1932

Abstract

The concept of an artificial corporeal machine that can reproduce has attracted the attention of researchers from various fields over the past century. Some have approached the topic with a desire to understand biological life and develop artificial versions; others have examined it as a potentially practical way to use material resources from the moon and Mars to bootstrap the exploration and colonization of the solar system. This review considers both bodies of literature, with an emphasis on the underlying principles required to make self-replicating robotic systems from raw materials a reality. We then illustrate these principles with machines from our laboratory and others and discuss how advances in new manufacturing processes such as 3-D printing can have a synergistic effect in advancing the development of such systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071819-010010
2020-05-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/control/3/1/annurev-control-071819-010010.html?itemId=/content/journals/10.1146/annurev-control-071819-010010&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Taylor T, Dorin A. 2018. Past visions of artificial futures: one hundred and fifty years under the spectre of evolving machines. ALIFE 2018: Proceedings of the Artificial Life Conference 2018 T Ikegami, N Virgo, O Witkowski, M Oka, R Suzuki, H Iizuka 91–98 Cambridge, MA: MIT Press
    [Google Scholar]
  2. 2. 
    von Neumann J. 1966. Theory of Self-Reproducing Automata AW Burks Champaign: Univ. Ill. Press
  3. 3. 
    Moore EF. 1956. Artificial living plants. Scientific American 195:4 Oct 118–26
    [Google Scholar]
  4. 4. 
    Penrose LS, Penrose R. 1957. A self-reproducing analogue. Nature 179:1183
    [Google Scholar]
  5. 5. 
    Bock T, Linner T, Eibisch N, Lauer W 2010. Fusion of product and automated-replicative production in construction. Proceedings of the 27th International Symposium on Automation and Robotics in Construction12–21 Oulu, Finl: Int. Assoc. Autom. Robot. Constr.
    [Google Scholar]
  6. 6. 
    Dyson F. 1979. Disturbing the Universe New York: Basic Books
  7. 7. 
    Sipper M. 1998. Fifty years of research on self-replication: an overview. Artif. Life 4:237–57
    [Google Scholar]
  8. 8. 
    Freitas RA Jr, Merkle RC. 2004. Kinematic Self-Replicating Machines Austin, TX: Landes Biosci.
  9. 9. 
    Pfeifer R, Lungarella M, Iida F 2007. Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–93
    [Google Scholar]
  10. 10. 
    Yim M, Shen WM, Salemi B, Rus D, Moll M et al. 2007. Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14:143–52
    [Google Scholar]
  11. 11. 
    Simonite T. 2010. Rise of the replicators. New Scientist 206:2762 May 29 40–43
    [Google Scholar]
  12. 12. 
    Doncieux S, Bredeche N, Mouret JB, Eiben AEG 2015. Evolutionary robotics: what, why, and where to. Front. Robot. AI 2:4
    [Google Scholar]
  13. 13. 
    Klavins E. 2007. Programmable self-assembly. IEEE Control Syst. Mag. 27:443–56
    [Google Scholar]
  14. 14. 
    Groß R, Dorigo M. 2008. Self-assembly at the macroscopic scale. Proc. IEEE 96:1490–508
    [Google Scholar]
  15. 15. 
    Petersen KH, Napp N, Stuart-Smith R, Rus D, Kovac M 2019. A review of collective robotic construction. Sci. Robot. 4:eaau8479
    [Google Scholar]
  16. 16. 
    Lipson H, Kurman M. 2010. Factory @ Home: the emerging economy of personal fabrication Rep., US Off. Sci. Technol. Policy Washington, DC:
  17. 17. 
    Gershenson C, Trianni V, Werfel J, Sayama H 2019. Self-organization and artificial life. arXiv:1903.07456 [nlin.AO]
  18. 18. 
    Randhawa JS, Leong TG, Bassik N, Benson BR, Jochmans MT, Gracias DH 2008. Pick-and-place using chemically actuated microgrippers. J. Am. Chem. Soc. 130:17238–39
    [Google Scholar]
  19. 19. 
    Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM et al. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–55
    [Google Scholar]
  20. 20. 
    Howard D, Eiben AE, Kennedy DF, Mouret JB, Valencia P, Winkler D 2019. Evolving embodied intelligence from materials to machines. Nat. Mach. Intell. 1:12–19
    [Google Scholar]
  21. 21. 
    White P, Zykov V, Bongard JC, Lipson H 2005. Three dimensional stochastic reconfiguration of modular robots. Robotics: Science and Systems I S Thrun, GS Sukhatme, S Schaal 161–68 Cambridge, MA: MIT Press
    [Google Scholar]
  22. 22. 
    Miyashita S, Hadorn M, Hotz PE 2007. Water floating self-assembling agents. Agent and Multi-Agent Systems: Technologies and Applications NT Nguyen, A Grzech, RJ Howlett, LC Jain 665–74 Berlin: Springer
    [Google Scholar]
  23. 23. 
    Tolley MT, Krishnan M, Erickson D, Lipson H 2008. Dynamically programmable fluidic assembly. Appl. Phys. Lett. 93:254105
    [Google Scholar]
  24. 24. 
    Matsumoto M, Hashimoto S. 2009. Passive self-replication of millimeter-scale parts. IEEE Trans. Autom. Sci. Eng. 6:385–91
    [Google Scholar]
  25. 25. 
    Kaloutsakis G, Chirikjian GS. 2011. A stochastic self-replicating robot capable of hierarchical assembly. Robotica 29:137–52
    [Google Scholar]
  26. 26. 
    Salzberg C, Sayama H. 2004. Complex genetic evolution of artificial self-replicators in cellular automata. Complexity 10:33–39
    [Google Scholar]
  27. 27. 
    Galloway KC, Jois R, Yim M 2010. Factory floor: a robotically reconfigurable construction platform. 2010 IEEE International Conference on Robotics and Automation2467–72 Piscataway, NJ: IEEE
    [Google Scholar]
  28. 28. 
    MacCurdy R, McNicoll A, Lipson H 2014. BitBlox: printable digital materials for electromechanical machines. Int. J. Robot. Res. 33:1342–60
    [Google Scholar]
  29. 29. 
    Moses MS, Ma H, Wolfe KC, Chirikjian GS 2014. An architecture for universal construction via modular robotic components. Robot. Auton. Syst. 62:945–65
    [Google Scholar]
  30. 30. 
    Langford W, Ghassaei A, Jenett B, Gershenfeld N 2017. Hierarchical assembly of a self-replicating spacecraft. 2017 IEEE Aerospace Conference Piscataway, NJ: IEEE https://doi.org/10.1109/AERO.2017.7943956
    [Crossref] [Google Scholar]
  31. 31. 
    Hall JS. 1999. Architectural considerations for self-replicating manufacturing systems. Nanotechnology 10:323
    [Google Scholar]
  32. 32. 
    Lee K, Chirikjian GS. 2007. Robotic self-replication: a descriptive framework and a physical demonstration from low-complexity parts. IEEE Robot. Autom. Mag. 14:434–43
    [Google Scholar]
  33. 33. 
    Kabamba PT, Owens PD, Ulsoy AG 2011. The von Neumann threshold of self-reproducing systems: theory and application. Robotica 29:123–35
    [Google Scholar]
  34. 34. 
    Lee K, Moses MS, Chirikjian GS 2008. Robotic self-replication in structured environments: physical demonstrations and complexity measures. Int. J. Robot. Res. 27:387–401
    [Google Scholar]
  35. 35. 
    Adams B, Lipson H. 2009. A universal framework for analysis of self-replication phenomena. Entropy 11:295–325
    [Google Scholar]
  36. 36. 
    Arbib MA. 1974. The likelihood of the evolution of communicating intelligences on other planets. Interstellar Communication: Scientific Perspectives C Ponnamperuma, AGW Cameron 59–78 Boston: Houghton Mifflin
    [Google Scholar]
  37. 37. 
    Freitas RA Jr, Gilbreath WP. 1980. Replicating systems concepts: self-replicating lunar factory and demonstration. Advanced Automation for Space Missions RA Freitas Jr., WP Gilbreath 189–335 NASA Conf. Publ. 2255 Washington, DC: US Gov. Print. Off.
    [Google Scholar]
  38. 38. 
    Chirikjian GS, Zhou Y, Suthakorn J 2002. Self-replicating robots for lunar development. IEEE/ASME Trans. Mechatron. 7:462–72
    [Google Scholar]
  39. 39. 
    Chirikjian GS. 2004. An architecture for self-replicating lunar factories Tech. Rep., NASA Inst. Adv. Concepts Washington, DC:
  40. 40. 
    Metzger PT, Muscatello A, Mueller RP, Mantovani J 2013. Affordable, rapid bootstrapping of the space industry and solar system civilization. J. Aerospace Eng. 26:18–29
    [Google Scholar]
  41. 41. 
    Manion C, Soria NF, Tumer K, Hoyle C, Tumer IY 2015. Designing a self-replicating robotic manufacturing factory. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference pap. DETC2015-47628 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  42. 42. 
    Ellery A. 2016. John von Neumann's self-replicating machine—critical components required. 2016 IEEE International Conference on Systems, Man, and Cybernetics000314–19 Piscataway, NJ: IEEE
    [Google Scholar]
  43. 43. 
    Ellery A. 2018. Lunar in situ resource utilisation—the key to human salvation on earth. Earth and Space 2018: Engineering for Extreme Environments RB Malla, RK Goldberg, AD Roberts 380–89 Reston, VA: Am. Soc. Civil Eng.
    [Google Scholar]
  44. 44. 
    Lackner KS, Wendt CH. 1995. Exponential growth of large self-reproducing machine systems. Math. Comput. Model. 21:55–81
    [Google Scholar]
  45. 45. 
    Malone E, Lipson H. 2007. Fab@Home: the personal desktop fabricator kit. Rapid Prototyp. J. 13:245–55
    [Google Scholar]
  46. 46. 
    Jones R, Haufe P, Sells E, Iravani P, Olliver V et al. 2011. RepRap – the replicating rapid prototyper. Robotica 29:177–91
    [Google Scholar]
  47. 47. 
    Laplume A, Anzalone GC, Pearce JM 2016. Open-source, self-replicating 3-D printer factory for small-business manufacturing. Int. J. Adv. Manuf. Technol. 85:633–42
    [Google Scholar]
  48. 48. 
    Gingery D. 1982. The Metal Lathe Build Your Own Metal Working Shop from Scrap No. 2 Bradley, IL: Lindsay
  49. 49. 
    Pearce JM. 2013. Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs Boston: Newnes
  50. 50. 
    Junk A, Riess F. 2006. From an idea to a vision: There's plenty of room at the bottom. Am. J. Phys. 74:825–30
    [Google Scholar]
  51. 51. 
    Feynman RP. 1959. There's plenty of room at the bottom: an invitation to enter a new field of physics Lecture presented at the Annual Meeting of the American Physical Society Pasadena, CA: Dec. 29
  52. 52. 
    Ruiz-Mirazo K, Umerez J, Moreno A 2008. Enabling conditions for ‘open-ended evolution.. Biol. Philos. 23:67–85
    [Google Scholar]
  53. 53. 
    Studer G, Lipson H. 2006. Spontaneous emergence of self-replicating structures in Molecube automata. Artificial Life X: Proceedings of the 10th International Conference on Artificial Life LM Rocha, LS Yaeger, MA Bedau, D Floreano, RL Goldstone, A Vespignani 220–26 Cambridge, MA: MIT Press
    [Google Scholar]
  54. 54. 
    Rieffel J, Mouret JB, Bredeche N, Haasdijk E 2017. Introduction to the Evolution of Physical Systems Special Issue. Artif. Life 23:119–23
    [Google Scholar]
  55. 55. 
    Lipson H, Pollack JB. 2000. Automatic design and manufacture of robotic lifeforms. Nature 406:974–78
    [Google Scholar]
  56. 56. 
    Jelisavcic M, De Carlo M, Hupkes E, Eustratiadis P, Orlowski J et al. 2017. Real-world evolution of robot morphologies: a proof of concept. Artif. Life 23:206–35
    [Google Scholar]
  57. 57. 
    Brodbeck L, Hauser S, Iida F 2015. Morphological evolution of physical robots through model-free phenotype development. PLOS ONE 10:e0128444
    [Google Scholar]
  58. 58. 
    Vujovic V, Rosendo A, Brodbeck L, Iida F 2017. Evolutionary developmental robotics: improving morphology and control of physical robots. Artif. Life 23:169–85
    [Google Scholar]
  59. 59. 
    Drexler KE. 1990. Engines of Creation: The Coming Era of Nanotechnology New York: Anchor
  60. 60. 
    Schneiker C, Hameroff S, Voelker M, He J, Dereniak E, McCuskey R 1988. Scanning tunnelling engineering. J. Microsc. 152:585–96
    [Google Scholar]
  61. 61. 
    Roukes M. 2001. Plenty of room, indeed. Scientific American 285:3 Sept. 48–57
    [Google Scholar]
  62. 62. 
    Toumey C. 2005. Apostolic succession. Eng. Sci. 68:16–23
    [Google Scholar]
  63. 63. 
    Regis E. 1996. Nano: The Emerging Science of Nanotechnology New York: Back Bay
  64. 64. 
    Whitesides GM. 2001. The once and future nanomachine. Scientific American 285:3 Sept 78–83
    [Google Scholar]
  65. 65. 
    Baum R. 2003. Drexler and Smalley make the case for and against ‘molecular assemblers. Chem. Eng. News 81:37–42
    [Google Scholar]
  66. 66. 
    Jones RAL. 2004. Soft Machines: Nanotechnology and Life Oxford, UK: Oxford Univ. Press
  67. 67. 
    Woodhouse EJ. 2004. Nanotechnology controversies. IEEE Technol. Soc. Mag. 23:46–8
    [Google Scholar]
  68. 68. 
    Moriarty P. 2005. Nanotechnology: radical new science or plus ça change. Nanotechnol. Percept. 1:115–18
    [Google Scholar]
  69. 69. 
    Granqvist N, Laurila J. 2011. Rage against self-replicating machines: framing science and fiction in the US nanotechnology field. Organ. Stud. 32:253–80
    [Google Scholar]
  70. 70. 
    Wolkow RA. 2004. The ruse and the reality of nanotechnology. Health Law Rev 12:14–19
    [Google Scholar]
  71. 71. 
    Olson S. 2011. Philip Moriarty discusses mechanosynthesis with Sander Olson. NextBigFuture Mar. 22. https://www.nextbigfuture.com/2011/03/philip-moriarty-discusses.html
    [Google Scholar]
  72. 72. 
    Kelly TR, Snapper ML. 2017. Nanotechnology: a molecular assembler. Nature 549:336–37
    [Google Scholar]
  73. 73. 
    Drexler KE. 2013. Radical Abundance: How a Revolution in Nanotechnology Will Change Civilization Philadelphia: Public Aff.
  74. 74. 
    Balzani V. 2005. Nanoscience and nanotechnology: a personal view of a chemist. Small 1:278–83
    [Google Scholar]
  75. 75. 
    Service RF. 2016. Chemistry Nobel heralds age of molecular machines. Science 354:158–59
    [Google Scholar]
  76. 76. 
    Kassem S, Lee ATL, Leigh DA, Marcos V, Palmer LI, Pisano S 2017. Stereodivergent synthesis with a programmable molecular machine. Nature 549:374–78
    [Google Scholar]
  77. 77. 
    Paxton J. 2011. Taylor's unsung contribution: making interchangeable parts practical. J. Bus. Manag. 17:75–83
    [Google Scholar]
  78. 78. 
    Moses MS, Yamaguchi H, Chirikjian GS 2010. Towards cyclic fabrication systems for modular robotics and rapid manufacturing. Robotics: Science and Systems V J Trinkle, Y Matsuoka, JS Castellanos 121–28 Cambridge, MA: MIT Press
    [Google Scholar]
  79. 79. 
    Suthakorn J, Cushing AB, Chirikjian GS 2003. An autonomous self-replicating robotic system. 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics137–42 Piscataway, NJ: IEEE
    [Google Scholar]
  80. 80. 
    Zykov V, Mytilinaios E, Adams B, Lipson H 2005. Self-reproducing machines. Nature 435:163–64
    [Google Scholar]
  81. 81. 
    Zykov V, Mytilinaios E, Desnoyer M, Lipson H 2007. Evolved and designed self-reproducing modular robotics. IEEE Trans. Robot. 23:308–19
    [Google Scholar]
  82. 82. 
    Moses MS, Chirikjian GS. 2009. Simple components for a reconfigurable modular robotic system. IEEE/RSJ International Conference on Intelligent Robots and Systems1478–83 Piscataway, NJ: IEEE
    [Google Scholar]
  83. 83. 
    Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K, Kokaji S 2002. M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7:431–41
    [Google Scholar]
  84. 84. 
    Hunt J. 2017. This company's robots are making everything—and reshaping the world. Bloomberg Businessweek Oct. 18. https://www.bloomberg.com/news/features/2017-10-18/this-company-s-robots-are-making-everything-and-reshaping-the-world
    [Google Scholar]
  85. 85. 
    Jones A, Straub J. 2017. Concepts for 3D printing-based self-replicating robot command and coordination techniques. Machines 5:12
    [Google Scholar]
  86. 86. 
    Stevens WM. 2011. A self-replicating programmable constructor in a kinematic simulation environment. Robotica 29:153–76
    [Google Scholar]
  87. 87. 
    Stevens WM. 2016. RelayRepRap. Hackaday May 26. https://hackaday.io/project/11914-relayreprap
    [Google Scholar]
  88. 88. 
    Liu A, Sterling M, Kim D, Pierpont A, Schlothauer A et al. 2007. A memoryless robot that assembles seven subsystems to copy itself. 2007 IEEE International Symposium on Assembly and Manufacturing264–69 Piscataway, NJ: IEEE
    [Google Scholar]
  89. 89. 
    Lee K, Chirikjian GS. 2010. An autonomous robot that duplicates itself from low-complexity components. 2010 IEEE International Conference on Robotics and Automation2771–76 Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90. 
    Hastings W, Labarre M, Viswanathan A 2004. A minimalist parts manipulation system for a self-replicating electromechanical circuit. International Conference on Intelligent Manipulation and Grasping R Molfino 349–54 Genoa, Italy: Grafica KC
    [Google Scholar]
  91. 91. 
    Malone E, Lipson H. 2007. Freeform fabrication of a complete electromechanical relay. Proceedings of the 18th Solid Freeform Fabrication Symposium513–26 Austin: Univ. Tex. Austin
    [Google Scholar]
  92. 92. 
    Song Y, Panas RM, Chizari S, Shaw LA, Jackson JA et al. 2019. Additively manufacturable micro-mechanical logic gates. Nat. Commun. 10:882
    [Google Scholar]
  93. 93. 
    Griffith S, Goldwater D, Jacobson JM 2005. Self-replication from random parts. Nature 437:636
    [Google Scholar]
  94. 94. 
    Hägele M, Nilsson K, Pires JN 2008. Industrial robotics. Springer Handbook of Robotics B Siciliano, O Khatib 963–86 Berlin: Springer
    [Google Scholar]
  95. 95. 
    Groll C. 2017. KUKA machining cell goes cloud News Release, Sept. 4, KUKA Augsburg, Ger: https://www.kuka.com/en-us/press/news/2017/09/kuka-machining-cell-goes-cloud
  96. 96. 
    Kurokawa H, Kamimura A, Tomita K 2014. Self-assembly and self-reproduction by an M-TRAN modular robotic system. Distributed Autonomous Robotic Systems MA Hsieh, G Chirkjian 205–18 Berlin: Springer
    [Google Scholar]
  97. 97. 
    Buckley WR. 2008. Computational ontogeny. Biol. Theory 3:3–6
    [Google Scholar]
  98. 98. 
    Evans CJ, Hocken RJ, Estler WT 1996. Self-calibration: reversal, redundancy, error separation, and ‘absolute testing. CIRP Ann 45:617–34
    [Google Scholar]
  99. 99. 
    Uzsoy R, Lee CY, Martin-Vega LA 1992. A review of production planning and scheduling models in the semiconductor industry part I: system characteristics, performance evaluation and production planning. IIE Trans 24:47–60
    [Google Scholar]
  100. 100. 
    Brogårdh T. 2007. Present and future robot control development—an industrial perspective. Annu. Rev. Control 31:69–79
    [Google Scholar]
  101. 101. 
    Sayama H. 2003. Workplace construction: a theoretical model of robust self-replication in kinematic universe. Proceedings of the Eighth International Symposium on Artificial Life and Robotics M Sugisaka, H Tanaka 267–70 Beppu, Jpn: Int. Soc. Artif. Life Robot.
    [Google Scholar]
  102. 102. 
    Menezes AA, Kabamba PT. 2007. A combined seed-identification and generation analysis algorithm for self-reproducing systems. 2007 American Control Conference2582–87 Piscataway, NJ: IEEE
    [Google Scholar]
  103. 103. 
    Menezes AA, Kabamba PT. 2011. Optimal seeding of self-reproducing systems. Artif. Life 18:27–51
    [Google Scholar]
  104. 104. 
    Gitik R. 2018. Optimal seeding and self-reproduction from a mathematical point of view. arXiv:1806.09506 [cs.AI]
  105. 105. 
    Sayama H. 2008. Construction theory, self-replication, and the halting problem. Complexity 13:16–22
    [Google Scholar]
  106. 106. 
    Stevens WM. 2007. Simulating self-replicating machines. J. Intell. Robot. Syst. 49:135–50
    [Google Scholar]
  107. 107. 
    Pesavento U. 1995. An implementation of von Neumann's self-reproducing machine. Artif. Life 2:337–54
    [Google Scholar]
  108. 108. 
    Dittrich P, Ziegler J, Banzhaf W 2001. Artificial chemistries—a review. Artif. Life 7:225–75
    [Google Scholar]
  109. 109. 
    Smith A, Turney PD, Ewaschuk R 2003. Self-replicating machines in continuous space with virtual physics. Artif. Life 9:21–40
    [Google Scholar]
  110. 110. 
    Stevens WM. 2004. NODES: an environment for simulating kinematic self-replicating machines. Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems J Pollack, M Bedau, P Husbands, T Ikegami, RA Watson 39–44 Cambridge, MA: MIT Press
    [Google Scholar]
  111. 111. 
    Ewaschuk R, Turney PD. 2006. Self-replication and self-assembly for manufacturing. Artif. Life 12:411–33
    [Google Scholar]
  112. 112. 
    Hutton TJ. 2004. A functional self-reproducing cell in a two-dimensional artificial chemistry. Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems J Pollack, M Bedau, P Husbands, T Ikegami, RA Watson 444–49 Cambridge, MA: MIT Press
    [Google Scholar]
  113. 113. 
    Hutton TJ. 2007. Evolvable self-reproducing cells in a two-dimensional artificial chemistry. Artif. Life 13:11–30
    [Google Scholar]
  114. 114. 
    Kriesel DM, Cheung E, Sitti M, Lipson H 2008. Beanbag robotics: robotic swarms with 1-DoF units. ANTS ‘08: Proceedings of the 6th International Conference on Ant Colony Optimization and Swarm Intelligence M Dorigo, M Birattari, C Blum, M Clerc, T Stützle, A Winfield 267–74 Berlin: Springer
    [Google Scholar]
  115. 115. 
    Yu CH, Haller K, Ingber D, Nagpal R 2008. Morpho: a self-deformable modular robot inspired by cellular structure. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems3571–78 Piscataway, NJ: IEEE
    [Google Scholar]
  116. 116. 
    Chirikjian GS. 2009. Robotic self-replication, self-diagnosis, and self-repair: probabilistic considerations. Distributed Autonomous Robotic Systems 8 H Asama, H Kurokawa, J Ota, K Sekiyama 273–81 Berlin: Springer
    [Google Scholar]
  117. 117. 
    Sanderson AC. 1984. Parts entropy method for robotic assembly design. 1984 IEEE International Conference on Robotics and Automation600–8 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118. 
    Desmera R. 2018. Snappy RepRap wiki. GitHub https://github.com/revarbat/snappy-reprap/wiki
    [Google Scholar]
  119. 119. 
    Mondada F, Gambardella LM, Floreano D, Nolfi S, Deneubourg JL, Dorigo M 2005. The cooperation of swarm-bots: physical interactions in collective robotics. IEEE Robot. Autom. Mag. 12:221–28
    [Google Scholar]
  120. 120. 
    Davis JD, Sevimli Y, Eldridge BR, Chirikjian GS 2016. Module design and functionally non-isomorphic configurations of the Hex-DMR II system. J. Mech. Robot. 8:051008
    [Google Scholar]
  121. 121. 
    O'Grady R, Christensen AL, Dorigo M 2009. SWARMORPH: multirobot morphogenesis using directional self-assembly. IEEE Trans. Robot. 25:738–43
    [Google Scholar]
  122. 122. 
    Revzen S, Bhoite M, Macasieb A, Yim M 2011. Structure synthesis on-the-fly in a modular robot. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems4797–802 Piscataway, NJ: IEEE
    [Google Scholar]
  123. 123. 
    Brodbeck L, Iida F. 2015. An extendible reconfigurable robot based on hot melt adhesives. Auton. Robots 39:87–100
    [Google Scholar]
  124. 124. 
    Neubert J, Lipson H. 2016. Soldercubes: a self-soldering self-reconfiguring modular robot system. Auton. Robots 40:139–58
    [Google Scholar]
  125. 125. 
    Wolfe KC, Moses MS, Kutzer MD, Chirikjian GS 2012. M3Express: a low-cost independently-mobile reconfigurable modular robot. 2012 IEEE International Conference on Robotics and Automation2704–10 Piscataway, NJ: IEEE
    [Google Scholar]
  126. 126. 
    Murata S, Kurokawa H. 2007. Self-reconfigurable robots: shape-changing cellular robots can exceed conventional robot flexibility. IEEE Robot. Autom. Mag. 14:171–78
    [Google Scholar]
  127. 127. 
    Hiller J, Lipson H. 2009. Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyp. J. 15:137–49
    [Google Scholar]
  128. 128. 
    Gorman W. 2010. MakerLegoBot: a Lego Mindstorms NXT 3D Lego printer. BattleBricks http://www.battlebricks.com/makerlegobot
    [Google Scholar]
  129. 129. 
    Ganapati P. 2010. Machine made of Lego builds anything you want – out of Lego. Wired Oct. 20. https://www.wired.com/2010/10/legobot
    [Google Scholar]
  130. 130. 
    Langford W, Ghassaei A, Gershenfeld N 2016. Automated assembly of electronic digital materials. ASME 2016 11th International Manufacturing Science and Engineering Conference, Vol. 2:Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing pap. MSEC2016-8627 Blacksburg, VA: Am. Soc. Mech. Eng.
    [Google Scholar]
  131. 131. 
    Ellery A. 2016. Progress towards 3D-printed mechatronic systems. 2016 IEEE International Conference on Industrial Technology1129–33 Piscataway, NJ: IEEE
    [Google Scholar]
  132. 132. 
    Goudswaard M, Hicks B, Nassehi A, Mathias D 2017. Realisation of self-replicating production resources through tight coupling of manufacturing technologies. Proceedings of the 21st International Conference on Engineering Design, Vol. 5: Design for X, Design to X A Maier, Škec, H Kim, M Kokkolaras, J Oehman et al.31–40 Glasgow, Scotl: Des. Soc.
    [Google Scholar]
  133. 133. 
    Ellery A. 2017. Building physical self-replicating machines. ECAL 2017: The Fourteenth European Conference on Artificial Life C Knibbe, G Beslon, D Parsons, D Misevic, J Rouzaud-Cornabas et al.146–53 Cambridge, MA: MIT Press
    [Google Scholar]
  134. 134. 
    Malone E, Lipson H. 2008. Multi-material freeform fabrication of active systems. ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis, Vol. 1: Advanced Energy Systems; Advanced and Digital Manufacturing; Advanced Materials; Aerospace345–53 Blacksburg, VA: Am. Soc. Mech. Eng.
    [Google Scholar]
  135. 135. 
    Felton S, Tolley M, Demaine E, Rus D, Wood R 2014. A method for building self-folding machines. Science 345:644–46
    [Google Scholar]
  136. 136. 
    Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA 2012. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLOS ONE 7:e49365
    [Google Scholar]
  137. 137. 
    Swensen JP, Odhner LU, Araki B, Dollar AM 2015. Printing three-dimensional electrical traces in additive manufactured parts for injection of low melting temperature metals. J. Mech. Robot. 7:021004
    [Google Scholar]
  138. 138. 
    Moses M. 2012. Electroformed nozzle. Thingiverse Aug. 4. https://www.thingiverse.com/thing:27911
    [Google Scholar]
  139. 139. 
    Moses MS, Chirikjian GS. 2011. Design of an electromagnetic actuator suitable for production by rapid prototyping. ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 3: 2011 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B491–97 Blacksburg, VA: Am. Soc. Mech. Eng.
    [Google Scholar]
  140. 140. 
    Clenfield J. 2015. Secretive robot maker Fanuc targeted by activist investor Loeb. Japan Times Feb. 19. https://www.japantimes.co.jp/news/2015/02/19/business/corporate-business/secretive-robot-maker-fanuc-targeted-by-activist-investor-loeb
    [Google Scholar]
  141. 141. 
    Pfanner E. 2015. Japanese robot maker Fanuc reveals some of its secrets. Wall Street Journal Mar. 27. https://www.wsj.com/articles/japanese-robot-maker-fanuc-reveals-some-of-its-secrets-1427384420
    [Google Scholar]
  142. 142. 
    FANUC 2019. Introduction of factories. FANUC https://www.fanuc.co.jp/en/profile/production/factory1.html
    [Google Scholar]
  143. 143. 
    Rasmussen S, Chen L, Deamer D, Krakauer DC, Packard NH et al. 2004. Transitions from nonliving to living matter. Science 303:963–65
    [Google Scholar]
  144. 144. 
    Rasmussen S, Constantinescu A, Svaneborg C 2016. Generating minimal living systems from non-living materials and increasing their evolutionary abilities. Philos. Trans. R. Soc. B 371:20150440
    [Google Scholar]
  145. 145. 
    Solé RV, Munteanu A, Rodriguez-Caso C, Macía J 2007. Synthetic protocell biology: from reproduction to computation. Philos. Trans. R. Soc. B 362:1727–39
    [Google Scholar]
  146. 146. 
    Sugiyama H, Toyota T. 2018. Toward experimental evolution with giant vesicles. Life 8:53
    [Google Scholar]
  147. 147. 
    Schulman R, Yurke B, Winfree E 2012. Robust self-replication of combinatorial information via crystal growth and scission. PNAS 109:6405–10
    [Google Scholar]
  148. 148. 
    Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T et al. 2011. A primer to scaffolded DNA origami. Nat. Methods 8:221–29
    [Google Scholar]
  149. 149. 
    Schulman R, Winfree E. 2008. How crystals that sense and respond to their environments could evolve. Nat. Comput. 7:219–37
    [Google Scholar]
  150. 150. 
    Kopperger E, List J, Madhira S, Rothfischer F, Lamb DC, Simmel FC 2018. A self-assembled nanoscale robotic arm controlled by electric fields. Science 359:296–301
    [Google Scholar]
/content/journals/10.1146/annurev-control-071819-010010
Loading
/content/journals/10.1146/annurev-control-071819-010010
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error