1932

Abstract

Physics-based simulation provides an accelerated and safe avenue for developing, verifying, and testing robotic control algorithms and prototype designs. In the quest to leverage machine learning for developing AI-enabled robots, physics-based simulation can generate a wealth of labeled training data in a short amount of time. Physics-based simulation also creates an ideal proving ground for developing intelligent robots that can both learn from their mistakes and be verifiable. This article provides an overview of the use of simulation in robotics, emphasizing how robots (with sensing and actuation components), the environment they operate in, and the humans they interact with are simulated in practice. It concludes with an overview of existing tools for simulation in robotics and a short discussion of aspects that limit the role that simulation plays today in intelligent robot design.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-072220-093055
2021-05-03
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-072220-093055.html?itemId=/content/journals/10.1146/annurev-control-072220-093055&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mayne DQ, Rawlings JB, Rao CV, Scokaert PO 2000. Constrained model predictive control: stability and optimality. Automatica 36:789–814
    [Google Scholar]
  2. 2. 
    Xia F, Shen WB, Li C, Kasimbeg P, Tchapmi ME et al. 2020. Interactive Gibson benchmark: a benchmark for interactive navigation in cluttered environments. IEEE Robot. Autom. Lett. 5:713–20
    [Google Scholar]
  3. 3. 
    Kane TR, Levinson DA. 1983. The use of Kane's dynamical equations in robotics. Int. J. Robot. Res. 2:3–21
    [Google Scholar]
  4. 4. 
    Featherstone R. 1987. Robot Dynamics Algorithms Boston: Kluwer
  5. 5. 
    Hairer E, Wanner G. 1996. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems Berlin: Springer
  6. 6. 
    Golub GH, Van Loan CF 1980. Matrix Computations Baltimore, MD: Johns Hopkins Univ. Press
  7. 7. 
    Haug E. 1989. Computer-Aided Kinematics and Dynamics of Mechanical Systems, Vol. 1: Basic Methods Englewood Cliffs, NJ: Prentice Hall
    [Google Scholar]
  8. 8. 
    Petzold LR. 1982. Differential-algebraic equations are not ODE's. SIAM J. Sci. Stat. Comput. 3:367–84
    [Google Scholar]
  9. 9. 
    Wehage RA, Haug EJ. 1982. Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104:247–55
    [Google Scholar]
  10. 10. 
    Baraff D. 1996. Linear-time dynamics using Lagrange multipliers. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques137–46 New York: ACM
    [Google Scholar]
  11. 11. 
    Marsden JE, Ratiu TS. 1994. Introduction to Mechanics and Symmetry New York: Springer
  12. 12. 
    Liang CD, Lance GM. 1987. A differentiable null-space method for constrained dynamic analysis. ASME J. Mech. Transm. Autom. Des. 109:405–10
    [Google Scholar]
  13. 13. 
    Betsch P, Leyendecker S. 2006. The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics. Int. J. Numer. Methods Eng. 67:499–552
    [Google Scholar]
  14. 14. 
    Orlandea N, Chace MA, Calahan DA 1977. A sparsity-oriented approach to the dynamic analysis and design of mechanical systems—part 1. Trans. ASME J. Eng. Ind. 99:773–79
    [Google Scholar]
  15. 15. 
    Orlandea N, Calahan DA, Chace MA 1977. A sparsity-oriented approach to the dynamic analysis and design of mechanical systems—part 2. Trans. ASME J. Eng. Ind. 99:780–84
    [Google Scholar]
  16. 16. 
    Negrut D, Jay L, Khude N 2009. A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics. J. Comput. Nonlinear Dyn. 4:021008
    [Google Scholar]
  17. 17. 
    Bauchau OA, Laulusa A. 2008. Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3:011005
    [Google Scholar]
  18. 18. 
    Helton JC, Davis FJ. 2003. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81:23–69
    [Google Scholar]
  19. 19. 
    Kennedy MC, O'Hagan A. 2001. Bayesian calibration of computer models. J. R. Stat. Soc. B 63:425–64
    [Google Scholar]
  20. 20. 
    Borgonovo E, Plischke E. 2016. Sensitivity analysis: a review of recent advances. Eur. J. Oper. Res. 248:869–87
    [Google Scholar]
  21. 21. 
    Hoffman MD, Gelman A. 2014. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15:1593–623
    [Google Scholar]
  22. 22. 
    Ericson C. 2005. Real Time Collision Detection San Francisco, CA: Morgan Kaufmann
  23. 23. 
    Nowakowski C, Fehr J, Fischer M, Eberhard P 2012. Model order reduction in elastic multibody systems using the floating frame of reference formulation. IFAC Proc 45:40–48
    [Google Scholar]
  24. 24. 
    Shabana AA, Yakoub RY. 2001. Three dimensional absolute nodal coordinate formulation for beam elements: theory. ASME J. Mech. Des. 123:606–13
    [Google Scholar]
  25. 25. 
    Shabana AA. 2020. Dynamics of Multibody Systems Cambridge, UK: Cambridge Univ. Press. , 5th. ed.
  26. 26. 
    Bekker MG. 1969. Introduction to Terrain-Vehicle Systems Ann Arbor: Univ. Mich. Press
  27. 27. 
    Janosi Z, Hanamoto B. 1961. The analytical determination of drawbar pull as a function of slip for tracked vehicles in deformable soils Paper presented at the 1st International Conference on the Mechanics of Soil-Vehicle Systems Turin, It: June 15–23
  28. 28. 
    Wong JY, Reece AR. 1967. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses: part II. Performance of towed rigid wheels. J. Terramech. 4:7–25
    [Google Scholar]
  29. 29. 
    Wong JY. 2008. Theory of Ground Vehicles New York: Wiley & Sons
  30. 30. 
    Ishigami G, Miwa A, Nagatani K, Yoshida K 2007. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil. J. Field Robot. 24:233–50
    [Google Scholar]
  31. 31. 
    Krenn R, Gibbesch A. 2011. Soft soil contact modeling technique for multi-body system simulation. Trends in Computational Contact Mechanics G Zavarise, P Wriggers 135–55 Berlin: Springer
    [Google Scholar]
  32. 32. 
    Li C, Zhang T, Goldman D 2013. A terradynamics of legged locomotion on granular media. Bull. Am. Phys. Soc. 58:1408–12
    [Google Scholar]
  33. 33. 
    Agarwal S, Senatore C, Zhang T, Kingsbury M, Iagnemma K et al. 2019. Modeling of the interaction of rigid wheels with dry granular media. J. Terramech. 85:1–14
    [Google Scholar]
  34. 34. 
    Fervers CW. 2004. Improved FEM simulation model for tiresoil interaction. J. Terramech. 41:87–100
    [Google Scholar]
  35. 35. 
    Chiroux R, Foster WJr., Johnson C, Shoop S, Raper R 2005. Three-dimensional finite element analysis of soil interaction with a rigid wheel. Appl. Math. Comp. 162:707–22
    [Google Scholar]
  36. 36. 
    Knuth M, Johnson J, Hopkins M, Sullivan R, Moore J 2012. Discrete element modeling of a Mars exploration rover wheel in granular material. J. Terramech. 49:27–36
    [Google Scholar]
  37. 37. 
    Cundall P, Strack O. 1979. A discrete numerical model for granular assemblies. Geotechnique 29:47–65
    [Google Scholar]
  38. 38. 
    Gurtin ME, Fried E, Anand L 2010. The Mechanics and Thermodynamics of Continua Cambridge, UK: Cambridge Univ. Press
  39. 39. 
    Gingold RA, Monaghan JJ. 1982. Kernel estimates as a basis for general particle methods in hydrodynamics. J. Comput. Phys. 46:429–53
    [Google Scholar]
  40. 40. 
    Becker M, Teschner M. 2007. Weakly compressible SPH for free surface flows. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation209–17 Goslar, Ger: Eurographics Assoc.
    [Google Scholar]
  41. 41. 
    Johnson KL. 1987. Contact Mechanics Cambridge, UK: Cambridge Univ. Press
  42. 42. 
    Stewart DE. 2000. Rigid-body dynamics with friction and impact. SIAM Rev 42:3–39
    [Google Scholar]
  43. 43. 
    Negrut D, Serban R, Elmquist A, Taves J, Young A et al. 2020. Enabling artificial intelligence studies in off-road mobility through physics-based simulation of multi-agent scenarios Paper presented at the 12th Ground Vehicle Systems Engineering and Technology Symposium, online, Nov. 3–5
  44. 44. 
    Eur. Mach. Vis. Assoc 2010. Standard for characterization of image sensors and cameras Stand. 1288 Eur. Mach. Vis. Assoc Barcelona, Spain:
  45. 45. 
    Guo S, Yan Z, Zhang K, Zuo W, Zhang L 2019. Toward convolutional blind denoising of real photographs. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition1712–22 Piscataway, NJ: IEEE
    [Google Scholar]
  46. 46. 
    Farrell JE, Catrysse PB, Wandell BA 2012. Digital camera simulation. Appl. Opt. 51:A80–90
    [Google Scholar]
  47. 47. 
    Isola P, Zhu JY, Zhou T, Efros AA 2017. Image-to-image translation with conditional adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition1125–34 Piscataway, NJ: IEEE
    [Google Scholar]
  48. 48. 
    Elmquist A, Negrut D. 2020. Methods and models for simulating autonomous vehicle sensors. IEEE Trans. Intell. Veh. 5:68492
    [Google Scholar]
  49. 49. 
    Vector 2020. DYNA4 - virtual test driving. Vector https://www.vector.com/int/en/products/products-a-z/software/dyna4
    [Google Scholar]
  50. 50. 
    Erickson ZM, Gangaram V, Kapusta A, Liu CK, Kemp CC 2020. Assistive Gym: a physics simulation framework for assistive robotics. 2020 IEEE International Conference on Robotics and Automation10169–76 Piscataway, NJ: IEEE
    [Google Scholar]
  51. 51. 
    AnyBody Technol 2020. The AnyBody Modeling System. AnyBody Technology https://www.anybodytech.com/software
    [Google Scholar]
  52. 52. 
    Seth A, Sherman M, Reinbolt JA, Delp SL 2011. OpenSim: a musculoskeletal modeling and simulation framework for in silico investigations and exchange. Procedia IUTAM 2:212–32
    [Google Scholar]
  53. 53. 
    Yin K, Loken K, van de Panne M 2007. SIMBICON: simple biped locomotion control. ACM Trans. Graph. 26:105
    [Google Scholar]
  54. 54. 
    Liu CK, Hertzmann A, Popović Z 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24:1071–81
    [Google Scholar]
  55. 55. 
    Peng XB, Berseth G, Yin K, van de Panne M 2017. DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement learning. ACM Trans. Graph. 36:41
    [Google Scholar]
  56. 56. 
    Zhu H, Gupta A, Rajeswaran A, Levine S, Kumar V 2019. Dexterous manipulation with deep reinforcement learning: efficient, general, and low-cost. 2019 International Conference on Robotics and Automation3651–57 Piscataway, NJ: IEEE
    [Google Scholar]
  57. 57. 
    Tan J, Gu Y, Liu CK, Turk G 2014. Learning bicycle stunts. ACM Trans. Graph. 33:50
    [Google Scholar]
  58. 58. 
    Liu L, Hodgins JK. 2018. Learning basketball dribbling skills using trajectory optimization and deep reinforcement learning. ACM Trans. Graph. 37:142
    [Google Scholar]
  59. 59. 
    Jiang Y, Wouwe TV, Groote FD, Liu CK 2019. Synthesis of biologically realistic human motion using joint torque actuation. ACM Trans. Graph. 38:72
    [Google Scholar]
  60. 60. 
    Lee S, Park M, Lee K, Lee J 2019. Scalable muscle-actuated human simulation and control. ACM Trans. Graph. 38:73
    [Google Scholar]
  61. 61. 
    Nakada M, Zhou T, Chen H, Weiss T, Terzopoulos D 2018. Deep learning of biomimetic sensorimotor control for biomechanical human animation. ACM Trans. Graph. 37:56
    [Google Scholar]
  62. 62. 
    Jiang Y, Liu CK. 2018. Data-driven approach to simulating realistic human joint constraints. 2018 IEEE International Conference on Robotics and Automation1098–103 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Peng XB, Abbeel P, Levine S, van de Panne M 2018. DeepMimic: example-guided deep reinforcement learning of physics-based character skills. ACM Trans. Graph. 37:143
    [Google Scholar]
  64. 64. 
    Liu L, Hodgins JK. 2017. Learning to schedule control fragments for physics-based characters using deep Q-learning. ACM Trans. Graph. 36:29
    [Google Scholar]
  65. 65. 
    Yu W, Turk G, Liu CK 2018. Learning symmetric and low-energy locomotion. ACM Trans. Graph. 37:144
    [Google Scholar]
  66. 66. 
    Rosique F, Navarro PJ, Fernández C, Padilla A 2019. A systematic review of perception system and simulators for autonomous vehicles research. Sensors 19:648
    [Google Scholar]
  67. 67. 
    Kang Y, Yin H, Berger C 2019. Test your self-driving algorithm: an overview of publicly available driving datasets and virtual testing environments. IEEE Trans. Intell. Veh. 4:171–85
    [Google Scholar]
  68. 68. 
    Boeing A, Bräunl T. 2007. Evaluation of real-time physics simulation systems. Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia281–88 New York: ACM
    [Google Scholar]
  69. 69. 
    Erez T, Tassa Y, Todorov E 2015. Simulation tools for model-based robotics: comparison of Bullet, Havok, MuJoCo, ODE and PhysX. 2015 IEEE International Conference on Robotics and Automation4397–404 Piscataway, NJ: IEEE
    [Google Scholar]
  70. 70. 
    Collins J, Howard D, Leitner J 2019. Quantifying the reality gap in robotic manipulation tasks. 2019 International Conference on Robotics and Automation6706–12 Piscataway, NJ: IEEE
    [Google Scholar]
  71. 71. 
    Peng XB, Coumans E, Zhang T, Lee TW, Tan J, Levine S 2020. Learning agile robotic locomotion skills by imitating animals. arXiv:2004.00784 [cs.RO]
  72. 72. 
    Tasora A, Serban R, Mazhar H, Pazouki A, Melanz D et al. 2016. Chrono: an open source multi-physics dynamics engine. High Performance Computing in Science and Engineering T Kozubek 19–49 Cham, Switz: Springer
    [Google Scholar]
  73. 73. 
    Lee J, Grey M, Ha S, Kunz T, Jain S et al. 2018. DART: Dynamic Animation and Robotics Toolkit. J. Open Source Softw. 3:500
    [Google Scholar]
  74. 74. 
    Todorov E, Erez T, Tassa Y 2012. MuJoCo: a physics engine for model-based control. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems5026–33 Piscataway, NJ: IEEE
    [Google Scholar]
  75. 75. 
    NVIDIA 2020. NVIDIA DRIVE Constellation. NVIDIA https://www.nvidia.com/en-us/self-driving-cars/drive-constellation
    [Google Scholar]
  76. 76. 
    Shah S, Dey D, Lovett C, Kapoor A 2018. AirSim: high-fidelity visual and physical simulation for autonomous vehicles. Field and Service Robotics M Hutter, R Siegwart 621–35 Cham, Switz: Springer
    [Google Scholar]
  77. 77. 
    Proj. Chrono Dev. Team 2020. Chrono. GitHub https://github.com/projectchrono/chrono
    [Google Scholar]
  78. 78. 
    Rohmer E, Singh SP, Freese M 2013. V-REP: a versatile and scalable robot simulation framework. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems1321–26 Piscataway, NJ: IEEE
    [Google Scholar]
  79. 79. 
    CM Labs 2020. Vortex Studio. CM Labs https://www.cm-labs.com/vortex-studio
    [Google Scholar]
  80. 80. 
    Koenig NP, Howard A. 2004. Design and use paradigms for Gazebo, an open-source multi-robot simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 42149–54 Piscataway, NJ: IEEE
    [Google Scholar]
  81. 81. 
    Sherman MA, Seth A, Delp SL 2011. Simbody: multibody dynamics for biomedical research. Procedia IUTAM 2:241–61
    [Google Scholar]
  82. 82. 
    Savva M, Kadian A, Maksymets O, Zhao Y, Wijmans E et al. 2019. Habitat: a platform for embodied AI research. 2019 IEEE/CVF International Conference on Computer Vision9338–46 Piscataway, NJ: IEEE
    [Google Scholar]
  83. 83. 
    NVIDIA 2020. NVIDIA Isaac platform for robotics. NVIDIA https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics
    [Google Scholar]
  84. 84. 
    Carruth DW. 2018. Simulation for training and testing intelligent systems. 2018 World Symposium on Digital Intelligence for Systems and Machines101–6 Piscataway, NJ: IEEE
    [Google Scholar]
  85. 85. 
    Goodin C, Doude M, Hudson C, Carruth D 2018. Enabling off-road autonomous navigation-simulation of LIDAR in dense vegetation. Electronics 7:154
    [Google Scholar]
  86. 86. 
    Goodin C, Carruth D, Doude M, Hudson C 2019. Predicting the influence of rain on LIDAR in ADAS. Electronics 8:89
    [Google Scholar]
  87. 87. 
    Jain A, Balaram J, Cameron J, Guineau J, Lim C et al. 2004. Recent developments in the ROAMS planetary rover simulation environment. 2004 IEEE Aerospace Conference Proceedings861–76 Piscataway, NJ: IEEE
    [Google Scholar]
  88. 88. 
    Jain A. 2020. DARTS spacecraft dynamics simulator. NASA Jet Propulsion Laboratory https://dartslab.jpl.nasa.gov/DARTS
    [Google Scholar]
  89. 89. 
    Carpin S, Lewis M, Wang J, Balakirsky S, Scrapper C 2007. USARSim: a robot simulator for research and education. 2007 IEEE International Conference on Robotics and Automation1400–5 Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90. 
    Michel O. 2004. Cyberbotics Ltd. Webots: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1:39–42
    [Google Scholar]
  91. 91. 
    Peng XB, Andrychowicz M, Zaremba W, Abbeel P 2018. Sim-to-real transfer of robotic control with dynamics randomization. 2018 IEEE International Conference on Robotics and Automation3803–10 Piscataway, NJ: IEEE
    [Google Scholar]
  92. 92. 
    Peherstorfer B, Willcox K, Gunzburger M 2018. Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev 60:550–91
    [Google Scholar]
  93. 93. 
    Bayarri MJ, Berger JO, Paulo R, Sacks J, Cafeo JA et al. 2007. A framework for validation of computer models. Technometrics 49:138–54
    [Google Scholar]
/content/journals/10.1146/annurev-control-072220-093055
Loading
/content/journals/10.1146/annurev-control-072220-093055
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error