1932

Abstract

Polygenetic volcanoes and calderas produce eruptions of a wide variety of magnitudes, chemistries, and recurrence times. Understanding the interplay between long- and short-term and deep and shallow processes associated with accumulation and transfer of eruptible magma is essential for assessing the potential for future eruptions to occur and estimating their magnitude, which remains one of the foremost challenges in the Earth sciences. We review literature and use existing data for emblematic volcanic systems to identify the essential data sets required to define the state of activity of volcanoes and their plumbing systems. We explore global eruptive records in combination with heat flux and other geological and geophysical data to determine the evolutionary stage of plumbing systems. We define a Volcanic Activity Index applicable to any volcano that provides an estimate of the potential of a system to erupt in the future, which is especially important for long-quiescent volcanoes.

  • ▪  Magmatic plumbing systems that feed volcanic activity extend across Earth's crust and are long-lived at depth and ephemeral in their shallowest portions.
  • ▪  We revise and update the definitions of active, quiescent, and extinct volcanoes based on physical proxies for the architecture, longevity, amount, and distribution of eruptible magma in the crust.
  • ▪  We propose a Volcanic Activity Index, which provides a relative measure of the state of activity of a volcano with respect to all other volcanoes in the world.
  • ▪  New imaging and monitoring strategies are required to improve our ability to detect lower and middle crust magmatic processes and forecast eruptions and their potential size.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-084733
2022-05-31
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-084733.html?itemId=/content/journals/10.1146/annurev-earth-032320-084733&mimeType=html&fmt=ahah

Literature Cited

  1. Acocella V, Rossetti F. 2002. The role of extensional tectonics at different crustal levels on granite ascent and emplacement: an example from Tuscany (Italy). Tectonophysics 354:1–271–83
    [Google Scholar]
  2. Aiuppa A, Cannata A, Cannavò F, Di Grazia G, Ferrari F et al. 2010. Patterns in the recent 2007–2008 activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations. Geochem. Geophys. Geosyst. 11:Q09008
    [Google Scholar]
  3. Amoruso A, Crescentini L, Sabbetta I, De Martino P, Obrizzo F, Tammaro U 2014. Clues to the cause of the 2011–2013 Campi Flegrei caldera unrest, Italy, from continuous GPS data. Geophys. Res. Lett. 41:93081–88
    [Google Scholar]
  4. Annen C. 2009. From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284:3–4409–16
    [Google Scholar]
  5. Annen C, Blundy JD, Leuthold J, Sparks RSJ 2015. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230:206–21
    [Google Scholar]
  6. Annen C, Blundy JD, Sparks RSJ. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47:505–39
    [Google Scholar]
  7. Araya N, Nakamura M, Yasuda A, Okumura S, Sato T et al. 2019. Shallow magma pre-charge during repeated Plinian eruptions at Sakurajima volcano. Sci. Rep. 9:1979
    [Google Scholar]
  8. Arienzo I, Moretti R, Civetta L, Orsi G, Papale P. 2010. The feeding system of Agnano–Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios. Chem. Geol. 270:1–4135–47
    [Google Scholar]
  9. Auger E, Gasparini P, Virieux J, Zollo A. 2001. Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294:55461510–12
    [Google Scholar]
  10. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S 2009. Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113:1–2213–27
    [Google Scholar]
  11. Bacon CR, Druitt TH. 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib. Mineral. Petrol. 98:2224–56
    [Google Scholar]
  12. Barboni M, Schoene B. 2014. Short eruption window revealed by absolute crystal growth rates in a granitic magma. Nat. Geosci. 7:524–28
    [Google Scholar]
  13. Bebbington MS. 2020. Temporal-volume probabilistic hazard model for a supervolcano: Taupo, New Zealand. Earth Planet. Sci. Lett. 536:116141
    [Google Scholar]
  14. Bégué F, Deering CD, Gravley DM, Kennedy BM, Chambefort I et al. 2014. Extraction, storage and eruption of multiple isolated magma batches in the paired Mamaku and Ohakuri eruption, Taupo Volcanic Zone, New Zealand. J. Petrol. 55:81653–84
    [Google Scholar]
  15. Bianchi I, Piana Agostinetti N, De Gori P, Chiarabba C 2008. Deep structure of the Colli Albani volcanic district (central Italy) from receiver functions analysis. J. Geophys. Res. 113:B9B09313
    [Google Scholar]
  16. Blake S. 1981. Eruptions from zoned magma chambers. J. Geol. Soc. 138:3281–87
    [Google Scholar]
  17. Boari E, Avanzinelli R, Melluso L, Giordano G, Mattei M et al. 2009. Isotope geochemistry (Sr-Nd-Pb) and petrogenesis of leucite-bearing volcanic rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bull. Volcanol. 71:9977–1005
    [Google Scholar]
  18. Bonini M, Maestrelli D, Corti G, Del Ventisette C, Moratti G et al. 2021. Modeling intra-caldera resurgence settings: laboratory experiments with application to the Los Humeros Volcanic Complex (Mexico). J. Geophys. Res. Solid Earth 126:3e2020JB020438
    [Google Scholar]
  19. Bordoni P, Valensise G. 1999. Deformation of the 125 ka marine terrace in Italy: tectonic implications. Geol. Soc. Lond. Spec. Publ. 146:171–110
    [Google Scholar]
  20. Bouvet de Maisonneuve C, Forni F, Bachmann O 2021. Magma reservoir evolution during the build up to and recovery from caldera-forming eruptions—a generalizable model?. Earth-Sci. Rev. 218:103684
    [Google Scholar]
  21. Brown RJ, Civetta L, Arienzo I, D'Antonio M, Moretti R et al. 2014. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy). Contrib. Mineral. Petrol. 168:31035
    [Google Scholar]
  22. Brown SK, Crosweller HS, Sparks RSJ, Cottrell E, Deligne NI et al. 2014. Characterisation of the Quaternary eruption record: analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database. J. Appl. Volcanol. 3:5
    [Google Scholar]
  23. Browne B, Szramek L 2015. Rates of magma ascent and storage. The Encyclopedia of Volcanoes H Sigurdsson, B Houghton, S McNutt, H Rymer, J Stix 203–14 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  24. Buonasorte G, Fiordelisi A, Pandeli E, Rossi U, Sollevanti F. 1987. Stratigraphic correlations and structural setting of the pre-neoautochthonous sedimentary sequences of Northern Latium. Period. Mineral. 56:2–3111–22
    [Google Scholar]
  25. Cadoux A, Pinti D. 2009. Hybrid character and pre-eruptive events of Mt Amiata volcano (Italy) inferred from geochronological, petro-geochemical and isotopic data. J. Volcanol. Geotherm. Res. 179:169–90
    [Google Scholar]
  26. Calcagnile G, Panza GF. 1980. The main characteristics of the lithosphere-asthenosphere system in Italy and surrounding regions. Pure Appl. Geophys. 119:4865–79
    [Google Scholar]
  27. Caricchi L, Annen C, Blundy J, Simpson G, Pinel V. 2014. Frequency and magnitude of volcanic eruptions controlled by magma injection and buoyancy. Nat. Geosci. 7:126–30
    [Google Scholar]
  28. Caricchi L, Annen C, Rust A, Blundy J. 2012. Insights into the mechanisms and timescales of pluton assembly from deformation patterns of mafic enclaves. J. Geophys. Res. 117:B11B11206
    [Google Scholar]
  29. Caricchi L, Sheldrake TE, Blundy J. 2018. Modulation of magmatic processes by CO2 flushing. Earth Planet. Sci. Lett. 491:160–71
    [Google Scholar]
  30. Caricchi L, Townsend M, Rivalta E, Namiki A 2021. The build-up and triggers of volcanic eruptions. Nat. Rev. Earth Env. 2:458–76
    [Google Scholar]
  31. Carlino S, Somma R, Troiano A, Di Giuseppe MG, Troise C, De Natale G. 2014. The geothermal system of Ischia Island (southern Italy): critical review and sustainability analysis of geothermal resource for electricity generation. Renew. Energy 62:177–96
    [Google Scholar]
  32. Carlino S, Somma R, Troise C, De Natale G. 2012. The geothermal exploration of Campanian volcanoes: historical review and future development. Renew. Sust. Energy Rev. 16:11004–30
    [Google Scholar]
  33. Carrasco-Núñez G, Bernal JP, Davila P, Jicha B, Giordano G, Hernández J 2018. Reappraisal of Los Humeros volcanic complex by new U/Th zircon and 40Ar/39Ar dating: implications for greater geothermal potential. Geochem. Geophys. Geosyst. 19:1132–49
    [Google Scholar]
  34. Cas RAF, Van Otterloo J, Blaikie TN, Van Den Hove J. 2017. The dynamics of a very large intra-plate continental basaltic volcanic province, the Newer Volcanics Province, SE Australia, and implications for other provinces. Geol. Soc. Lond. Spec. Publ. 446:123–72
    [Google Scholar]
  35. Cashman KV, Giordano G. 2014. Calderas and magma reservoirs. J. Volcanol. Geotherm. Res. 288::28–45
    [Google Scholar]
  36. Cashman KV, Sparks RSJ, Blundy JD. 2017. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:6331eaag3055
    [Google Scholar]
  37. Cassinis R, Scarascia S, Lozej A. 2003. The deep crustal structure of Italy and surrounding areas from seismic refraction data; a new synthesis. Boll. Soc. Geol. It. 122:3365–76
    [Google Scholar]
  38. Chiarabba C, Amato A, Fiordelisi A. 1995. Upper crustal tomographic images of the Amiata-Vulsini geothermal region, central Italy. J. Geophys. Res. 100:B34053–66
    [Google Scholar]
  39. Chiarabba C, Giordano G, Mattei M, Funiciello R. 2010. The three-dimensional structure of the Colli Albani volcano. Geol. Soc. Lond. Spec. Publ. 3:29–41
    [Google Scholar]
  40. Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R et al. 2010. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J. Geophys. Res. 115:B3B03205
    [Google Scholar]
  41. Chiodini G, Valenza M, Cardellini C, Frigeri A 2008. A new web-based catalog of Earth degassing sites in Italy. Eos 89:341–42
    [Google Scholar]
  42. Coleman DS, Bartley JM, Glazner AF, Pardue MJ. 2012. Is chemical zonation in plutonic rocks driven by changes in source magma composition or shallow-crustal differentiation?. Geosphere 8:1568–87
    [Google Scholar]
  43. Conticelli S, Boari E, Avanzinelli R, De Benedetti AA, Giordano Get al 2010. Geochemistry, isotopes and mineral chemistry of the Colli Albani volcanic rocks: constraints on magma genesis and evolution. Geol. Soc. Lond. Spec. Publ. 3:10740
    [Google Scholar]
  44. Conticelli S, Boari E, Burlamacchi L, Cifelli F, Moscardi F et al. 2015. Geochemistry and Sr-Nd-Pb isotopes of Monte Amiata Volcano, Central Italy: evidence for magma mixing between high-K calc-alkaline and leucititic mantle-derived magmas. It. J. Geosci. 134:2266–90
    [Google Scholar]
  45. Conticelli S, D'Antonio M, Pinarelli L, Civetta L 2002. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data from Roman Province and Southern Tuscany. Mineral. Petrol. 74:2–4189–222
    [Google Scholar]
  46. Conticelli S, Laurenzi MA, Giordano G, Mattei M, Avanzinelli R et al. 2010. Leucite-bearing (kamafugitic/leucititic) and -free (lamproitic) ultrapotassic rocks and associated shoshonites from Italy: constraints on petrogenesis and geodynamics. J. Virt. Expl. 36:2020
    [Google Scholar]
  47. Cooper GF, Wilson CJN, Millet MA, Baker JA, Smith EGC. 2012. Systematic tapping of independent magma chambers during the 1 Ma Kidnappers supereruption. Earth Planet. Sci. Lett. 313:23–33
    [Google Scholar]
  48. Cooper KM, Kent AJR. 2014. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506:480–83
    [Google Scholar]
  49. Crosweller HS, Arora B, Brown SK, Cottrell E, Deligne NI et al. 2012. Global database on large magnitude explosive volcanic eruptions (LaMEVE). J. Appl. Volcanol. 1:4
    [Google Scholar]
  50. De Benedetti AA, Caprilli E, Rossetti F, Giordano G, Funiciello R 2010. Metamorphic, metasomatic and intrusive xenoliths of the Colli Albani volcano and their significance for the reconstruction of the volcano plumbing system. Geol. Soc. Lond. Spec. Publ. 3:153–76
    [Google Scholar]
  51. de Silva S, Zandt G, Trumbull R, Viramonte J 2006. Large-scale silicic volcanism—the result of thermal maturation of the crust. Adv. Geosci. 2006:215–30
    [Google Scholar]
  52. de Silva SL, Gregg PM. 2014. Thermomechanical feedbacks in magmatic systems: implications for growth, longevity, and evolution of large caldera-forming magma reservoirs and their supereruptions. J. Volcanol. Geotherm. Res. 282::77–91
    [Google Scholar]
  53. Deb P, Giordano G, Shi X, Lucci F, Clauser C. 2021. An approach to reconstruct the thermal history in active magmatic systems: implications for the Los Humeros volcanic complex, Mexico. Geothermics 96:102162
    [Google Scholar]
  54. Della Vedova B, Bellani S, Pellis G, Squarci P 2001. Deep temperatures and surface heat flow distribution. Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins G Battista Vai, IP Martini 65–76 Dordrecht, Neth.: Springer
    [Google Scholar]
  55. Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B. 2012. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:738377–80
    [Google Scholar]
  56. Dufek J, Bachmann O. 2010. Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology 38:8687–90
    [Google Scholar]
  57. Edmonds M, Humphreys MCS, Hauri EH, Herd RA, Wadge G et al. 2014. Pre-eruptive vapour and its role in controlling eruption style and longevity at Soufrière Hills Volcano. Geol. Soc. Lond. Mem. 39:291–315
    [Google Scholar]
  58. Edmonds M, Woods AW. 2018. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 368:13–30
    [Google Scholar]
  59. Elders WA, Friðleifsson , Zierenberg RA, Pope EC, Mortensen AK et al. 2011. Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano, Iceland. Geology 39:3231–34
    [Google Scholar]
  60. Ellis BS, Wolff JA. 2012. Complex storage of rhyolite in the central Snake River Plain. J. Volcanol. Geotherm. Res. 211:1–11
    [Google Scholar]
  61. Faccenna C, Funiciello F, Giardini D, Lucente P 2001. Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth Planet. Sci. Lett. 187:1–2105–16
    [Google Scholar]
  62. Ferriz H, Mahood GA. 1987. Strong compositional zonation in a silicic magmatic system: Los Humeros, Mexican Neovolcanic Belt. J. Petrol. 28:1171–209
    [Google Scholar]
  63. Forni F, Degruyter W, Bachmann O, De Astis G, Mollo S. 2018. Long-term magmatic evolution reveals the beginning of a new caldera cycle at Campi Flegrei. Sci. Adv. 4:eaat9401
    [Google Scholar]
  64. Funiciello R, Giordano G, De Rita D 2003. The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. J. Volcanol. Geotherm. Res. 123:1–243–61
    [Google Scholar]
  65. Galetto F, Acocella V, Caricchi L. 2017. Caldera resurgence driven by magma viscosity contrasts. Nat. Comm. 8:11750
    [Google Scholar]
  66. Gambardella B, Cardellini C, Chiodini G, Frondini F, Marini L et al. 2004. Fluxes of deep CO2 in the volcanic areas of central-southern Italy. . J. Volcanol. Geotherm. Res. 136:31–52
    [Google Scholar]
  67. GEOROC (Geochem. Rocks Oceans Cont.) 2021. GEOROC Database, Max Planck Institute for Chemistry Mainz Germany: retrieved July 27, 2021. http://georoc.mpch-mainz.gwdg.de/georoc/
  68. Geothopica 2021. Geothopica Database, Institute of Geosciences and Earth Resource of National Research Council Pisa, Italy: retrieved July 27, 2021. http://geothopica.igg.cnr.it/
  69. Giordano G, Cas RAF 2021. Classification of ignimbrites and their eruptions. Earth-Sci. Rev. 220:103697
    [Google Scholar]
  70. Girona T, Realmuto V, Lundgren P. 2021. Large-scale thermal unrest of volcanoes for years prior to eruption. Nat. Geosci. 14:4238–41
    [Google Scholar]
  71. Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers?. GSA Today 14:4/54–12
    [Google Scholar]
  72. Gola G, Bertini G, Bonini M, Botteghi S, Brogi A et al. 2017. Data integration and conceptual modelling of the Larderello geothermal area, Italy. Energy Procedia 125::300–9
    [Google Scholar]
  73. Gottsmann J, Folch A, Rymer H 2006. Unrest at Campi Flegrei: a contribution to the magmatic versus hydrothermal debate from inverse and finite element modeling. J. Geophys. Res. 111:B7B07203
    [Google Scholar]
  74. Gottsmann J, Komorowski JC, Barclay J 2017. Volcanic unrest and pre-eruptive processes: a hazard and risk perspective. Volcanic Unrest J Gottsmann, J Neuberg, B Scheu 1–21 Cham, Switz: Springer
    [Google Scholar]
  75. Gravley DM, Deering CD, Leonard GS, Rowland JV 2016. Ignimbrite flare-ups and their drivers: a New Zealand perspective. Earth-Sci. Rev. 162::65–82
    [Google Scholar]
  76. Gualda GA, Ghiorso MS. 2013. The Bishop Tuff giant magma body: an alternative to the Standard Model. Contrib. Mineral. Petrol. 166:3755–75
    [Google Scholar]
  77. Gualda GA, Gravley DM, Connor M, Hollmann B, Pamukcu AS et al. 2018. Climbing the crustal ladder: magma storage-depth evolution during a volcanic flare-up. Sci. Adv. 4:10eaap7567
    [Google Scholar]
  78. Gualda GA, Gravley DM, Deering CD, Ghiorso MS. 2019. Magma extraction pressures and the architecture of volcanic plumbing systems. Earth Planet. Sci. Lett. 522:118–24
    [Google Scholar]
  79. Gualda GA, Pamukcu AS, Ghiorso MS, Anderson ATJr., Sutton SR, Rivers ML 2012. Timescales of quartz crystallization and the longevity of the Bishop giant magma body. PLOS ONE 7:5e37492
    [Google Scholar]
  80. Hammer JE, Rutherford MJ, Hildreth W 2002. Magma storage prior to the 1912 eruption at Novarupta, Alaska. Contrib. Mineral. Petrol. 144:2144–62
    [Google Scholar]
  81. Hartung E, Caricchi L, Floess D, Wallis S, Harayama S et al. 2017. Evidence for residual melt extraction in the Takidani Pluton, Central Japan. J. Petrol. 58:763–88
    [Google Scholar]
  82. Higgins O, Sheldrake T, Caricchi L. 2021. Machine learning thermobarometry and chemometry using amphibole and clinopyroxene: a window into the roots of an arc volcano (Mount Liamuiga. Saint Kitts). EarthArXiv. https://doi.org/10.31223/X5GD0W
    [Crossref]
  83. Hildreth W. 2004. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J. Volcanol. Geotherm. Res. 136:3–4169–98
    [Google Scholar]
  84. Hotta K, Iguchi M, Ohkura T, Yamamoto K. 2016. Multiple-pressure-source model for ground inflation during the period of high explosivity at Sakurajima volcano, Japan—combination analysis of continuous GNSS, tilt and strain data. J. Volcanol. Geotherm. Res. 310::12–25
    [Google Scholar]
  85. Huang HH, Lin FC, Schmandt B, Farrell J, Smith RB, Tsai VC. 2015. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348:6236773–76
    [Google Scholar]
  86. Huber C, Bachmann O, Manga M. 2009. Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet. Sci. Lett. 283:38–47
    [Google Scholar]
  87. Humphreys MCS, Edmonds M, Plail M, Barclay J, Parkes D, Christopher T. 2012. A new method to quantify the real supply of mafic components to a hybrid andesite. Contrib. Mineral. Petrol. 165:191–215
    [Google Scholar]
  88. Isaia R, Marianelli P, Sbrana A. 2009. Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: implications for caldera dynamics and future eruptive scenarios. Geophys. Res. Lett. 36:21L21303
    [Google Scholar]
  89. Jackson MD, Blundy J, Sparks RSJ. 2018. Chemical differentiation, cold storage and remobilization of magma in the Earth's crust. Nature 564:405–9
    [Google Scholar]
  90. Jellinek AM, DePaolo DJ. 2003. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65:363–81
    [Google Scholar]
  91. Karakas O, Degruyter W, Bachmann O, Dufek J. 2017. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nat. Geosci. 10:6446–50
    [Google Scholar]
  92. Kent AJR, Darr C, Koleszar AM, Salisbury MJ, Cooper KM. 2010. Preferential eruption of andesitic magmas through recharge filtering. Nat. Geosci. 3:631–36
    [Google Scholar]
  93. Kilbride BM, Edmonds M, Biggs J. 2016. Observing eruptions of gas-rich compressible magmas from space. Nat. Commun. 7:13744
    [Google Scholar]
  94. Kiyosugi K, Connor C, Sparks RSJ, Crosweller HS, Brown SK et al. 2015. How many explosive eruptions are missing from the geologic record? Analysis of the quaternary record of large magnitude explosive eruptions in Japan. J. Appl. Volcanol. 4:17
    [Google Scholar]
  95. Klaver M, Blundy JD, Vroon PZ. 2018. Generation of arc rhyodacites through cumulate-melt reactions in a deep crustal hot zone: evidence from Nisyros volcano. Earth Planet. Sci. Lett. 497:169–80
    [Google Scholar]
  96. Lucci F, Carrasco-Núñez G, Rossetti F, Theye T, White JC et al. 2020. Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems. Solid Earth 11:125–59
    [Google Scholar]
  97. Lucci F, Rossetti F, Becchio R, Theye T, Gerdes A et al. 2018. Magmatic Mn-rich garnets in volcanic settings: age and longevity of the magmatic plumbing system of the Miocene Ramadas volcanism (NW Argentina). Lithos 322::238–49
    [Google Scholar]
  98. Lukács R, Caricchi L, Schmitt AK, Bachmann O, Karakas O et al. 2021. Zircon geochronology suggests a long-living and active magmatic system beneath the Ciomadul volcanic dome field (eastern-central Europe). Earth Planet. Sci. Lett. 565:116965
    [Google Scholar]
  99. Lustrino M, Luciani N, Stagno V. 2019. Fuzzy petrology in the origin of carbonatitic/pseudocarbonatitic Ca-rich ultrabasic magma at Polino (central Italy). Sci. Rep. 9:9212
    [Google Scholar]
  100. Marsh BD. 1984. On the mechanics of caldera resurgence. J. Geophys. Res. 89:B108245–51
    [Google Scholar]
  101. Marsh BD. 1996. Solidification fronts and magmatic evolution. Mineral. Mag. 60:3985–40
    [Google Scholar]
  102. Masotta M, Freda C, Gaeta M 2012. Origin of crystal-poor, differentiated magmas: insights from thermal gradient experiments. Contrib. Mineral. Petrol. 163:149–65
    [Google Scholar]
  103. Mattei M, Conticelli S, Giordano G 2010. The Tyrrhenian margin geological setting: from the Apennine orogeny to the K-rich volcanism. Geol. Soc. Lond. Spec. Publ. 3:7–27
    [Google Scholar]
  104. Mbia PK, Mortensen AK, Oskarsson N, Hardarson B. 2015. Sub-surface geology, petrology and hydrothermal alteration of the Menengai geothermal field, Kenya: case study of wells MW-02, MW-04, MW-06 and MW-07. World Geothermal Congress, 16–24 April 2015, Australia-New Zealand: Proceedings19–25 Melbourne, Aust.: Int. Geotherm. Assoc.
    [Google Scholar]
  105. Menand T, Annen C, de Saint-Blanquat M. 2015. Rates of magma transfer in the crust: insights into magma reservoir recharge and pluton growth. Geology 43:199–202
    [Google Scholar]
  106. Montgomery-Brown EK, Wicks CW, Cervelli PF, Langbein JO, Svarc JL et al. 2015. Renewed inflation of Long Valley Caldera, California (2011 to 2014). Geophys. Res. Lett. 42:135250–57
    [Google Scholar]
  107. Morgavi D, Arienzo I, Montagna C, Perugini D, Dingwell DB 2017. Magma mixing: history and dynamics of an eruption trigger. Volcanic Unrest J Gottsmann, J Neuberg, B Scheu 123–37 Cham, Switz: Springer
    [Google Scholar]
  108. Nagaoka Y, Nishida K, Aoki Y, Takeo M, Ohminato T 2012. Seismic imaging of magma chamber beneath an active volcano. Earth Planet. Sci. Lett. 333::1–8
    [Google Scholar]
  109. Newhall CG, Costa F, Ratdomopurbo A, Venezky DY, Widiwijayanti C et al. 2017. WOVOdat—an online, growing library of worldwide volcanic unrest. J. Volcanol. Geotherm. Res. 345::184–99
    [Google Scholar]
  110. Newhall CG, Dzurisin D. 1988. Historical Unrest at the Large Calderas of the World. Department of the Interior Washington, DC: US Geol Surv .
    [Google Scholar]
  111. Newman S, Lowenstern JB. 2002. VolatileCalc: a silicate melt–H2O–CO2 solution model written in Visual Basic for Excel. Comput. Geosci. 28:597–604
    [Google Scholar]
  112. Nimis P, Ulmer P. 1998. Clinopyroxene geobarometry of magmatic rocks Part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib. Mineral. Petrol. 133:122–35
    [Google Scholar]
  113. Orsi G, Di Vito MA, Selva J, Marzocchi W 2009. Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet. Sci. Lett. 287:1–2265–76
    [Google Scholar]
  114. Palladino DM, Simei S, Sottili G, Trigila R. 2010. Integrated approach for the reconstruction of stratigraphy and geology of Quaternary volcanic terrains: an application to the Vulsini Volcanoes (central Italy). Geol. Soc. Am. Spec. Pap. 464:63–84
    [Google Scholar]
  115. Papale P. 2018. Global time-size distribution of volcanic eruptions on Earth. Sci. Rep. 8:6838
    [Google Scholar]
  116. Papale P, Moretti R, Barbato D. 2006. The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem. Geol. 229:78–95
    [Google Scholar]
  117. Passarelli L, Brodsky EE. 2012. The correlation between run-up and repose times of volcanic eruptions. Geophys. J. Int. 188:31025–45
    [Google Scholar]
  118. Paulatto M, Moorkamp M, Hautmann S, Hooft E, Morgan JV, Sparks RSJ 2019. Vertically extensive magma reservoir revealed from joint inversion and quantitative interpretation of seismic and gravity data. J. Geophys. Res. Solid Earth 124:11170–91
    [Google Scholar]
  119. Peccerillo A. 2017. Cenozoic Volcanism in the Tyrrhenian Sea Region Cham, Switz: Springer
  120. Pensa A, Pinton A, Vita L, Bonamico A, De Benedetti AA, Giordano G. 2019. Atlas of Italian submarine volcanic structures. Mem. Descr. Carta Geol. D'It. 104:77–184
    [Google Scholar]
  121. Petrelli M, Caricchi L, Perugini D 2020. Machine learning thermo-barometry: application to clinopyroxene-bearing magmas. J. Geophys. Res. Solid Earth 125:9e2020JB020130
    [Google Scholar]
  122. Petrone CM, Bugatti G, Braschi E, Tommasini S 2016. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics. Nat. Comm. 7:12946
    [Google Scholar]
  123. Phillipson G, Sobradelo R, Gottsmann J. 2013. Global volcanic unrest in the 21st century: an analysis of the first decade. J. Volcanol. Geotherm. Res. 264::183–96
    [Google Scholar]
  124. Pistone M, Caricchi L, Ulmer P, Reusser E, Ardia P 2013. Rheology of volatile-bearing crystal mushes: mobilization vs. viscous death. Chem. Geol. 345:16–39
    [Google Scholar]
  125. Potter SH, Scott BJ, Jolly GE, Neall VE, Johnston DM. 2015. Introducing the Volcanic Unrest Index (VUI): a tool to quantify and communicate the intensity of volcanic unrest. Bull. Volcanol. 77:977
    [Google Scholar]
  126. Rogers N 2015. The composition and origin of magmas. The Encyclopedia of Volcanoes H Sigurdsson, B Houghton, S McNutt, H Rymer, J Stix 93–112 San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  127. Rooyakkers SM, Stix J, Berlo K, Petrelli M, Sigmundsson F. 2021. Eruption risks from covert silicic magma bodies. Geology 49:8921–25
    [Google Scholar]
  128. Ruprecht P, Plank T. 2013. Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500:68–72
    [Google Scholar]
  129. Saunders K, Blundy J, Dohmen R, Cashman K 2012. Linking petrology and seismology at an active volcano. Science 336:60841023–27
    [Google Scholar]
  130. Scaillet B, Pichavant M, Cioni R. 2008. Upward migration of Vesuvius magma chamber over the past 20,000 years. Nature 455:7210216–19
    [Google Scholar]
  131. Scandone R, Bartolini S, Martí J. 2016. A scale for ranking volcanoes by risk. Bull. Volcanol. 78:2
    [Google Scholar]
  132. Scarpa R, Tronca F, Bianco F, Del Pezzo E. 2002. High resolution velocity structure beneath Mount Vesuvius from seismic array data. Geophys. Res. Lett. 29:2136–136-4
    [Google Scholar]
  133. Silleni A, Giordano G, Isaia R, Ort MH. 2020. The magnitude of the 39.8 ka Campanian Ignimbrite eruption, Italy: method, uncertainties and errors. Front. Earth Sci. 8:543399
    [Google Scholar]
  134. Simm J, Magrans De Abril I, Sugiyama M. 2014. Tree-based ensemble multi-task learning method for classification and regression. IEICE Trans. Inf. Syst. E97-D:1677–81
    [Google Scholar]
  135. Solano JMS, Jackson MD, Sparks RSJ, Blundy J. 2014. Evolution of major and trace element composition during melt migration through crystalline mush: implications for chemical differentiation in the crust. Am. J. Sci. 314:895–939
    [Google Scholar]
  136. Soligo M, Tuccimei P. 2010. Geochronology of Colli Albano volcano. Geol. Soc. Lond. Spec. Publ. 3:99–106
    [Google Scholar]
  137. Sparks RSJ, Cashman KV. 2017. Dynamic magma systems: implications for forecasting volcanic activity. Elements 13:135–40
    [Google Scholar]
  138. Sparks RSJ, Huppert HE, Turner JS. 1984. The fluid dynamics of evolving magma chambers. Philos. Trans. R. Soc. A 310:1514511–34
    [Google Scholar]
  139. Spera FJ, Yuen DA, Greer JC, Sewell G 1986. Dynamics of magma withdrawal from stratified magma chambers. Geology 14:9723–26
    [Google Scholar]
  140. Szakács A. 1994. Redefining active volcanoes: a discussion. Bull. Volcanol. 56:5321–25
    [Google Scholar]
  141. Tarasewicz J, White RS, Woods AW, Brandsdóttir B, Gudmundsson MT. 2012. Magma mobilization by downward-propagating decompression of the Eyjafjallajökull volcanic plumbing system. Geophys. Res. Lett. 39:19L19309
    [Google Scholar]
  142. Teplow W, Marsh B, Hulen J, Spielman P, Kaleikini M et al. 2009. Dacite melt at the Puna Geothermal Venture wellfield, Big Island of Hawaii. Geotherm. Res. Council Trans. 33::989–94
    [Google Scholar]
  143. Todesco M, Rinaldi AP, Bonafede M. 2010. Modeling of unrest signals in heterogeneous hydrothermal systems. J. Geophys. Res. 115:B9B09213
    [Google Scholar]
  144. Urbani S, Giordano G, Lucci F, Rossetti F, Acocella V, Carrasco-Núñez G. 2020. Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico). Solid Earth 11:2527–45
    [Google Scholar]
  145. Verdoya M, Chiozzi P, Gola G 2021. Unravelling the terrestrial heat flow of a young orogen: the example of the northern Apennines. Geothermics 90:101993
    [Google Scholar]
  146. Verdoya M, Pasquale V, Chiozzi P 2005. Thermo-mechanical evolution and rheology of the northern sector of the Tyrrhenian–Apennines system. J. Volcanol. Geotherm. Res. 148:1–220–30
    [Google Scholar]
  147. Verma SP, Gomez-Arias E, Andaverde J. 2011. Thermal sensitivity analysis of emplacement of the magma chamber in Los Humeros caldera, Puebla, Mexico. Int. Geol. Rev. 53:8905–25
    [Google Scholar]
  148. Viccaro M, Giuffrida M, Nicotra E, Ozerov AY 2012. Magma storage, ascent and recharge history prior to the 1991 eruption at Avachinsky Volcano, Kamchatka, Russia: inferences on the plumbing system geometry. Lithos 140::11–24
    [Google Scholar]
  149. Ward KM, Zandt G, Beck SL, Christensen DH, McFarlin H. 2014. Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions. Earth Planet. Sci. Lett. 404::43–53
    [Google Scholar]
  150. Weber G, Arce JL, Ulianov A, Caricchi L 2019. A recurrent magmatic pattern on observable timescales prior to Plinian eruptions from Nevado de Toluca (Mexico). J. Geophys. Res. Solid Earth 124:1110999–1021
    [Google Scholar]
  151. Weber G, Caricchi L, Arce JL, Schmitt AK. 2020. Determining the current size and state of subvolcanic magma reservoirs. Nat. Commun. 11:5477
    [Google Scholar]
  152. White SM, Crisp JA, Spera FJ. 2006. Long-term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosyst. 7:3Q03010
    [Google Scholar]
  153. Whittington AG, Hofmeister AM, Nabelek PI. 2009. Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism. Nature 458:319–21
    [Google Scholar]
  154. Willcock MAW, Bargossi GM, Weinberg RF, Gasparotto G, Cas RAF et al. 2015. A complex magma reservoir system for a large volume intra- to extra-caldera ignimbrite: mineralogical and chemical architecture of the VEI8, Permian Ora ignimbrite (Italy). J. Volcanol. Geotherm. Res. 306::17–40
    [Google Scholar]
  155. Winson AE, Costa F, Newhall CG, Woo G. 2014. An analysis of the issuance of volcanic alert levels during volcanic crises. J. Appl. Volcanol. 3:14
    [Google Scholar]
  156. Wörner G, Mamani M, Blum-Oeste M. 2018. Magmatism in the Central Andes. Elements 14:237–44
    [Google Scholar]
  157. Wotzlaw JF, Bindeman IN, Stern RA, D'Abzac FX, Schaltegger U. 2015. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Sci. Rep. 5:14026
    [Google Scholar]
  158. Wotzlaw JF, Bindeman IN, Watts KE, Schmitt AK, Caricchi L, Schaltegger U 2014. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes. Geology 42:9807–10
    [Google Scholar]
  159. Yoshimura S, Nakamura M 2011. Carbon dioxide transport in crustal magmatic systems. Earth Planet. Sci. Lett. 307:470–78
    [Google Scholar]
  160. Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P 2008. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 35:12L12306
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-084733
Loading
/content/journals/10.1146/annurev-earth-032320-084733
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error