1932

Abstract

Detrital zircon geochronology is rapidly developing into an essential tool in Earth science research because of the widespread occurrence of zircon in sedimentary systems; the wide range of information that can be extracted from zircon crystals; the ability to determine ages with reasonable precision, accuracy, and efficiency; and the wide range of new ideas about how to use detrital zircon geochronologic information. The U-Pb system is particularly powerful because three chronometers are available (238U→206Pb, 235U→207Pb, and 232Th→208Pb), but challenges arise because of complexities from inheritance and Pb loss. Ages can be used to constrain the age of deposition of the host sediment, reconstruct provenance, characterize a sedimentary unit, and characterize many different aspects of source regions. Detrital zircon geochronology has an exciting future given the growth history recorded in individual crystals; the variety of detrital minerals that can provide complementary information; and the large number of geochemical, isotopic, and chronologic systems that can be applied to these minerals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-050212-124012
2014-05-30
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/42/1/annurev-earth-050212-124012.html?itemId=/content/journals/10.1146/annurev-earth-050212-124012&mimeType=html&fmt=ahah

Literature Cited

  1. Amidon WH, Burbank DW, Gehrels GE. 2005. Construction of detrital mineral populations: insights from mixing of U-Pb zircon ages in Himalayan rivers. Basin Res. 17:463–85 [Google Scholar]
  2. Anderson T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem. Geol. 216:249–70 [Google Scholar]
  3. Anfinson OA, Leier AL, Embry AF, Dewing K. 2012. Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands. Geol. Soc. Am. Bull. 124:415–30 [Google Scholar]
  4. Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O'Reilly SY, Pearson NJ. 2010. The growth of continental crust: constraints from zircon Hf-isotopic data. Lithos 119:457–66 [Google Scholar]
  5. Beranek LP, van Staal CR, McClelland WC, Israel S, Mihalynuk MG. 2012a. Detrital zircon Hf isotopic compositions indicate a northern Caledonian connection for the Alexander terrane. Lithosphere 5:163–68 [Google Scholar]
  6. Beranek LP, Mortensen JK, Lane LS, Allen TL, Fraser TA. et al. 2012b. Detrital zircon geochronology of the western Ellesmerian clastic wedge, northwestern Canada: insights on Arctic tectonics and the evolution of the northern Cordilleran miogeocline. Geol. Soc. Am. Bull. 122:1899–911 [Google Scholar]
  7. Beus SS, Morales M. 2003. Grand Canyon Geology New York: Oxford Univ. Press
  8. Black L, Kamo SL, Allen CM, Davis DW, Aleinikoff JN. et al. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205:115–40 [Google Scholar]
  9. Blodgett RB, Rohr DM. 2010. Upper Ordovician–Middle Devonian paleogeographic signals from shelly faunas of the Alexander terrane, southeast Alaska. Geol. Soc. Am. Abstr. Programs 42:5573 [Google Scholar]
  10. Bowring J, Horstwood MSA, Gehrels GE. 2013. Resolving bias in laser ablation geochronology. Eos Trans. AGU 94:217 [Google Scholar]
  11. Bowring SA, Schmitz MD. 2003. High-precision U-Pb zircon geochronology and the stratigraphic record. See Hanchar & Hoskin 2003 305–26
  12. Boyce JW, Hodges KV, Olszewski WJ, Jercinovic MJ. 2005. He diffusion in monazite: implications for (U-Th)/He thermochronometry. Geochem. Geophys. Geosyst. 6:Q12004 [Google Scholar]
  13. Bracciali L, Parrish RR, Condon D, Horstwood MSA, Najman Y. 2012. Detrital rutile U-Pb geochronology by LA-MC-ICP-MS: a new approach and reference materials, with applications to sedimentary provenance in the Bhutan Himalayas. Geol. Soc. Am. Abstr. Programs 44:7285 [Google Scholar]
  14. Carrapa B. 2010. Resolving tectonic problems by dating detrital minerals. Geology 38:191–92 [Google Scholar]
  15. Cavosie AJ, Valley JW, Wilde SA. 2007. The oldest terrestrial mineral record: a review of 4400 to 4000 Ma detrital zircons from Jack Hills, western Australia. Earth's Oldest Rocks MJ Van Kranendonk, RH Smithies, VC Bennett 91–111 Dev. Precambr. Geol. 15 Amsterdam: Elsevier [Google Scholar]
  16. Cawood PA, Hawkesworth CJ, Dhuime B. 2012a. Detrital zircon record and tectonic setting. Geology 40:875–78 [Google Scholar]
  17. Cawood PA, Hawkesworth CJ, Dhuime B. 2012b. The continental record and the generation of continental crust. Geol. Soc. Am. Bull. 125:14–32 [Google Scholar]
  18. Churkin M Jr, Eberlein GD. 1977. Ancient borderland terranes of the North American Cordillera: correlation and microplate tectonics. Geol. Soc. Am. Bull. 88:769–86 [Google Scholar]
  19. Colpron M, Nelson JL. 2009. A Palaeozoic Northwest Passage: incursion of Caledonian, Baltican and Siberian terranes into eastern Panthalassa, and the early evolution of the North American Cordillera. Earth Accretionary Systems in Space and Time PA Cawood, A Kroner 273–307 Geol. Soc. Lond. Spec. Publ. 318 London: Geol . Soc. Lond. [Google Scholar]
  20. Condie KC, Bickford ME, Aster RC, Belousova E, Scholl DW. 2011. Episodic zircon ages, Hf isotopic composition, and the preservation rate of continental crust. Geol. Soc. Am. Bull. 123:951–57 [Google Scholar]
  21. Corfu F. 2012. A century of U-Pb geochronology: the long quest toward concordance. Geol. Soc. Am. Bull. 125:33–47 [Google Scholar]
  22. Corfu F, Hanchar JM, Hoskin PWO, Kinny P. 2003. Atlas of zircon textures. See Hanchar & Hoskin 2003 469–500
  23. Cottle JM, Horstwood MSA, Parrish RR. 2009. A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology. J. Anal. At. Spectrom. 24:1355–63 [Google Scholar]
  24. Cottle JM, Kylander-Clark AR, Vrijmoed JC. 2012. U-Th/Pb geochronology of detrital zircon and monazite by single shot laser ablation inductively coupled plasma mass spectrometry (SS-LA-ICPMS). Chem. Geol. 332–33:136–47 [Google Scholar]
  25. Davis DW, Williams IS, Krogh TE. 2003. Historical development of zircon geochronology. See Hanchar & Hoskin 2003 145–81
  26. Davis SJ, Dickinson WR, Gehrels GE, Spencer JE, Lawton TF, Carroll AR. 2010. The Paleogene California River: evidence of Mojave-Uinta paleodrainage from U-Pb ages of detrital zircons. Geology 38:931–34 [Google Scholar]
  27. DeCelles PG, Ducea MN, Kapp P, Zandt G. 2009. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2:251–57 [Google Scholar]
  28. DeGraaff-Surpless K, Graham SA, Wooden JL, McWilliams MO. 2002. Detrital zircon provenance analysis of the Great Valley Group, California: evolution of an arc-forearc system. Geol. Soc. Am. Bull. 114:1564–80 [Google Scholar]
  29. Dickinson WR. 2008. Impact of differential zircon fertility of granitoid basement rocks in North America on age populations of detrital zircons and implications for granite petrogenesis. Earth Planet. Sci. Lett. 275:80–92 [Google Scholar]
  30. Dickinson WR, Gehrels GE. 2009. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet. Sci. Lett. 288:115–25 [Google Scholar]
  31. Dickinson WR, Lawton TF, Pecha M, Davis SJ, Gehrels GE, Young RA. 2012. Provenance of the Paleogene Colton Formation (Uinta Basin) and Cretaceous–Paleogene provenance evolution in the Utah foreland: evidence from U-Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies. Geosphere 8:854–80 [Google Scholar]
  32. Ducea MN. 2001. The California arc: thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today 11:4–10 [Google Scholar]
  33. Embry AF. 1993. Crockerland—the northern source area for the Sverdrup Basin, Canadian Arctic Archipelago. Arctic Geology and Petroleum Potential, ed. T Vorren, E Bergsager, O Dahl-Stamnes, E Holter, B Johansen , et al., pp. 205–16 Nor. Petrol. Soc. Spec. Publ. 2 Amsterdam: Elsevier [Google Scholar]
  34. Fedo CM, Sircombe K, Rainbird R. 2003. Detrital zircon analysis of the sedimentary record. See Hanchar & Hoskin 2003 277–303
  35. Foreman B, Heller PL, Clementz MT. 2012. Fluvial response to abrupt global warming at the Paleocene/Eocene boundary. Nature 491:92–95 [Google Scholar]
  36. Frei D, Gerdes A. 2009. Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chem. Geol. 261:261–70 [Google Scholar]
  37. Froude DO, Ireland TR, Kinny PD, Williams IS, Compston W. et al. 1983. Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature 304:616–18 [Google Scholar]
  38. Fryer BJ, Jackson SE, Longerich HP. 1993. The application of laser ablation microprobe–inductively coupled plasma mass spectrometry (LAM-ICPMS) to in situ (U)-Pb geochronology. Chem. Geol. 109:1–8 [Google Scholar]
  39. Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT. et al. 2008. Ti-in-zircon thermometry: applications and limitations. Contrib. Mineral. Petrol. 156:197–215 [Google Scholar]
  40. Gehrels GE. 2000. Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California. Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California MG Soreghan, GE Gehrels 1–18 Geol. Soc. Am. Spec. Pap. 347 Boulder, CO: Geol . Soc. Am. [Google Scholar]
  41. Gehrels GE. 2012. Detrital zircon U-Pb geochronology: current methods and new opportunities. Tectonics of Sedimentary Basins: Recent Advances C Busby, A Azor 47–62 Chichester, UK: Wiley-Blackwell [Google Scholar]
  42. Gehrels GE, Blakey R, Karlstrom K, Timmons M, Dickinson W, Pecha M. 2011. Detrital zircon U-Pb geochronology of Paleozoic strata in the Grand Canyon. Lithosphere 3:183–200 [Google Scholar]
  43. Gehrels GE, Butler RF, Bazard DR. 1996. Detrital zircon geochronology of the Alexander terrane, southeastern Alaska. Geol. Soc. Am. Bull. 108:722–34 [Google Scholar]
  44. Gehrels GE, DeCelles PG, Ojha TP, Upreti BN. 2006. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Geol. Soc. Am. Bull. 118:185–98 [Google Scholar]
  45. Gehrels GE, Dickinson WR, Ross GM, Stewart JH, Howell DG. 1995. Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America. Geology 23:831–34 [Google Scholar]
  46. Gehrels GE, Giesler D, Pecha M. 2012. Detrital zircon geochronology with n = 1000. Geol. Soc. Am. Abstr. Programs 44:771 [Google Scholar]
  47. Gehrels GE, Rusmore M, Woodsworth G, Crawford M, Andronicos C. et al. 2009. U-Th-Pb geochronology of the Coast Mountains Batholith in north-coastal British Columbia: constraints on age, petrogenesis, and tectonic evolution. Geol. Soc. Am. Bull. 121:1341–61 [Google Scholar]
  48. Gehrels GE, Saleeby JB. 1987. Geologic framework, tectonic evolution, and displacement history of the Alexander terrane. Tectonics 6:151–74 [Google Scholar]
  49. Gehrels GE, Valencia V, Ruiz J. 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochem. Geophys. Geosyst. 9:Q03017 [Google Scholar]
  50. Grove M, Gehrels G, Cotkin S, Wright J, Zou H. 2008. Non-Laurentian cratonal provenance of Late Ordovician eastern Klamath blueschists and a link to the Alexander terrane. In. Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson J Wright, J Shervais 223–50 Geol. Soc. Am. Spec. Pap. 438 Boulder, CO: Geol. Soc. Am. [Google Scholar]
  51. Hanchar JM, Hoskin PWO. 2003. Zircon Rev. Mineral. Geochem. 53 Chantilly, VA: Mineral. Soc. Am.
  52. Hanchar JM, Watson EB. 2003. Zircon saturation thermometry. See Hanchar & Hoskin 2003 89–112
  53. Harms TA, Dewey JF, Mange MA. 2003. A model for the Appalachian origin of Paleozoic terranes in the North American Cordillera. Geol. Soc. Am. Abstr. Programs 35:6113 [Google Scholar]
  54. Harrison TM. 2009. The Hadean crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37:479–505 [Google Scholar]
  55. Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS, Storey CD. 2010. The generation and evolution of the continental crust. J. Geol. Soc. Lond. 167:229–48 [Google Scholar]
  56. Hiess J, Condon DJ, McLean N, Noble SR. 2012. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 235:1610–14 [Google Scholar]
  57. Hietpas J, Samson S, Moecher D. 2011. A direct comparison of the ages of detrital monazite versus detrital zircon in Appalachian foreland basin sandstones: searching for the record of Phanerozoic orogenic events. Earth Planet. Sci. Lett. 310:488–97 [Google Scholar]
  58. Holden P, Lanc P, Ireland TR, Harrison TM, Foster JJ, Bruce Z. 2009. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: the first 100,000 grains. Int. J. Mass Spectrom. 286:53–63 [Google Scholar]
  59. Horstwood MSA, Foster GL, Parrish RR, Noble SR, Nowell GM. 2003. Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. J. Anal. At. Spectrom. 18:837–46 [Google Scholar]
  60. Hoskin PWO, Ireland TR. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–30 [Google Scholar]
  61. Hoskin PWO, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. See Hanchar & Hoskin 2003 27–62
  62. Ingersoll RV, Grove M, Jacobson CE, Kimbrough DL, Hoyt JF. 2013. Detrital zircons indicate no drainage link between southern California rivers and the Colorado Plateau from mid-Cretaceous through Pliocene. Geology 41:311–14 [Google Scholar]
  63. Ireland TR, Williams IS. 2003. Considerations in zircon geochronology by SIMS. See Hanchar & Hoskin 2003 215–41
  64. Jacobson CE, Grove M, Pedrick JN, Barth AP, Marsaglia KM. et al. 2011. Late Cretaceous–early Cenozoic tectonic evolution of the southern California margin inferred from provenance of trench and forearc sediments. Geol. Soc. Am. Bull. 123:485–506 [Google Scholar]
  65. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4:1889–906 [Google Scholar]
  66. Johnston S, Gehrels G, Valencia V, Ruiz J. 2009. Small-volume U-Pb geochronology by laser ablation–multicollector–ICP mass spectrometry. Chem. Geol. 259:218–29 [Google Scholar]
  67. Jones DL, Irwin WP, Ovenshine AT. 1972. Southeastern Alaska: a displaced continental fragment?. Geological Survey Research 1972, Chapter BB211–17 USGS Prof. Pap. 800-B Washington, DC: USGS [Google Scholar]
  68. Kanouo NS, Zaw K, Yongue RF, Sutherland FL, Meffre S. et al. 2012. U-Pb zircon age constraining the source and provenance of gem-bearing Late Cenozoic detrital deposits, Mamfe Basin, SW Cameroon. Resour. Geol. 62:316–24 [Google Scholar]
  69. Kapp P, Pelletier JD, Rohrmann A, Heermance R, Russell J, Ding L. 2011. Wind erosion in the Qaidam basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau. GSA Today 21:4–10 [Google Scholar]
  70. Karlstrom K, Crow R, Crossey L, Coblentz D, Van Wijk J. 2008. Model for tectonically driven incision of the younger than 6 Ma Grand Canyon. Geology 36:835–38 [Google Scholar]
  71. Kelloway S, Craven S, Pecha M, Dickinson W, Gibbs M. 2014. Sourcing olive jars using U-Pb ages of detrital zircons: a study of 16th century olive jars recovered from the Solomon Islands.. Geoarchaeology 2947–60
  72. Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A. et al. 2010. Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296:45–56 [Google Scholar]
  73. Kinny PD, Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. See Hanchar & Hoskin 2003 327–41
  74. Koglin N, Zeh A, Frimmel HE, Gerdes A. 2010. New constraints on the auriferous Witwatersrand sediment provenance from combined detrital zircon U-Pb and Lu-Hf isotope data for the Eldorado Reef (Central Rand Group, South Africa). Precambr. Res. 183:817–24 [Google Scholar]
  75. Košler J, Fonneland H, Sylvester P, Tubrett M, Pedersen R-B. 2002. U-Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques. Chem. Geol. 182:605–18 [Google Scholar]
  76. Košler J, Sláma J, Belousova E, Corfu F, Gehrels GE. et al. 2013. U-Pb detrital zircon analysis—results of inter-laboratory comparison. Geostand. Geoanal. Res. 37:243–59 [Google Scholar]
  77. Košler J, Sylvester PJ. 2003. Present trends and the future of zircon in U-Pb geochronology: laser ablation ICPMS. See Hanchar & Hoskin 2003 243–75
  78. Košler J, Tubrett M, Sylvester P. 2001. Application of laser ablation ICPMS to U-Th-Pb dating of monazite. Geostand. Newsl. 25:375–86 [Google Scholar]
  79. Kylander-Clark ARC, Hacker BR, Cottle JM. 2013. Laser-ablation split-stream ICP petrochronology. Chem. Geol. 345:99–112 [Google Scholar]
  80. Laskowski AK, DeCelles PG, Gehrels GE. 2013. Detrital zircon geochronology of Cordilleran retroarc foreland basin strata, western North America. Tectonics 321027–48
  81. Lawton TF, Hunt GJ, Gehrels GE. 2010. Detrital zircon record of thrust belt unroofing in Lower Cretaceous synorogenic conglomerates, central Utah. Geology 38:463–66 [Google Scholar]
  82. Link PK, Fanning CM, Beranek LP. 2005. Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: an example of reproducing the bumpy barcode. Sediment. Geol. 182:101–42 [Google Scholar]
  83. Machado N, Gauthier G. 1996. Determination of 207Pb/206Pb ages on zircon and monazite by laser ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil. Geochim. Cosmochim. Acta 60:5063–73 [Google Scholar]
  84. Mattinson JM. 2005. Zircon U-Pb chemical abrasion (“CA-TIMS”) method; combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220:47–66 [Google Scholar]
  85. Mattinson JM. 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 275:186–98 [Google Scholar]
  86. Meinhold G. 2010. Rutile and its applications in earth sciences. Earth-Sci. Rev. 102:1–28 [Google Scholar]
  87. Miller EL, Kuznetsov N, Soboleva A, Udoratina O, Grove MJ, Gehrels GE. 2011. Baltica in the Cordillera?. Geology 39:791–94 [Google Scholar]
  88. Moecher DP, Samson SD. 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth Planet. Sci. Lett. 247:252–66 [Google Scholar]
  89. Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M. et al. 2003. Spectroscopic methods applied to zircon. See Hanchar & Hoskin 2003 427–67
  90. Nemchin AA, Cawood PA. 2005. Discordance of the U-Pb system in detrital zircons: implications for provenance studies of sedimentary rocks. Sediment. Geol. 182:143–62 [Google Scholar]
  91. Nemchin AA, Horstwood MSA, Whitehouse MJ. 2013. High-spatial-resolution geochronology. Elements 9:31–37 [Google Scholar]
  92. Niemi NA. 2013. Detrital zircon age distributions as a discriminator of tectonic versus fluvial transport: an example from the Death Valley, USA, extended terrane. Geosphere 9:126–37 [Google Scholar]
  93. Parrish RR, Noble SR. 2003. Zircon U-Th-Pb geochronology by isotope dilution–thermal ionization mass spectrometry (ID-TIMS). See Hanchar & Hoskin 2003 183–213
  94. Paterson SR, Okaya D, Memeti V, Economos R, Miller RB. 2011. Magma addition and flux calculations of incrementally constructed magma chambers in continental margin arcs: combined field, geochronologic, and thermal modeling studies. Geosphere 7:1439–68 [Google Scholar]
  95. Pell SD, Williams IS, Chivas AR. 1997. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands. Sediment. Geol. 109:233–60 [Google Scholar]
  96. Pettijohn FJ, Potter PE, Siever R. 1987. Sand and Sandstones New York: Springer-Verlag, 2nd ed..
  97. Pullen A, Kapp P, McCallister A, Garzione C, Gehrels G. et al. 2011. Qaidam basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology 39:1031–34 [Google Scholar]
  98. Rahl JM, Reiners PW, Campbell IH, Nicolescu S, Allen CM. 2003. Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology 31:761–64 [Google Scholar]
  99. Reiners P, Campbell I, Nicolescu S, Allen C, Hourigan J. et al. 2005. (U-Th)/(He-Pb) double dating of detrital zircons. Am. J. Sci. 305:259–311 [Google Scholar]
  100. Roberts NMW. 2012. Increased loss of continental crust during supercontinent amalgamation. Gondwana Res. 21:994–1000 [Google Scholar]
  101. Ross GM, Parrish RR. 1991. Detrital zircon geochronology of metasedimentary rocks in the southern Omineca Belt, Canadian Cordillera. Can. J. Earth Sci. 28:1254–70 [Google Scholar]
  102. Ruiz J, Valencia VA, Chesley JT, Kirk J, Gehrels G, Frimmel H. 2006. The source of gold for the Witswatersrand from Re-Os and U-Pb detrital zircon geochronology. Geochim. Cosmochim. Acta 70:A543 [Google Scholar]
  103. Schärer U. 1984. The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth Planet. Sci. Lett. 67:191–204 [Google Scholar]
  104. Scherer EE, Whitehouse MJ, Munker C. 2007. Zircon as a monitor of crustal growth. Elements 3:19–24 [Google Scholar]
  105. Schoene B. 2013. U-Th-Pb geochronology. The Crust RL Rudnick 341–78 Treatise Geochem. 4 Amsterdam: Elsevier, 2nd ed.. [Google Scholar]
  106. Sears JW. 2012. Transforming Siberia along the Laurussian margin. Geology 40:535–38 [Google Scholar]
  107. Sircombe KN. 2000. Reading the bumpy barcode; quantification and interpretation of detrital geochronology data with provenance study examples from modern beach sands and Archean metasedimentary rocks. Geol. Soc. Am. Abstr. Programs 32:68 [Google Scholar]
  108. Sircombe KN, Stern RA. 2002. An investigation of artificial biasing in detrital zircon U-Pb geochronology due to magnetic separation in sample preparation. Geochim. Cosmochim. Acta 66:2379–97 [Google Scholar]
  109. Soja CM. 2004. Significance of Silurian stromatolite-sphinctzoan reefs. Geology 22:355–58 [Google Scholar]
  110. Surpless KD, Graham SA, Covault JA, Wooden JL. 2006. Does the Great Valley Group contain Jurassic strata? Reevaluation of the age and early evolution of a classic forearc basin. Geology 34:21–24 [Google Scholar]
  111. Sweet AC, Soreghan GS, Sweet DE, Soreghan MJ, Madden AS. 2013. Permian dust in Oklahoma: source and origin for Middle Permian (Flowerpot-Blaine) redbeds in Western Tropical Pangaea. Sediment. Geol. 284–85:181–96 [Google Scholar]
  112. Thomas WA. 2011. Detrital-zircon geochronology and sedimentary provenance. Lithosphere 3:304–8 [Google Scholar]
  113. Thomson SN, Reiners PW, Hemming SR, Gehrels GE. 2013. The contribution of glacial erosion to shaping the hidden East Antarctic landscape. Nat. Geosci. 6:203–7 [Google Scholar]
  114. Tochilin C, Dickinson WR, Felgate MW, Pecha M, Sheppard P. et al. 2012a. Sourcing temper sands in ancient ceramics with U-Pb ages of detrital zircons: a southwest Pacific test case. J. Archaeol. Sci. 39:2583–91 [Google Scholar]
  115. Tochilin CJ, Reiners PW, Thomson SN, Gehrels GE, Hemming SR, Pierce EL. 2012b. Erosional history of the Prydz Bay sector of East Antarctica from detrital apatite and zircon geo- and thermochronology multidating. Geochem. Geophys. Geosyst. 13:Q11015 [Google Scholar]
  116. Ushikubo T, Kita N, Cavosie A, Wilde S, Rudnick R, Valley J. 2008. Lithium in Jack Hills zircons: evidence for extensive weathering of Earth's earliest crust. Earth Planet. Sci. Lett. 272:666–76 [Google Scholar]
  117. Valley J. 2003. Oxygen isotopes in zircon. See Hanchar & Hoskin 2003 343–85
  118. Vermeesch P. 2004. How many grains are needed for a provenance study?. Earth Planet. Sci. Lett. 224:441–51 [Google Scholar]
  119. Vermeesch P. 2012. On the visualization of detrital age distributions. Chem. Geol. 312–13:190–94 [Google Scholar]
  120. Watson EB, Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–44 [Google Scholar]
  121. Watson EB, Wark DA, Thomas JB. 2006. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151:413–33 [Google Scholar]
  122. Wernicke B. 2011. The California River and its role in carving Grand Canyon. Geol. Soc. Am. Bull. 123:1288–316 [Google Scholar]
  123. Wetherill GW. 1956. Discordant uranium-lead ages. Trans. AGU 37:320–26 [Google Scholar]
  124. Wooden JL, Mazdab FK, Barth AP. 2007. Using the temperature and compositional characteristics of zircon and sphene to better understand the petrogenesis of Mesozoic magmatism in the Transverse Ranges, California Presented at Ores and Orogenesis Symp., Sept. 24–30, Tucson, AZ, Abstr. 154
  125. Wright JE, Wyld SJ. 2006. Gondwanan, Iapetan, Cordilleran interactions: a geodynamic model for the Paleozoic tectonic evolution of the North American Cordillera. Paleogeography of the North American Cordillera: Evidence For and Against Large-Scale Displacements JW Haggart, RJ Enkin, JWH Monger 377–408 Geol. Assoc. Can. Spec. Pap. 46 St: . John's: Geol. Assoc. Can. [Google Scholar]
  126. Wright JE, Wyld SJ. 2007. Alternative tectonic model for Late Jurassic through Early Cretaceous evolution of the Great Valley Group, California. Convergent Margin Terranes and Associated Regions: A Tribute to W.G. Ernst M Cloos, WD Carlson, MC Gilbert, JG Liou, SS Sorensen 81–95 Geol. Soc. Am. Spec. Pap. 419 Boulder, CO: Geol. Soc. Am.
  127. Zack T, Moraes R, Kronz A. 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol. 148:471–88 [Google Scholar]
  128. Zhang RY, Liou JG, Ernst WG. 2009. The Dabie-Sulu continental collision zone: a comprehensive review. Gondwana Res. 16:1–26 [Google Scholar]
/content/journals/10.1146/annurev-earth-050212-124012
Loading
/content/journals/10.1146/annurev-earth-050212-124012
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error