1932

Abstract

Carbon is among the most abundant substances in the universe; although severely depleted on Earth, it is the primary structural element in biochemistry. Complex interactions between carbon and climate have stabilized the Earth system over geologic time. Since the modern instrumental CO record began in the 1950s, about half of fossil fuel emissions have been sequestered in the oceans and land ecosystems. Ocean uptake of fossil CO is governed by chemistry and circulation. Net land uptake is surprising because it implies a persistent worldwide excess of growth over decay. Land carbon sinks include () CO fertilization, () nitrogen fertilization, () forest regrowth following agricultural abandonment, and () boreal warming. Carbon sinks in both land and oceans are threatened by warming and are likely to weaken or even reverse as emissions fall with the potential for amplification of climate change due to the release of previously stored carbon. Fossil CO will persist for centuries and perhaps many millennia after emissions cease.

  • ▪  About half the carbon from fossil fuel combustion is removed from the atmosphere by sink processes in the land and oceans, slowing the increase of CO and global warming. These sinks may weaken or even reverse as climate warms and emissions fall.
  • ▪  The net land sink for CO requires that plants have been growing faster than they decay for many decades, causing carbon to build up in the biosphere over and above the carbon lost to deforestation, fire, and other disturbances.
  • ▪  CO uptake by the oceans is slow because only the surface water is in chemical contact with the air. Cold water at depth is physically isolated by its density. Deep water mixes with the surface in about 1,000 years. The deep water does not know we are here yet!
  • ▪  After fossil fuel emissions cease, much of the extra CO will remain in the atmosphere for many centuries or even millennia. The lifetime of excess CO depends on total historical emissions; 10% to 40% could last until the year 40,000 AD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-032320-092010
2022-05-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/50/1/annurev-earth-032320-092010.html?itemId=/content/journals/10.1146/annurev-earth-032320-092010&mimeType=html&fmt=ahah

Literature Cited

  1. AMAP (Arct. Monit. Assess. Programme) 2021. Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-makers Tromsø, Nor.: Arct. Monit. Assess. Programme
  2. Anav A, Friedlingstein P, Kidston M, Bopp L, Ciais P et al. 2013. Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth system models. J. Clim. 26:6801–43
    [Google Scholar]
  3. Andrews AE, Kofler JD, Trudeau ME, Williams JC, Neff DH et al. 2014. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos. Meas. Tech. 7:647–87
    [Google Scholar]
  4. Aragão LEOC, Anderson LO, Fonseca MG, Rosan TM, Vedovato LB et al. 2018. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Comm. 9:536
    [Google Scholar]
  5. Archer D, Brovkin V. 2008. The millennial atmospheric lifetime of anthropogenic CO2. Clim. Change 90:3283–97
    [Google Scholar]
  6. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L et al. 2009. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37:117–34
    [Google Scholar]
  7. Archer D, Pierrehumbert R, eds. 2011. The Warming Papers: The Scientific Foundation for the Climate Change Forecast New York: Wiley
  8. Arora VK, Boer GJ, Friedlingstein P, Eby M, Jones CD et al. 2013. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26:5289–314
    [Google Scholar]
  9. Baker DF, Law RM, Gurney KR, Rayner P, Peylin P et al. 2006. TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003. Glob. Biogeochem. Cycles 20:GB1002
    [Google Scholar]
  10. Baker IT, Prihodko L, Denning AS, Goulden M, Miller S et al. 2008. Seasonal drought stress in the Amazon: reconciling models and observations. J. Geophys. Res. 113:G1G00B01
    [Google Scholar]
  11. Baldocchi D. 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange of ecosystems: past, present, and future. Glob. Change Biol. 9:479–92
    [Google Scholar]
  12. Bastos A, Friedlingstein P, Sitch S, Chen C, Mialon A et al. 2018. Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philos. Trans. R. Soc. B 373:20170304
    [Google Scholar]
  13. Battle M, Bender ML, Tans PP, White JWC. 2000. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science 287:2467–70
    [Google Scholar]
  14. Bauer JE, Cai W-J, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PAG. 2013. The changing carbon cycle of the coastal ocean. Nature 504:61–70
    [Google Scholar]
  15. Behrenfeld MJ, Boss E, Siegel DA, Shea DM. 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19:GB1006
    [Google Scholar]
  16. Berry JA, Wolf A, Campbell JE, Baker IT, Blake N et al. 2013. A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J. Geophys. Res. Biogeosci. 118:842–52
    [Google Scholar]
  17. Bolin B. 1977. Changes of land biota and their importance for the carbon cycle. Science 196:613–15
    [Google Scholar]
  18. Bolin B, Bischof W. 1970. Variations of carbon dioxide content of the atmosphere in the northern hemisphere. Tellus 22:431–42
    [Google Scholar]
  19. Bolin B, Keeling CD. 1963. Large-scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J. Geophys. Res. 68:133899–920
    [Google Scholar]
  20. Bourassa MA, Meissner T, Cerovecki I, Chang PS, Dong X et al. 2019. Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Front. Mar. Sci. 6:443
    [Google Scholar]
  21. Broecker WS, Takahashi T, Simpson HJ, Peng T-H. 1979. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206:409–18
    [Google Scholar]
  22. Callendar GS. 1940. Variations in the amount of carbon dioxide in different air currents. Quart. J. R. Meteorol. Soc. 66:395–400
    [Google Scholar]
  23. Canadell JG, Pataki DE, Gifford R, Houghton RA, Luo Y et al. 2007. Saturation of the terrestrial carbon sink. Terrestrial Ecosystems in a Changing World JG Canadell, D Pataki, L Pitelka 59–78 Berlin: Springer-Verlag
    [Google Scholar]
  24. Casperson JP, Pacala SWJ, Jenkins JC, Hurtt GC. 2000. Contributions of land-use history to carbon accumulation in US forests. Science 290:1148–51
    [Google Scholar]
  25. Ciais P, Denning AS, Tans PP, Berry JA, Randall DA et al. 1997. A three-dimensional synthesis study of δ18O in atmospheric CO2: 1. Surface fluxes. J. Geophys. Res. 102:D55857–72
    [Google Scholar]
  26. Ciais P, Dolman AJ, Bombelli A, Duren R, Peregon A et al. 2014. Current systematic carbon-climate observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences 11:3547–602
    [Google Scholar]
  27. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V et al. 2013. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al. 465–570 New York: Cambridge Univ. Press
    [Google Scholar]
  28. Ciais P, Tans PP, White JWC, Trolier M, Francey RJ et al. 1995. Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res. 100:D35051–70
    [Google Scholar]
  29. Ciais P, Wattenbach M, Vuichard N, Smith P, Pio SL et al. 2010. The European carbon balance. Part 2: croplands. Glob. Change Biol. 16:1409–28
    [Google Scholar]
  30. Cox P, Betts RA, Collins M, Harris PP, Huntingford C et al. 2004. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol. 78:1–3137–56
    [Google Scholar]
  31. Crisp D, Atlas RM, Breon F-M, Burrows LR, Ciais P et al. 2004. The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res. 34:700–9
    [Google Scholar]
  32. Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75:183–229
    [Google Scholar]
  33. Davidson EA, de Araujo AC, Artaxo P, Balch JK, Brown F et al. 2012. The Amazon basin in transition. Nature 481:321–28
    [Google Scholar]
  34. Davis KJ, Browell EV, Feng S, Lauvaux T, Obland MD et al. 2021. The Atmospheric Carbon and Transport (ACT)–America Mission. Bull. Am. Meteorol. Soc. 7:1–54
    [Google Scholar]
  35. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox P et al. 2007. Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M Manning, Z Chen, M Marquis et al.499–587 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  36. Denning AS, Collatz GJ, Zhang C, Randall DA, Berry JA et al. 1996. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 1: surface carbon fluxes. Tellus 48B:521–42
    [Google Scholar]
  37. Doney SC, Kleypas JA, Sarmiento JL, Falkowski PG. 2002. The US JGOFS Synthesis and Modeling Project—an introduction. Deep-Sea Res. II 49:1–20
    [Google Scholar]
  38. Doney SC, Schimel D. 2007. Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. Annu. Rev. Environ. Resour. 32:31–66Comprehensive review of changes in carbon cycle and climate over the past half-billion years.
    [Google Scholar]
  39. Eldering A, O'Dell CW, Wennberg PO, Crisp D, Gunson MR et al. 2017. The Orbiting Carbon Observatory-2: first 18 months of science data products. Atmos. Meas. Tech. 10:549–63
    [Google Scholar]
  40. Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in C3 plants. Planta 149:78–90
    [Google Scholar]
  41. Faure G, Mensing TM. 2004. Isotopes: Principles and Applications Hoboken, NJ: Wiley
  42. Flanagan PW, Van Cleave K. 1983. Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Can. J. Forest Res. 13:5795–817
    [Google Scholar]
  43. Foote EN. 1856. Circumstances affecting the heat of the sun's rays. Am. J. Sci. Arts 22:382–83
    [Google Scholar]
  44. Fourier J. 1824. Résumé théorique des propriétés de la chaleur rayonnante. Ann. Chem. Phys. 27:236–81
    [Google Scholar]
  45. Frankenberg C, Berry JA. 2018. Solar induced chlorophyll fluorescence: origins, relation to photosynthesis and retrieval. Compr. Remote Sens. 3:143–62
    [Google Scholar]
  46. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W et al. 2006. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19:3337–53Established theoretical and experimental framework analyzing carbon-climate feedbacks and documented major sources of climate uncertainty.
    [Google Scholar]
  47. Friedlingstein P, Dufresne JL, Cox PM, Rayner PJ. 2003. How positive is the feedback between climate change and the carbon cycle?. Tellus 55B:692–700
    [Google Scholar]
  48. Friedlingstein P, Fung IY, Holland E, John J, Brasseur G et al. 1995. On the contribution of CO2 fertilization to the missing biospheric sink. Glob. Biogeochem. Cycles 9:541–56
    [Google Scholar]
  49. Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J et al. 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12:3269–340Updated every year; all aspects of global carbon cycle: emissions, sinks, interactions, anomalies, and trends.
    [Google Scholar]
  50. Fung IY, Tucker CJ, Prentice KC. 1987. Application of Advanced Very High Resolution Radiometer vegetation index to study atmosphere-biosphere exchange of CO2. J. Geophys. Res. 92:D32999–3015
    [Google Scholar]
  51. Gao P, Zhou L, Liu K, Xu X. 2019. Radiocarbon in the maritime air and sea surface water of the South China Sea. Radiocarbon 61:461–72
    [Google Scholar]
  52. Garcia-Eidell C, Comiso JC, Berkelhammer M, Stock L. 2021. Interrelationships of sea surface salinity, chlorophyll-α concentration, and sea surface temperature near the Antarctic ice edge. J. Clim. 34:6069–86
    [Google Scholar]
  53. Gatti LV, Basso LS, Miller JB, Gloor M, Domingues LG et al. 2021. Amazonia as a carbon source linked to deforestation and climate change. Nature 595:388–93
    [Google Scholar]
  54. Gatti LV, Gloor M, Miller JB, Doughty CE, Malhi Y et al. 2014. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506:76–80
    [Google Scholar]
  55. Giglio L, Randerson JT, van der Werf GR. 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosci. 118:317–28
    [Google Scholar]
  56. Gilfillan D, Marland G. 2021. CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth Syst. Sci. Data 13:1667–80
    [Google Scholar]
  57. GISTEMP Team 2021. GISS Surface Temperature Analysis (GISTEMP), version 4 NASA Goddard Institute for Space Studies retrieved Aug. 7, 2021–07–08. https://data.giss.nasa.gov/gistemp/
  58. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS et al. 2002. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 12:891–99
    [Google Scholar]
  59. Gregory JM, Jones CD, Cadule P, Friedlingstein P. 2011. Quantifying carbon cycle feedbacks. J. Clim. 22:5232–50
    [Google Scholar]
  60. Gruber N, Sarmiento JL, Stocker TF. 1996. An improved method for detecting anthropogenic CO2 in the oceans. Glob. Biogeochem. Cycles 10:809–37
    [Google Scholar]
  61. Heimann M, Keeling CD, Tucker CJ. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: seasonal cycle and synoptic time scale variations. Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 DH Peterson 277–303 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  62. Hobbie J, Cole J, Dungan J, Houghton RA, Peterson B. 1984. Role of biota in global CO2 balance: the controversy. BioScience 34:8492–98
    [Google Scholar]
  63. Hoffman FM, Randerson JT, Arora VK, Bao Q, Cadule P et al. 2014. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models. J. Geophys. Res. Biogeosci. 119:141–62
    [Google Scholar]
  64. Hristov AN, Johnson JME, Rice CW, Brown ME, Conant RT et al. 2018. Agriculture. Second State of the Carbon Cycle Report: A Sustained Assessment Report N Cavallaro, G Shrestha, R Birdsey, MA Mayes, RG Najjar, et al. 229–63 Washington, DC: US Glob. Change Res. Program
    [Google Scholar]
  65. Hubau W, Lewis SL, Phillips OL, Sullivan MJP, Baker TR et al. 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579:80–87
    [Google Scholar]
  66. Huntingford C, Lowe JA, Booth BBB, Jones CD, Harris GR et al. 2009. Contributions of carbon cycle uncertainty to future climate projection spread. Tellus 61B:355–60
    [Google Scholar]
  67. Huntzinger DN, Post WM, Wei Y, Michalak AM, West TO et al. 2012. North American Carbon Program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison. Ecol. Model. 232:144–57
    [Google Scholar]
  68. Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J et al. 2011. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109:117–61
    [Google Scholar]
  69. Jacobson A, Mikaloff-Fletcher SE, Gruber N, Sarmiento JL, Gloor M. 2007. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Glob. Biogeochem. Cycles 21:GB1019
    [Google Scholar]
  70. Joiner J, Yoshida Y, Vasilkov AP, Yoshida Y, Corp LA, Middleton EM. 2011. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8:637–51
    [Google Scholar]
  71. Jones CD, Ciais P, Davis SJ, Friedlingstein P, Gasser T et al. 2016. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11:095012
    [Google Scholar]
  72. Keeling CD. 1960. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12:200–2Discovery of increasing concentration and seasonal cycle of atmospheric CO2, including source and sink attributions.
    [Google Scholar]
  73. Keeling CD, Piper SC, Heimann M. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 DH Peterson 305–63 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  74. Keeling RF, Shertz SR. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358:723–27
    [Google Scholar]
  75. Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G et al. 2014. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4:598–604
    [Google Scholar]
  76. Keller DP, Lenton A, Scott V, Vaughan NE, Bauer N et al. 2018. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geosci. Model Dev. 11:1133–60
    [Google Scholar]
  77. Keller M, Bustamente M, Silva-Sias P, eds. 2009. Amazonia and Global Change Washington, DC: Am. Geophys. Union
  78. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R et al. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycle 18:GB4031
    [Google Scholar]
  79. Khatiwala S, Graven H, Payne S, Heimbach P. 2018. Changes to the air-sea flux and distribution of radiocarbon in the ocean over the 21st century. Geophys. Res. Lett. 45:5617–26
    [Google Scholar]
  80. Khatiwala S, Tanhua T, Mikaloff-Fletcher S, Gerber M, Doney SC et al. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–91
    [Google Scholar]
  81. Kimball BA. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron. J. 75:779–88
    [Google Scholar]
  82. Knorr W. 2009. Is the airborne fraction of anthropogenic CO2 emissions increasing?. Geophys. Res. Lett 36:21L21710
    [Google Scholar]
  83. Knutti R, Rugenstein MAA, Hegerl GC. 2017. Beyond equilibrium climate sensitivity. Nat. Geosci. 10:727–36
    [Google Scholar]
  84. Koven CD, Chambers JQ, Georgiou K, Knox R, Negron-Juarez R et al. 2015. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. Biogeosciences 12:5211–28
    [Google Scholar]
  85. Kuai L, Worden J, Campbell E, Kulawik S, Li K-F et al. 2015. Estimate of carbonyl sulfide tropical oceanic surface fluxes using Aura Tropospheric Emission Spectrometer observations. J. Geophys. Res. Atmos. 120:11012–23
    [Google Scholar]
  86. Kwok S. 2011. Amorphous organic solids as a component of interstellar dust. Earth Planets Space 63:1021–26
    [Google Scholar]
  87. Le Quéré C, Rödenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R et al. 2007. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–38
    [Google Scholar]
  88. Li J, Bergin EA, Blake GA, Ciesla FJ, Hirschmann MM. 2021. Earth's carbon deficit caused by early loss through irreversible sublimation. Sci. Adv. 7:eabd3632
    [Google Scholar]
  89. Lin JC, Gerbig C, Wofsy SC, Andrews AE, Daube BC et al. 2004. Measuring fluxes of trace gases at regional scales by Lagrangian observations: application to the CO2 Budget and Rectification Airborne (COBRA) study. J. Geophys. Res. 109:D15D15304
    [Google Scholar]
  90. Liu J, Bowman KW, Schimel DS, Parazoo NC, Jiang Z. 2017. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358:eaam5690
    [Google Scholar]
  91. Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W et al. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319:169–72
    [Google Scholar]
  92. Mao J, Ribes A, Yan B, Shi X, Thornton PE et al. 2016. Human-induced greening of the northern extratropical land surface. Nat. Clim. Change 6:959–64
    [Google Scholar]
  93. Marengo JA, Nobre CA, Tomasella J, Cardoso MF, Oyama MD. 2008. Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philos. Trans. R. Soc. B 363:1773–78
    [Google Scholar]
  94. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA. 2011. The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett. 38:L12703
    [Google Scholar]
  95. Marty B, Alexander CMO'D, Raymond SN. 2013. Primordial origins of Earth's carbon. Rev. Mineral. Geochem. 75:149–81
    [Google Scholar]
  96. Masarie KA, Peters W, Jacobson AR, Tans PP. 2014. ObsPack: a framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements. Earth Syst. Sci. Data 6:375–84
    [Google Scholar]
  97. Mathesius S, Hofmann M, Caldeira K, Schellnhuber HJ 2015. Long-term response of oceans to CO2 removal from the atmosphere. Nat. Clim. Change 5:1107–14
    [Google Scholar]
  98. McGuire AD, Lawrence DM, Koven C, Clein JS, Burke E. 2018. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. PNAS 115:153882–87
    [Google Scholar]
  99. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H et al. 2002. Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–76
    [Google Scholar]
  100. Merchant CJ, Embery O, Bulgin CE, Block T, Corlett GK et al. 2019. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 6:223
    [Google Scholar]
  101. Meyer BS, Nittler LR, Nguyen AN, Messenger S. 2008. Nucleosynthesis and chemical evolution of oxygen. Rev. Mineral. Geochem. 68:31–53
    [Google Scholar]
  102. Moore JK, Fu W, Primeau F, Britten GL, Lindsay K. 2018. Sustained climate warming drives declining marine biological productivity. Science 359:1139–43
    [Google Scholar]
  103. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702
    [Google Scholar]
  104. Neftel A, Moor E, Oeschger H, Stauffer B. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315:45–47
    [Google Scholar]
  105. Nepstad DC, Stickler CM, Soares-Filho B, Merry F. 2008. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B 363:1737–46
    [Google Scholar]
  106. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. PNAS 107:19368–73
    [Google Scholar]
  107. Odum EP. 1969. The strategy of ecosystem development. Science 164:262–70
    [Google Scholar]
  108. Oeschger H, Siegenthaler U, Schotterer U, Gugelmann A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–92
    [Google Scholar]
  109. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE et al. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–72
    [Google Scholar]
  110. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE et al. 2011. A large and persistent carbon sink in the world's forests. Science 333:988–93
    [Google Scholar]
  111. Pastorello G, Trotta C, Canfora E, Chu H, Christiansen D et al. 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7:225
    [Google Scholar]
  112. Peylin P, Law RM, Gurney KR, Chevallier F, Jacobson AR et al. 2013. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10:6699–720
    [Google Scholar]
  113. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM et al. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob. Biogeochem. Cycles 7:811–41
    [Google Scholar]
  114. Ramankutty N, Foley J. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13:997–1027
    [Google Scholar]
  115. Randerson JT, Lindsay K, Munoz E, Fu W, Moore JK et al. 2015. Multicentury changes in ocean and land contributions to the climate-carbon feedback. Glob. Biogeochem. Cycles 29:744–59
    [Google Scholar]
  116. Rayner PJ, Enting IG, Francey RJ, Langenfelds R. 1999. Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations. Tellus 51B:213–32
    [Google Scholar]
  117. Rayner PJ, Raupach MR, Paget M, Peylin P, Koffi E 2010. A new global gridded data set of CO2 emissions from fossil fuel combustion: methodology and evaluation. J. Geophys. Res. 115:D19D19306
    [Google Scholar]
  118. Revelle R, Suess HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27Documented dilution of 13C and 14C in global atmospheric and ocean carbon by fossil fuel combustion.
    [Google Scholar]
  119. Ridge SM, McKinley GA. 2021. Ocean carbon uptake under aggressive emission mitigation. Biogeosciences 18:2711–25
    [Google Scholar]
  120. Roberts RE, Tomppo E, Schadauer K, Vidal C, Stahl G. 2009. Harmonizing national forest inventories. J. For. 107:179–87
    [Google Scholar]
  121. Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS et al. 1999. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ. 70:108–27
    [Google Scholar]
  122. Saatchi SS, Asefi-Najafabady S, Malhi Y, Aragão LEOC, Anderson LO et al. 2013. Persistent effects of a severe drought on Amazonian forest canopy. PNAS 110:565–70
    [Google Scholar]
  123. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA et al. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS 108:9899–904
    [Google Scholar]
  124. Sarmiento JL, Gruber N. 2006. Ocean Biogeochemical Dynamics Princeton, NJ: Princeton Univ. Press
  125. Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Feketea A, Kanawatia B et al. 2010. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. PNAS 107:2763–68
    [Google Scholar]
  126. Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA et al. 2010. The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Glob. Change Biol. 16:1451–69
    [Google Scholar]
  127. Schuur EAG, McGuire AD, Schädel C, Grosse G, Harden JW et al. 2015. Climate change and the permafrost carbon feedback. Nature 520:171–79
    [Google Scholar]
  128. Sellers PJ, Hall FG, Asrar G, Strebel DE, Murphy RE et al. 1988. The First ISLSCP Field Experiment (FIFE). Bull. Am. Meteorol. Soc. 69:22–27
    [Google Scholar]
  129. Sellers PJ, Hall FG, Kelly RD, Black A, Baldocchi D et al. 1997. BOREAS in 1997: experiment overview, scientific results, and future directions. J. Geophys. Res. 102:D2428731–69
    [Google Scholar]
  130. Siegenthaler U. 1983. Uptake of excess CO2 by an outcrop-diffusion model of the ocean. J. Geophys. Res. 88:3599–608
    [Google Scholar]
  131. Siegenthaler U, Oeschger H. 1987. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus B 39:140–54
    [Google Scholar]
  132. Sitch S, Huntingford C, Levy PE, Lomas M, Betts R et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14:2015–39
    [Google Scholar]
  133. Smith P, Davis SJ, Creutzig F, Fuss S, Minx J et al. 2016. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6:42–50
    [Google Scholar]
  134. Stuiver M, Quay PD, Ostlund HG. 1983. Abyssal water carbon-14 distribution and the age of the world oceans. Science 219:4586849–51
    [Google Scholar]
  135. Swann ALS, Hoffman FM, Koven CD, Randerson JT. 2016. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. PNAS 113:10019–24
    [Google Scholar]
  136. Sweeney C, Karion A, Wolter S, Newberger T, Guenther D et al. 2015. Seasonal climatology of CO2 across North America from aircraft measurements in the NOAA/ESRL Global Greenhouse Gas Reference Network. J. Geophys. Res. Atmos. 120:5155–90
    [Google Scholar]
  137. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. II 56:554–77
    [Google Scholar]
  138. Tans PP, Fung IY, Takahashi T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247:1431–38Combination of observed atmospheric, oceanographic, and emissions data to constrain ocean and land carbon sinks.
    [Google Scholar]
  139. Townsend AR, Braswell BH, Holland EA, Penner JE. 1996. Spatial and temporal patterns in potential terrestrial carbon storage resulting from deposition of fossil fuel nitrogen. Ecol. Appl. 6:806–14
    [Google Scholar]
  140. Turetsky MR, Abbott BW, Jones MC, Anthony KW, Oldefeldt D et al. 2019. Permafrost collapse is accelerating carbon release. Nature 569:32–34
    [Google Scholar]
  141. Tyndall J. 1861. On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction—the Bakerian lecture. Lond. Edinb. Dublin Philos. Mag. J. Sci. 22:146169–94
    [Google Scholar]
  142. Vitousek PM, Reiners WA. 1975. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25:376–81
    [Google Scholar]
  143. Weart SR. 2008. The Discovery of Global Warming Cambridge, MA: Harvard Univ. Press. , 2nd ed..Intellectual history of scientific understanding of CO2 and climate change over the past two centuries.
  144. Wofsy SC. 2011. HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos. Trans. R. Soc. A 369:2073–86
    [Google Scholar]
  145. Wunsch D, Toon GC, Wennberg PO, Wofsy SC, Stephens BB. 2010. Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmos. Meas. Tech. 3:1351–62
    [Google Scholar]
  146. Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T et al. 2009. Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results. SOLA 5:160–63
    [Google Scholar]
  147. Yuan W, Zheng Y, Piao S, Ciais P, Lombardozzi D et al. 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5:eaax1396
    [Google Scholar]
  148. Zachos JC, Rohl U, Schellenberg SA, Slujis A, Hodell DA et al. 2005. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science 308:1611–15
    [Google Scholar]
  149. Zaehle S, Jones CD, Houlton B, Lamarque F, Robertson E. 2015. Nitrogen availability reduces CMIP5 projections of 21st century land carbon uptake. J. Clim. 28:2494–511
    [Google Scholar]
  150. Zhao M, Heinsch FA, Nemani RR, Running SW. 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95:164–76
    [Google Scholar]
/content/journals/10.1146/annurev-earth-032320-092010
Loading
/content/journals/10.1146/annurev-earth-032320-092010
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error