1932

Abstract

Large igneous provinces (LIPs) represent some of the greatest volcanic events in Earth history with significant impacts on ecosystems, including mass extinctions. However, some fundamental questions related to the eruption rate, eruption style, and vent locations for LIP lava flows remain unanswered. In this review, we use the Cretaceous–Paleogene Deccan Traps as an archetype to address these questions because they are one of the best-preserved large continental flood basalt provinces. We describe the volcanological features of the Deccan flows and the potential temporal and regional variations as well as the spatial characteristics of potential feeder dikes. Along with estimates of mean long-term eruption rates for individual Deccan lavas from paleomagnetism and Hg proxy records of ∼50–250 km3/year (erupting for tens to hundreds of years), the Deccan volcanic characteristics suggest a unified conceptual model for eruption of voluminous (>1,000 km3) LIP lavas with large spatial extent (>40,000 km2). We conclude by highlighting a few key open questions and challenges that can help improve our understanding of how the Deccan flows, as well as LIP flows in general, erupted and the mechanisms by which the lavas may have flowed over distances up to 1,000 km.

  • ▪  The Deccan Traps are an archetype for addressing fundamental volcanological questions related to eruption rate, eruption style, and vent locations for large igneous province lava flows.
  • ▪  Deccan subprovinces likely evolved as separate volcanic systems; thus, long-distance/interprovince flow correlations must be carefully assessed.
  • ▪  The earliest eruptions came through the Narmada-Tapi rift zone followed by the establishment of a separate magmatic plumbing system by mantle plume–associated magmas.
  • ▪  Typical Deccan eruption rates were ∼50–250 km3/year of lava. Individual eruptions lasted for a few hundred to 1,000 years and were separated by hiatuses of 3,000–6,000 years.
  • ▪  The conspicuous absence of dikes in the Central Deccan region strongly implies long-distance surface transport of lavas in the form of flows hundreds of kilometers long.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-012721-051416
2022-05-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-012721-051416.html?itemId=/content/journals/10.1146/annurev-earth-012721-051416&mimeType=html&fmt=ahah

Literature Cited

  1. Agashe L, Gupte R. 1971. Mode of eruption of the Deccan Trap basalts. Bull. Volcanol. 35:591–601
    [Google Scholar]
  2. Anderson S, Stofan E, Smrekar S, Guest J, Wood B. 1999. Pulsed inflation of pahoehoe lava flows: implications for flood basalt emplacement. Earth Planet. Sci. Lett. 168:7–18
    [Google Scholar]
  3. Auden J. 1949. Dykes in western India—a discussion on their relationships with the Deccan Traps. Trans. Natl. Inst. Sci. India 3:123–57
    [Google Scholar]
  4. Auden J. 1954. Erosional patterns and fracture zones in peninsular India. Geol. Mag. 91:89–101
    [Google Scholar]
  5. Basu AR, Saha-Yannopoulos A, Chakrabarty P. 2020. A precise geochemical volcano-stratigraphy of the Deccan traps. Lithos 376:105754
    [Google Scholar]
  6. Beane J, Turner C, Hooper P, Subbarao K, Walsh J. 1986. Stratigraphy, composition and form of the Deccan basalts, Western Ghats, India. Bull. Volcanol. 48:61–83
    [Google Scholar]
  7. Bhattacharya G, Yatheesh V 2015. Plate-tectonic evolution of the deep ocean basins adjoining the western continental margin of India—a proposed model for the early opening scenario. Petroleum Geosciences: Indian Contexts S Mukherjee 1–61 Cham, Switz: Springer
    [Google Scholar]
  8. Black BA, Manga M. 2017. Volatiles and the tempo of flood basalt magmatism. Earth Planet. Sci. Lett. 458:130–40
    [Google Scholar]
  9. Bondre NR, Dole G, Phadnis VM, Duraiswami R, Kale VS 2000. Inflated pahoehoe lavas from the Sangamner area of the western Deccan Volcanic Province. Curr. Sci. 78:1004–7
    [Google Scholar]
  10. Bondre NR, Duraiswami RA, Dole G. 2004. Morphology and emplacement of flows from the Deccan Volcanic Province, India. Bull. Volcanol. 66:29–45
    [Google Scholar]
  11. Bondre NR, Hart W, Sheth H 2006. Geology and geochemistry of the Sangamner mafic dike swarm, western Deccan volcanic province, India: implications for regional stratigraphy. J. Geol. 114:155–70
    [Google Scholar]
  12. Brahmam NK, Negi JG. 1973. Rift valleys beneath Deccan traps (India). Geophys. Res. Bull. 11:207–37
    [Google Scholar]
  13. Brown RJ, Blake S, Thordarson T, Self S. 2014. Pyroclastic edifices record vigorous lava fountains during the emplacement of a flood basalt flow field, Roza Member, Columbia River Basalt Province, USA. GSA Bull. 126:875–91
    [Google Scholar]
  14. Bryan SE, Ernst RE. 2008. Revised definition of large igneous provinces (LIPs). Earth-Sci. Rev. 86:175–202
    [Google Scholar]
  15. Bryan SE, Ferrari L. 2013. Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. GSA Bull. 125:1053–78
    [Google Scholar]
  16. Bryan SE, Peate IU, Peate DW, Self S, Jerram DA et al. 2010. The largest volcanic eruptions on Earth. Earth-Sci. Rev. 102:207–29
    [Google Scholar]
  17. Cashman KV, Kauahikaua JP. 1997. Reevaluation of vesicle distributions in basaltic lava flows. Geology 25:419–22
    [Google Scholar]
  18. Cashman KV, Sparks RSJ, Blundy JD. 2017. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:eaag3055
    [Google Scholar]
  19. Chenet AL, Courtillot V, Fluteau F, Gérard M, Quidelleur X et al. 2009. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. J. Geophys. Res. Solid Earth 114:B06103
    [Google Scholar]
  20. Chenet AL, Fluteau F, Courtillot V, Gérard M, Subbarao K 2008. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. Solid Earth 113:B04101
    [Google Scholar]
  21. Choubey VD 1973. Long-distance correlation of Deccan basalt flows, central India. GSA Bull. 84:2785–90
    [Google Scholar]
  22. Clapham ME, Renne PR. 2019. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47:275–303
    [Google Scholar]
  23. Cox KG. 1980. A model for flood basalt volcanism. J. Petrol. 21:629–50
    [Google Scholar]
  24. Cox KG, Hawkesworth C. 1985. Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. J. Petrol. 26:355–77
    [Google Scholar]
  25. Cox KG, Mitchell C. 1988. Importance of crystal settling in the differentiation of Deccan Trap basaltic magmas. Nature 333:447–49
    [Google Scholar]
  26. Cucciniello C, Choudhary AK, Pande K, Sheth H 2019. Mineralogy, geochemistry and 40Ar–39 Ar geochronology of the Barda and Alech complexes, Saurashtra, northwestern Deccan Traps: early silicic magmas derived by flood basalt fractionation. Geol. Mag. 156:1668–90
    [Google Scholar]
  27. Cucciniello C, Sheth H, Duraiswami RA, Wegner W, Koeberl C et al. 2020. The Southeastern Saurashtra dyke swarm, Deccan Traps: magmatic evolution of a tholeiitic basalt–basaltic andesite–andesite–rhyolite suite. Lithos 376:105759
    [Google Scholar]
  28. Das A, Mallik J. 2020. Applicability of AMS technique as a flow fabric indicator in dykes: insight from Nandurbar–Dhule Deccan dyke swarm. Int. J. Earth Sci. 109:933–44
    [Google Scholar]
  29. Deshmukh S. 1988. Petrographic variations in compound flows of Deccan Traps and their significance. Mem. Geol. Soc. India 10:305–19
    [Google Scholar]
  30. Deshmukh S, Sano T, Fujii T, Nair K, Yedekar D et al. 1996. Chemical stratigraphy and geochemistry of the basalt flows from the central and eastern parts of the Deccan Volcanic Province of India. Gondwana Geol. Mag. Spec. 2:145–70
    [Google Scholar]
  31. Dessai A, Viegas A. 1995. Multigeneration mafic dyke-swarm related to Deccan magmatism south of Bombay: implications on the evolution of the western Indian continental margin. Mem. Geol. Soc. India 33:435–51
    [Google Scholar]
  32. Devey CW, Lightfoot P. 1986. Volcanological and tectonic control of stratigraphy and structure in the western Deccan Traps. Bull. Volcanol. 48:195–207
    [Google Scholar]
  33. Devey CW, Stephens W. 1991. Tholeiitic dykes in the Seychelles and the original spatial extent of the Deccan. J. Geol. Soc. 148:979–83
    [Google Scholar]
  34. Dole G, Patil-Pillai S, Kale VS. 2020. Multi-tiered, disrupted crust of a sheet lava flow from the Diveghat Formation of Deccan Traps: implications on emplacement mechanisms. J. Earth Syst. Sci. 129:154
    [Google Scholar]
  35. Duncan R, Pyle D 1988. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature 333:841–43
    [Google Scholar]
  36. Duraiswami RA, Bondre NR, Dole G. 2004. Possible lava tube system in a hummocky lava flow at Daund, western Deccan volcanic province, India. J. Earth Syst. Sci. 113:819–29
    [Google Scholar]
  37. Duraiswami RA, Bondre NR, Dole G, Phadnis VM, Kale VS. 2001. Tumuli and associated features from the western Deccan Volcanic Province, India. Bull. Volcanol. 63:435–42
    [Google Scholar]
  38. Duraiswami RA, Bondre NR, Managave S. 2008. Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: implications for style of emplacement. J. Volcanol. Geotherm. Res. 177:822–36
    [Google Scholar]
  39. Duraiswami RA, Gadpallu P, Maskare B, Purwant A, Meena P et al. 2017. Volcanology and lava flow morpho-types from the Koyna-Warna region, western Deccan Traps, India. J. Geol. Soc. India 90:742–47
    [Google Scholar]
  40. Duraiswami RA, Shaikh TN. 2013. Geology of the saucer-shaped sill near Mahad, western Deccan Traps, India, and its significance to the flood basalt model. Bull. Volcanol. 75:731
    [Google Scholar]
  41. Duraiswami RA, Sheth H, Gadpallu P, Youbi N, Chellai EH 2020. A simple recipe for red bole formation in continental flood basalt provinces: weathering of flow-top and flow-bottom breccias. Arab. J. Geosci. 13:953
    [Google Scholar]
  42. Eddy MP, Schoene B, Samperton KM, Keller G, Adatte T, Khadri SF 2020. U-Pb zircon age constraints on the earliest eruptions of the Deccan Large Igneous Province, Malwa Plateau, India. Earth Planet. Sci. Lett. 540:116249
    [Google Scholar]
  43. Elliot DH, White JDL, Fleming TH. 2021. Ferrar Large Igneous Province: volcanology. Geol. Soc. Lond. Mem. 55:75–91
    [Google Scholar]
  44. Ernst RE, Liikane DA, Jowitt SM, Buchan K, Blanchard J. 2019. A new plumbing system framework for mantle plume-related continental Large Igneous Provinces and their mafic-ultramafic intrusions. J. Volcanol. Geotherm. Res. 384:75–84
    [Google Scholar]
  45. Fainstein R, Richards M, Kalra R. 2019. Seismic imaging of Deccan-related lava flows at the K-T boundary, deepwater west India. Lead. Edge 38:286–90
    [Google Scholar]
  46. Fendley IM, Mittal T, Sprain CJ, Marvin-DiPasquale M, Tobin TS, Renne PR 2019. Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models. Earth Planet. Sci. Lett. 524:115721
    [Google Scholar]
  47. Fendley IM, Sprain CJ, Renne PR, Arenillas I, Arz JA et al. 2020. No Cretaceous-Paleogene boundary in exposed Rajahmundry Traps: a refined chronology of the longest Deccan lava flows from 40Ar/39 Ar dates, magnetostratigraphy, and biostratigraphy. Geochem. Geophys. Geosyst. 21:e2020GC009149
    [Google Scholar]
  48. Font E, Adatte T, Sial AN, Drude de Lacerda L, Keller G, Punekar J 2016. Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology 44:171–74
    [Google Scholar]
  49. Gadgil R, Viegas A, Iyer SD. 2019. Structure and emplacement of the Coastal Deccan tholeiitic dyke swarm in Doa, on the western Indian rifted margin. Bull. Volcanol. 81:35
    [Google Scholar]
  50. Ganguly S, Ray J, Koeberl C, Saha A, Thöni M, Balaram V. 2014. Geochemistry and petrogenesis of lava flows around Linga, Chhindwara area in the Eastern Deccan Volcanic Province (EDVP), India. J. Asian Earth Sci. 91:174–93
    [Google Scholar]
  51. Godbole S, Rana R, Natu S 1996. Lava stratigraphy of Deccan basalts of western Maharashtra. Gondwana Geol. Mag. Spec. 2:e134
    [Google Scholar]
  52. Greene AR, Garcia MO, Pietruszka AJ, Weis D, Marske JP et al. 2013. Temporal geochemical variations in lavas from Kīlauea's Pu`u `Ō`ō eruption (1983–2010): cyclic variations from melting of source heterogeneities. Geochem. Geophys. Geosyst. 14:4849–73
    [Google Scholar]
  53. GSI (Geol. Surv. India) 2001. Map series: district resource maps—India. Geological Society of India https://www.gsi.gov.in/webcenter/portal/OCBIS/pageMAPS/pageMapsSeries?_adf.ctrl-state=qdgrlegj8_5&_afrLoop=35503895288604648#!
    [Google Scholar]
  54. GSI (Geol. Surv. India) 2020. Bhukosh. Geological Society of India https://bhukosh.gsi.gov.in/Bhukosh/Public
    [Google Scholar]
  55. Guilbaud MN, Self S, Thordarson T, Blake S 2005. Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–84. Geol. Soc. Am. Spec. Pap. 396:81–102
    [Google Scholar]
  56. Gupta HK, Arora K, Rao NP, Roy S, Tiwari V et al. 2017. Investigations of continued reservoir triggered seismicity at Koyna, India. Geol. Soc. Lond. Spec. Publ. 445:151–88
    [Google Scholar]
  57. Hamilton CW, Scheidt SP, Sori MM, de Wet AP, Bleacher JE et al. 2020. Lava-rise plateaus and inflation pits in the McCartys lava flow field, New Mexico: an analog for pāahoehoe-like lava flows on planetary surfaces. J. Geophys. Res. Planets 125:e2019JE005975
    [Google Scholar]
  58. Harinarayana T. 2007. Comparison of electrical structure of the deep crust of the Central Indian Shear zone, Narmada-Son Lineament, Deccan Traps, Southern Granulite region and Eastern Dharwar Craton. Gondwana Res. 10:251–61
    [Google Scholar]
  59. Harris AJ, Dehn J, Calvari S. 2007. Lava effusion rate definition and measurement: a review. Bull. Volcanol. 70:1
    [Google Scholar]
  60. Hartley M, Thordarson T 2009. Melt segregations in a Columbia River Basalt lava flow: a possible mechanism for the formation of highly evolved mafic magmas. Lithos 112:434–46
    [Google Scholar]
  61. Ho AM, Cashman KV. 1997. Temperature constraints on the Ginkgo flow of the Columbia River Basalt group. Geology 25:403–6
    [Google Scholar]
  62. Hon K, Kauahikaua J, Denlinger R, Mackay K. 1994. Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. GSA Bull. 106:351–70
    [Google Scholar]
  63. Hooper P, Widdowson M, Kelley S. 2010. Tectonic setting and timing of the final Deccan flood basalt eruptions. Geology 38:839–42
    [Google Scholar]
  64. Hooper PR. 1990. The timing of crustal extension and the eruption of continental flood basalts. Nature 345:246–49
    [Google Scholar]
  65. Hooper PR, Subbarao K. 1999. The Deccan Traps. Mem. Geol. Soc. India 43:153–65
    [Google Scholar]
  66. Jagannathan K. 2010. Manual for national geomorphological and lineament mapping on 1:50,000 scale. Tech. Rep. Nrsc-rs gisaa-erg-g-gd-feb 10-tr149 Natl. Remote Sens. Cent. Hyderabad, India:
  67. Jay AE. 2005. Volcanic architecture of the Deccan Traps, western Maharashtra, India: an integrated chemostratigraphic and paleomagnetic study. PhD Thesis The Open Univ. Milton Keynes UK:
  68. Jay AE, Mac Niocaill C, Widdowson M, Self S, Turner W 2009. New palaeomagnetic data from the Mahabaleshwar Plateau, Deccan Flood Basalt Province, India: implications for the volcanostratigraphic architecture of continental flood basalt provinces. J. Geol. Soc. 166:13–24
    [Google Scholar]
  69. Jay AE, Widdowson M. 2008. Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes. J. Geol. Soc. 165:177–88
    [Google Scholar]
  70. Kaila K. 1988. Mapping the thickness of Deccan Trapp flows in India from DSS studies and inference about a hidden Mesozoic Basin in the Narmada-Tapti Region. Mem. Geol. Soc. India 10:91–116
    [Google Scholar]
  71. Kale VS, Bodas M, Chatterjee P, Pande K. 2020a. Emplacement history and evolution of the Deccan Volcanic Province, India. Episodes 43:278–99
    [Google Scholar]
  72. Kale VS, Dole G, Pillai SP, Chatterjee P, Bodas M 2021. Morphological types in the Deccan Volcanic Province, India: implications on emplacement dynamics of continental flood basalts. Geol. Soc. Lond. Spec. Publ. 518: https://doi.org/10.1144/SP518-2020-246
    [Crossref] [Google Scholar]
  73. Kale VS, Dole G, Shandilya P, Pande K. 2020b. Stratigraphy and correlations in Deccan Volcanic Province, India: Quo vadis?. GSA Bull. 132:588–607
    [Google Scholar]
  74. Kale VS, Dole G, Upasani D, Pillai SP. 2017. Deccan Plateau uplift: insights from parts of western uplands, Maharashtra, India. Geol. Soc. Lond. Spec. Publ. 445:11–46
    [Google Scholar]
  75. Keller G, Mateo P, Punekar J, Khozyem H, Gertsch B et al. 2018. Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene thermal maximum: implications for the Anthropocene. Gondwana Res. 56:69–89
    [Google Scholar]
  76. Keszthelyi L, Self S. 1998. Some physical requirements for the emplacement of long basaltic lava flows. J. Geophys. Res. 103:B1127447–64
    [Google Scholar]
  77. Keszthelyi L, Self S, Thordarson T. 2006. Flood lavas on Earth, Io and Mars. J. Geol. Soc. 163:253–64
    [Google Scholar]
  78. Khadri S, Subbarao K, Walsh J. 1999. Stratigraphy, form and structure of the east Pune basalts, western Deccan Basalt Province, India. Mem. Geol. Soc. India 1999:179–202
    [Google Scholar]
  79. Krishnamurthy P. 2020. The Deccan Volcanic Province (DVP), India: a review. J. Geol. Soc. India 96:111–47
    [Google Scholar]
  80. Kumar KV, Chavan C, Sawant S, Raju KN, Kanakdande P et al. 2010. Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan Volcanic Province, India: implications for the mantle and magma chamber processes. Contrib. Mineral. Petrol. 159:839–62
    [Google Scholar]
  81. Kumar P, Chaubey A. 2019. Extension of flood basalt on the northwestern continental margin of India. J. Earth Syst. Sci. 128:81
    [Google Scholar]
  82. Larsen LM, Waagstein R, Pedersen AK, Storey M. 1999. Trans-Atlantic correlation of the Palaeogene volcanic successions in the Faeroe Islands and East Greenland. J. Geol. Soc. 156:1081–95
    [Google Scholar]
  83. Lehmann B, Burgess R, Frei D, Belyatsky B, Mainkar D et al. 2010. Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth Planet. Sci. Lett. 290:142–49
    [Google Scholar]
  84. Lightfoot P, Naldrett A, Gorbachev N, Doherty W, Fedorenko V. 1990. Geochemistry of the Siberian Trap of the Noril'sk area, USSR, with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contrib. Mineral. Petrol. 104:631–44
    [Google Scholar]
  85. Lundgren PR, Bagnardi M, Dietterich H. 2019. Topographic changes during the 2018 Kīlauea eruption from single-pass airborne InSAR. Geophys. Res. Lett. 46:9554–62
    [Google Scholar]
  86. Lyle P. 2000. The eruption environment of multi-tiered columnar basalt lava flows. J. Geol. Soc. 157:715–22
    [Google Scholar]
  87. Mahoney J, Macdougall J, Lugmair G, Murali A, Das MS, Gopalan K. 1982. Origin of the Deccan Trap flows at Mahabaleshwar inferred from Nd and Sr isotopic and chemical evidence. Earth Planet. Sci. Lett. 60:47–60
    [Google Scholar]
  88. Mahoney JJ 1988. Deccan traps. Continental Flood Basalts JD Macdougall 151–94 Dordrecht, Neth: Springer
    [Google Scholar]
  89. Mahoney JJ, Duncan R, Khan W, Gnos E, McCormick G 2002. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Réunion hotspot and Deccan Traps. Earth Planet. Sci. Lett. 203:295–310
    [Google Scholar]
  90. Mahoney JJ, Sheth H, Chandrasekharam D, Peng Z 2000. Geochemistry of flood basalts of the Toranmal section, northern Deccan Traps, India: implications for regional Deccan stratigraphy. J. Petrol. 41:1099–120
    [Google Scholar]
  91. Mangan MT, Wright TL, Swanson DA, Byerly GR. 1986. Regional correlation of Grande Ronde Basalt flows, Columbia River Basalt Group, Washington, Oregon, and Idaho. GSA Bull. 97:1300–18
    [Google Scholar]
  92. Melluso L, Barbieri M, Beccaluva L. 2004. Chemical evolution, petrogenesis, and regional chemical correlations of the flood basalt sequence in the central Deccan Traps, India. J. Earth Syst. Sci. 113:587–603
    [Google Scholar]
  93. Melluso L, Mahoney JJ, Dallai L. 2006. Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India). Lithos 89:259–74
    [Google Scholar]
  94. Mitchell C, Widdowson M 1991. A geological map of the southern Deccan Traps, India and its structural implications. J. Geol. Soc. 148:495–505
    [Google Scholar]
  95. Mittal T, Richards M. 2021. Magmatic architecture of continental flood basalts II: a new conceptual model. J. Geol. Res. Solid Earth. https://doi.org/10.1002/essoar.10506092.1
    [Crossref] [Google Scholar]
  96. Moore JG. 2019. Mini-columns and ghost columns in Columbia River lava. J. Volcanol. Geotherm. Res. 374:242–51
    [Google Scholar]
  97. Morriss MC, Karlstrom L, Nasholds MW, Wolff JA. 2020. The Chief Joseph dike swarm of the Columbia River flood basalts, and the legacy data set of William H. Taubeneck. Geosphere 16:1082–106
    [Google Scholar]
  98. Murty A, Sarkar D, Sen MK, Sridher V, Prasad A. 2014. Mapping the sub-trappean Mesozoic sediments in the western part of Narmada–Tapti region of Deccan Volcanic Province, India. J. Asian Earth Sci. 93:15–24
    [Google Scholar]
  99. Najafi S, Cox K, Sukheswala R. 1981. Geology and geochemistry of the basalt flows (Deccan Traps) of the Mahad-Mahableshwar section, India. Mem. Geol. Soc. India 3:300–15
    [Google Scholar]
  100. Orr TR, Poland MP, Patrick MR, Thelen WA, Sutton AJ et al. 2015. Kīlauea's 5–9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu`u `Ō`ō. Hawaiian Volcanoes: From Source Surface R Carey, V Cayol, M Poland, D Weis 393–420 New York: Wiley & Sons
    [Google Scholar]
  101. Owen-Smith TM, Ashwal LD, Torsvik TH, Ganerød M, Nebel O et al. 2013. Seychelles alkaline suite records the culmination of Deccan Traps continental flood volcanism. Lithos 182:33–47
    [Google Scholar]
  102. Pande K, Cucciniello C, Sheth H, Vijayan A, Sharma KK et al. 2017a. Polychronous (Early Cretaceous to Palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39 Ar geochronology, petrochemistry and geodynamics. Int. J. Earth Sci. 106:1487–504
    [Google Scholar]
  103. Pande K, Yatheesh V, Sheth H 2017b. 40Ar/39 Ar dating of the Mumbai tholeiites and Panvel flexure: intense 62.5 Ma onshore–offshore Deccan magmatism during India-Laxmi Ridge–Seychelles breakup. Geophys. J. Int. 210:1160–70
    [Google Scholar]
  104. Pandey OP. 2020. Geodynamic Evolution of the Indian Shield: Geophysical Aspects Cham, Switz: Springer
  105. Panovska S, Constable C, Brown M. 2018. Global and regional assessments of paleosecular variation activity over the past 100 ka. Geochem. Geophys. Geosyst. 19:1559–80
    [Google Scholar]
  106. Parisio L, Jourdan F, Marzoli A, Melluso L, Sethna SF, Bellieni G 2016. 40Ar/39 Ar ages of alkaline and tholeiitic rocks from the northern Deccan Traps: implications for magmatic processes and the K–Pg boundary. J. Geol. Soc. 173:679–88
    [Google Scholar]
  107. Patel V, Sheth H, Cucciniello C, Joshi GW, Wegner W et al. 2020. Geochemistry of Deccan tholeiite flows and dykes of Elephanta Island: insights into the stratigraphy and structure of the Panvel flexure zone, western Indian rifted margin. Geosciences 10:118
    [Google Scholar]
  108. Patil SK, Gadpallu P, Monteiro A, Sepahi MN, Duraiswami RA. 2020. Characterising the Bushe-Poladpur contact across the Western Deccan Traps and implications for mapping the K-Pg boundary?. J. Geol. Soc. India 95:227–40
    [Google Scholar]
  109. Patro B, Sarma S. 2007. Trap thickness and the subtrappean structures related to mode of eruption in the Deccan Plateau of India: results from magnetotellurics. Earth Planets Space 59:75–81
    [Google Scholar]
  110. Patro PK, Egbert GD. 2011. Application of 3D inversion to magnetotelluric profile data from the Deccan Volcanic Province of Western India. Phys. Earth Planet. Inter. 187:33–46
    [Google Scholar]
  111. Pawar NR, Katikar AH, Vaddadi S, Shinde SH, Rajaguru SN et al. 2015. The genesis of a lava cave in the Deccan Volcanic Province (Maharashtra, India). Int. J. Speleol. 45:51–58
    [Google Scholar]
  112. Peate D, Baker J, Blichert-Toft J, Hilton D, Storey M et al. 2003. The Prinsen af Wales Bjerge Formation lavas, East Greenland: the transition from tholeiitic to alkalic magmatism during Palaeogene continental break-up. J. Petrol. 44:279–304
    [Google Scholar]
  113. Peng ZX, Mahoney J, Hooper P, Harris C, Beane J 1994. A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochim. Cosmochim. Acta 58:267–88
    [Google Scholar]
  114. Peng ZX, Mahoney JJ, Hooper P, Macdougall J, Krishnamurthy P. 1998. Basalts of the northeastern Deccan Traps, India: isotopic and elemental geochemistry and relation to southwestern Deccan stratigraphy. J. Geophys. Res. 103:B1229843–65
    [Google Scholar]
  115. Peng ZX, Mahoney JJ, Vanderkluysen L, Hooper PR. 2014. Sr, Nd and Pb isotopic and chemical compositions of central Deccan Traps lavas and relation to southwestern Deccan stratigraphy. J. Asian Earth Sci. 84:83–94
    [Google Scholar]
  116. Percival LM, Jenkyns HC, Mather TA, Dickson AJ, Batenburg SJ et al. 2018. Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events. Am. J. Sci. 318:799–860
    [Google Scholar]
  117. Peshwa V, Kale VS. 1997. Neotectonics of the Deccan Traps Province: focus on the Kurduwadi Lineament. J. Geophys. 5:77–86
    [Google Scholar]
  118. Peshwa V, Mulay J, Kale VS. 1987. Fracture zones in the Deccan Traps of western and central India: a study based on remote sensing techniques. J. Indian Soc. Remote Sens. 15:9–17
    [Google Scholar]
  119. Premarathne U, Ranaweera LV. 2021. Continental flood basalt magmatism contemporaneous with Deccan traps in the Mannar Basin, offshore Sri Lanka. Island Arc 30:e12409
    [Google Scholar]
  120. Pusok AE, Stegman DR. 2020. The convergence history of India-Eurasia records multiple subduction dynamics processes. Sci. Adv. 6:eaaz8681
    [Google Scholar]
  121. Rader E, Vanderkluysen L, Clarke A. 2017. The role of unsteady effusion rates on inflation in long-lived lava flow fields. Earth Planet. Sci. Lett. 477:73–83
    [Google Scholar]
  122. Rajaram M, Anand S, Erram VC, Shinde B. 2017. Insight into the structures below the Deccan Trap-covered region of Maharashtra, India from geopotential data. Geol. Soc. Lond. Spec. Publ. 445:219–36
    [Google Scholar]
  123. Raju S. 2016. Geological survey of India. Proc. Indian Natl. Sci. Acad. 82:1061–81
    [Google Scholar]
  124. Ray R, Sheth HC, Mallik J. 2007. Structure and emplacement of the Nandurbar–Dhule mafic dyke swarm, Deccan Traps, and the tectonomagmatic evolution of flood basalts. Bull. Volcanol. 69:537
    [Google Scholar]
  125. Ray R, Shukla AD, Sheth HC, Ray JS, Duraiswami RA et al. 2008. Highly heterogeneous Precambrian basement under the central Deccan Traps, India: direct evidence from xenoliths in dykes. Gondwana Res. 13:375–85
    [Google Scholar]
  126. Reidel SP, Camp VE, Tolan TL, Martin BS. 2013. The Columbia River flood basalt province: stratigraphy, areal extent, volume, and physical volcanology. Geol. Soc. Am. Spec. Paper 497:1–43
    [Google Scholar]
  127. Richards MA, Alvarez W, Self S, Karlstrom L, Renne PR et al. 2015. Triggering of the largest Deccan eruptions by the Chicxulub impact. GSA Bull. 127:1507–20
    [Google Scholar]
  128. Richards MA, Duncan RA, Courtillot VE. 1989. Flood basalts and hot-spot tracks: plume heads and tails. Science 246:103–7
    [Google Scholar]
  129. Richards F, Hoggard M, White N. 2016. Cenozoic epeirogeny of the Indian peninsula. Geochem. Geophys. Geosyst. 17:4920–54
    [Google Scholar]
  130. Rivalta E, Taisne B, Bunger A, Katz R. 2015. A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638:1–42
    [Google Scholar]
  131. Ross PS, Peate IU, McClintock M, Xu YG, Skilling IP et al. 2005. Mafic volcaniclastic deposits in flood basalt provinces: a review. J. Volcanol. Geotherm. Res. 145:281–314
    [Google Scholar]
  132. Schöbel S, de Wall H, Ganerød M, Pandit MK, Rolf C. 2014. Magnetostratigraphy and 40Ar−39 Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central western India: significance and correlation with the main Deccan Large Igneous Province sequences. J. Asian Earth Sci. 89:28–45
    [Google Scholar]
  133. Schoene B, Eddy MP, Samperton KM, Keller CB, Keller G et al. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363:862–66
    [Google Scholar]
  134. Self S, Jay AE, Widdowson M, Keszthelyi LP. 2008. Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?. J. Volcanol. Geotherm. Res. 172:3–19
    [Google Scholar]
  135. Self S, Keszthelyi L, Thordarson T. 1998. The importance of pāhoehoe. Annu. Rev. Earth Planet. Sci. 26:81–110
    [Google Scholar]
  136. Self S, Mittal T, Jay AE 2021. Thickness characteristics of pāhoehoe lavas in the Deccan Province, Western Ghats, India, and in continental flood basalt provinces elsewhere. Front. Earth Sci. 8:720
    [Google Scholar]
  137. Self S, Schmidt A, Mather T. 2014. Emplacement characteristics, time scales, and volcanic gas release rates of continental flood basalt eruptions on Earth. Geol. Soc. Am. Spec. Pap. 505:319–37
    [Google Scholar]
  138. Self S, Thordarson T, Keszthelyi L 1997. Emplacement of continental flood basalt lava flows. Geophys. Monogr. Ser. 100:381–410
    [Google Scholar]
  139. Self S, Widdowson M, Thordarson T, Jay AE 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth Planet. Sci. Lett. 248:517–31
    [Google Scholar]
  140. Sen B. 2017. Lava flow transition in pāhoehoe-dominated lower pile of Deccan traps from Manmad-Chandwad area, western Maharashtra. J. Geol. Soc. India 89:281–90
    [Google Scholar]
  141. Sen G. 2001. Generation of Deccan trap magmas. J. Earth Syst. Sci. 110:409–31
    [Google Scholar]
  142. Shandilya P, Chatterjee P, Pattabhiram K, Bodas M, Pande K, Kale VS 2020. Rajgad GPB: a megaporphyritic flow field, western Deccan Volcanic Province, India. J. Earth Syst. Sci. 129:113
    [Google Scholar]
  143. Shankar R. 1991. The thermal and crustal structure of ``SONATA.'' A zone of mid continental rifting in Indian shield. J. Geol. Soc. India 37:211–20
    [Google Scholar]
  144. Shaw H, Swanson DA. 1970. Eruption and flow rates of flood basalts. Proceedings of the Second Columbia River Basalt Symposium, Eastern Washington State College, Cheney, Washington, March 21, 22, 23, 1969271–99 Cheney, WA: EWSC Press
    [Google Scholar]
  145. Sheldon ND. 2003. Pedogenesis and geochemical alteration of the Picture Gorge subgroup, Columbia River basalt, Oregon. GSA Bull. 115:1377–87
    [Google Scholar]
  146. Shellnutt JG, Yeh MW, Suga K, Lee TY, Lee HY, Lin TH. 2017. Temporal and structural evolution of the Early Palaeogene rocks of the Seychelles microcontinent. Sci. Rep. 7:179
    [Google Scholar]
  147. Sheth H, Vanderkluysen L, Demonterova EI, Ivanov AV, Savatenkov VM. 2019. Geochemistry and 40Ar/39 Ar geochronology of the Nandurbar-Dhule mafic dyke swarm: dyke-sill-flow correlations and stratigraphic development across the Deccan flood basalt province. Geol. J. 54:157–76
    [Google Scholar]
  148. Sheth HC, Cañón-Tapia E. 2015. Are flood basalt eruptions monogenetic or polygenetic?. Int. J. Earth Sci. 104:2147–62
    [Google Scholar]
  149. Sheth HC, Ray JS, Ray R, Vanderkluysen L, Mahoney JJ et al. 2009. Geology and geochemistry of Pachmarhi dykes and sills, Satpura Gondwana Basin, central India: problems of dyke-sill-flow correlations in the Deccan Traps. Contrib. Mineral. Petrol. 158:357–80
    [Google Scholar]
  150. Sheth HC, Zellmer GF, Kshirsagar PV, Cucciniello C. 2013. Geochemistry of the Palitana flood basalt sequence and the Eastern Saurashtra dykes, Deccan Traps: clues to petrogenesis, dyke–flow relationships, and regional lava stratigraphy. Bull. Volcanol. 75:701
    [Google Scholar]
  151. Shrivastava J, Mahoney J, Kashyap M. 2014. Trace elemental and Nd-Sr-Pb isotopic compositional variation in 37 lava flows of the Mandla lobe and their chemical relation to the western Deccan stratigraphic succession, India. Mineral. Petrol. 108:801–17
    [Google Scholar]
  152. Sinha D, Som A, Roy S. 2017. The subsurface megascopic characteristics of basalt and basement rocks from Koyna-Warna area of Maharashtra, India. J. Geol. Soc. India 90:761–68
    [Google Scholar]
  153. Solanki J, Bhattacharya D, Jain A, Mukherjee A. 1996. Stratigraphy and tectonics of the Deccan Traps of Mandla. Gondwana Geol. Mag. Spec. 2:101–14
    [Google Scholar]
  154. Sprain CJ, Renne PR, Vanderkluysen L, Pande K, Self S, Mittal T. 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363:866–70
    [Google Scholar]
  155. Sreenivasa Rao M, Ramasubba Reddy N, Subbarao K, Prasad CK, Radhakrishnamurty C 1985. Chemical and magnetic stratigraphy of parts of Narmada region, Deccan basalt province. J. Geol. Soc. India 26:617–39
    [Google Scholar]
  156. Srivastava RK, Wang F, Shi W, Sinha AK, Buchan KL. 2020. Nature of Cretaceous dolerite dikes with two distinct trends in the Damodar Valley, eastern India: constraints on their linkage to mantle plumes and large igneous provinces from 40Ar/39 Ar geochronology and geochemistry. Lithosphere 12:40–52
    [Google Scholar]
  157. Subbarao KV. 1988. Deccan Flood Basalts. Bangalore, India: Geol. Soc. India
  158. Subbarao KV, Bodas M, Khadri S, Bean J, Kale V et al. 2000. Penrose Deccan 2000, Field Excursion Guide to the Western Deccan Basalt Province Bangalore, India: Geol. Soc. India
  159. Subbarao KV, Chandrasekharam D, Navaneethakrishnan P, Hooper PR 1994. Stratigraphy and structure of parts of the central Deccan basalt province: eruptive models. Volcanism, Radhakrishna Volume KV Subbarao 321–32 New Delhi, India: Wiley Eastern
    [Google Scholar]
  160. Subbarao KV, Courtillot V. 2017. Deccan basalts in and around Koyna–Warna region, Maharashtra: some reflections. J. Geol. Soc. India 90:653–62
    [Google Scholar]
  161. Sukheswala R. 1981. Deccan basalt volcanism. Mem. Geol. Soc. India 3:8–18
    [Google Scholar]
  162. Sutton AJ, Elias T, Kauahikaua J 2003. Lava-effusion rates for the Pu'u'Ō'ō-Kūpaianaha eruption derived from SO2 emissions and very low frequency (VLF) measurements. The Pu'u'Ō'ō-Kūpaianaha eruption of Kīlauea Volcano, Hawai'i: The First 20 Years C Heliker, DA Swanson, TJ Takahasi 137–48 Reston, VA: US Geol. Surv.
    [Google Scholar]
  163. Swanson D, Wright T, Hooper P, Bentley R. 1979. Revisions in stratigraphic nomenclature of the Columbia River basalt group. Tech. Bull. 1457-G US Geol. Surv. Washington, DC:
    [Google Scholar]
  164. Talusani RV. 2010. Bimodal tholeiitic and mildly alkalic basalts from Bhir area, central Deccan Volcanic Province, India: geochemistry and petrogenesis. J. Volcanol. Geotherm. Res. 189:278–90
    [Google Scholar]
  165. Thordarson T, Self S. 1993. The Laki (Skaftár Fires) and Grmsvötn eruptions in 1783–1785. Bull. Volcanol. 55:233–63
    [Google Scholar]
  166. Thordarson T, Self S. 1998. The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes?. J. Geophys. Res. 103:B1127411–45
    [Google Scholar]
  167. Tolan TL. 1989. Revision on the extent and volume of the Columbia River Basalt Group. Geol. Soc. Am. Spec. Pap. 239:1–20
    [Google Scholar]
  168. USGS (US Geol. Surv.) 2021. The Pu'u'ō'ō eruption lasted 35 years. US Geological Survery. https://www.usgs.gov/volcanoes/kilauea/pu-u-eruption-lasted-35-years
    [Google Scholar]
  169. Valdiya KS. 2016. The Making of India: Geodynamic Evolution Cham, Switz: Springer
  170. Vanderkluysen L, Mahoney JJ, Hooper PR, Sheth HC, Ray R. 2011. The feeder system of the Deccan Traps (India): insights from dike geochemistry. J. Petrol. 52:315–43
    [Google Scholar]
  171. Vye-Brown C, Gannoun A, Barry T, Self S, Burton K 2013a. Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province. Earth Planet. Sci. Lett. 368:183–94
    [Google Scholar]
  172. Vye-Brown C, Self S, Barry T. 2013b. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA. Bull. Volcanol. 75:697
    [Google Scholar]
  173. Walker GP. 1971. Compound and simple lava flows and flood basalts. Bull. Volcanol. 35:579–90
    [Google Scholar]
  174. Walker GP. 1999. Some observations and interpretations on the Deccan Traps. Mem. Geol. Soc. India 43:367–96
    [Google Scholar]
  175. Watts A, Cox K. 1989. The Deccan Traps: an interpretation in terms of progressive lithospheric flexure in response to a migrating load. Earth Planet. Sci. Lett. 93:85–97
    [Google Scholar]
  176. West W. 1959. The source of the Deccan Trap flows. J. Geol. Soc. India 1:44–52
    [Google Scholar]
  177. Widdowson M, Cox K. 1996. Uplift and erosional history of the Deccan Traps, India: evidence from laterites and drainage patterns of the Western Ghats and Konkan Coast. Earth Planet. Sci. Lett. 137:57–69
    [Google Scholar]
/content/journals/10.1146/annurev-earth-012721-051416
Loading
/content/journals/10.1146/annurev-earth-012721-051416
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error