [Google Scholar]
  49. 49. 
    Coifman RR, Lafon S. 2006. Diffusion maps. Appl. Comput. Harmon. Anal. 21:5–30
    [Google Scholar]
  50. 50. 
    Berry T, Harlim J. 2015. Variable bandwidth diffusion kernels. Appl. Comput. Harmon. Anal. 40:68–96
    [Google Scholar]
  51. 51. 
    Aronszajn N. 1950. Theory of reproducing kernels. Trans. Am. Math. Soc. 68:337–404
    [Google Scholar]
  52. 52. 
    Williams MO, Hemati MS, Dawson ST, Kevrekidis IG, Rowley CW. 2016. Extending data-driven Koopman analysis to actuated systems. IFAC-PapersOnLine 49:18704–9
    [Google Scholar]
  53. 53. 
    Pazy A. 1983. Semigroups of Linear Operators and Applications to Partial Differential Equations New York: Springer
  54. 54. 
    Surana A. 2016. Koopman operator based observer synthesis for control-affine nonlinear systems. 2016 IEEE 55th Conference on Decision and Control6492–99 Piscataway, NJ: IEEE
    [Google Scholar]
  55. 55. 
    Mauroy A, Goncalves J. 2016. Linear identification of nonlinear systems: a lifting technique based on the Koopman operator. 2016 IEEE 55th Conference on Decision and Control6500–5 Piscataway, NJ: IEEE
    [Google Scholar]
  56. 56. 
    Goswami D, Paley DA. 2017. Global bilinearization and controllability of control-affine nonlinear systems: a Koopman spectral approach. 2017 IEEE 56th Annual Conference on Decision and Control6107–12 Piscataway, NJ: IEEE
    [Google Scholar]
  57. 57. 
    Huang B, Ma X, Vaidya U 2020. Data-driven nonlinear stabilization using Koopman operator. The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications A Mauroy, I Mezić, Y Susuki 313–34 Cham, Switz: Springer
    [Google Scholar]
  58. 58. 
    Brockett RW. 1972. System theory on group manifolds and coset spaces. SIAM J. Control 10:265–84
    [Google Scholar]
  59. 59. 
    Proctor JL, Brunton SL, Kutz JN. 2016. Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 15:142–61
    [Google Scholar]
  60. 60. 
    Korda M, Mezić I. 2018. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93:149–60
    [Google Scholar]
  61. 61. 
    Korda M, Susuki Y, Mezić I 2018. Power grid transient stabilization using Koopman model predictive control. IFAC-PapersOnLine 51:28297–302
    [Google Scholar]
  62. 62. 
    Arbabi H, Korda M, Mezić I. 2018. A data-driven Koopman model predictive control framework for nonlinear partial differential equations. 2018 IEEE Conference on Decision and Control6409–14 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Narasingam A, Kwon JSI. 2019. Koopman Lyapunov-based model predictive control of nonlinear chemical process systems. AIChE J 65:e16743
    [Google Scholar]
  64. 64. 
    Kaiser E, Kutz JN, Brunton SL 2020. Data-driven approximations of dynamical systems operators for control. The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications A Mauroy, I Mezić, Y Susuki 197–234 Cham, Switz: Springer
    [Google Scholar]
  65. 65. 
    Brunton SL, Brunton BW, Proctor JL, Kutz JN. 2016. Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLOS ONE 11:e0150171
    [Google Scholar]
  66. 66. 
    Carleman T. 1932. Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires. Acta Math 59:63–87
    [Google Scholar]
  67. 67. 
    Kazantzis N, Kravaris C. 1999. Time-discretization of nonlinear control systems via Taylor methods. Comput. Chem. Eng. 23:763–84
    [Google Scholar]
  68. 68. 
    Hashemian N, Armaou A. 2015. Fast moving horizon estimation of nonlinear processes via Carleman linearization. 2015 American Control Conference3379–85 Piscataway, NJ: IEEE
    [Google Scholar]
  69. 69. 
    Forets M, Pouly A. 2017. Explicit error bounds for Carleman linearization. arXiv:1711.02552 [math.NA]
  70. 70. 
    Steeb WH, Wilhelm F. 1980. Non-linear autonomous systems of differential equations and Carleman linearization procedure. J. Math. Anal. Appl. 77:601–11
    [Google Scholar]
  71. 71. 
    Kowalski K, Steeb WH. 1991. Nonlinear Dynamical Systems and Carleman Linearization Singapore: World Sci.
  72. 72. 
    Banks S. 1992. Infinite-dimensional Carleman linearization, the Lie series and optimal control of non-linear partial differential equations. Int. J. Syst. Sci. 23:663–75
    [Google Scholar]
  73. 73. 
    Peitz S, Otto SE, Rowley CW. 2020. Data-driven model predictive control using interpolated Koopman generators. SIAM J. Appl. Dyn. Syst. 19:2162–93
    [Google Scholar]
  74. 74. 
    Rowley CW, Dawson ST. 2017. Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49:387–417
    [Google Scholar]
  75. 75. 
    Zhang H, Dawson ST, Rowley CW, Deem EA, Cattafesta LN. 2019. Evaluating the accuracy of the dynamic mode decomposition. J. Comput. Dyn. 7:35–56
    [Google Scholar]
  76. 76. 
    Wynn A, Pearson D, Ganapathisubramani B, Goulart PJ. 2013. Optimal mode decomposition for unsteady flows. J. Fluid Mech. 733:473–503
    [Google Scholar]
  77. 77. 
    Peitz S, Klus S. 2019. Koopman operator-based model reduction for switched-system control of PDEs. Automatica 106:184–91
    [Google Scholar]
  78. 78. 
    Huang B, Ma X, Vaidya U. 2018. Feedback stabilization using Koopman operator. 2018 IEEE Conference on Decision and Control6434–39 Piscataway, NJ: IEEE
    [Google Scholar]
  79. 79. 
    Deem EA, Cattafesta LN, Hemati M, Zhang H, Rowley CW, Mittal R. 2020. Adaptive separation control of a laminar boundary layer using online dynamic mode decomposition. J. Fluid Mech. 903:A21
    [Google Scholar]
  80. 80. 
    Surana A, Banaszuk A 2016. Linear observer synthesis for nonlinear systems using Koopman operator framework. IFAC-PapersOnLine 49:18716–23
    [Google Scholar]
  81. 81. 
    Gomez DF, Lagor FD, Kirk PB, Lind AH, Jones AR, Paley DA. 2019. Data-driven estimation of the unsteady flowfield near an actuated airfoil. J. Guid. Control Dyn. 42:2279–87
    [Google Scholar]
/content/journals/10.1146/annurev-control-071020-010108
Loading
/content/journals/10.1146/annurev-control-071020-010108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error