1932

Abstract

As the world overheats—potentially to conditions warmer than during the three million years over which modern humans evolved—suffering from heat stress will become widespread. Fundamental questions about humans’ thermal tolerance limits are pressing. Understanding heat stress as a process requires linking a network of disciplines, from human health and evolutionary theory to planetary atmospheres and economic modeling. The practical implications of heat stress are equally transdisciplinary, requiring technological, engineering, social, and political decisions to be made in the coming century. Yet relative to the importance of the issue, many of heat stress's crucial aspects, including the relationship between its underlying atmospheric drivers—temperature, moisture, and radiation—remain poorly understood. This review focuses on moist heat stress, describing a theoretical and modeling framework that enables robust prediction of the averaged properties of moist heat stress extremes and their spatial distribution in the future, and draws some implications for human and natural systems from this framework.

  • ▪   Moist heat stress affects society; we summarize drivers of moist heat stress and assess future impacts on societal and global scales.
  • ▪   Moist heat stress pattern scaling of climate models allows research on future heat waves, infrastructure planning, and economic productivity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060100
2020-05-30
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-053018-060100.html?itemId=/content/journals/10.1146/annurev-earth-053018-060100&mimeType=html&fmt=ahah

Literature Cited

  1. Alroy J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–34
    [Google Scholar]
  2. Alroy J, Koch PL, Zachos JC 2000. Global climate change and North American mammalian evolution. Paleobiology 26:259–88
    [Google Scholar]
  3. Alter RE, Im ES, Eltahir EAB 2015. Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat. Geosci. 8:763–67
    [Google Scholar]
  4. Azer N, Hsu S 1977a. OSHA heat stress standards and the WBGT index. ASHRAE Trans. 83:30–40
    [Google Scholar]
  5. Azer N, Hsu S 1977b. The prediction of thermal sensation from a simple model of human physiological regulatory response. ASHRAE Trans. 83:88–102
    [Google Scholar]
  6. Baker LA, Brazel AJ, Selover N, Martin C, McIntyre N 2002. Urbanization and warming of Phoenix (Arizona, USA): impacts, feedbacks and mitigation. Urban Ecosyst. 6:183–203
    [Google Scholar]
  7. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera R 2011. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–24
    [Google Scholar]
  8. Basu R 2009. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ. Health 8:40
    [Google Scholar]
  9. Bedford T, Warner CG 1934. The globe thermometer in studies of heating and ventilation. Epidemiol. Infect. 34:458–73
    [Google Scholar]
  10. Beniston M 2004. The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 31:L02202
    [Google Scholar]
  11. Boschat G, Simmonds I, Purich A, Cowan T, Pezza AB 2016. On the use of composite analyses to form physical hypotheses: an example from heat wave–SST associations. Sci. Rep. 6:29599
    [Google Scholar]
  12. Bouchama A, Mohanna FA, El-Sayed R, Eldali A, Saussereau E 2005. Experimental heatstroke in baboon: analysis of the systemic inflammatory response. Shock 24:332–35
    [Google Scholar]
  13. Brunt D 1943. The reactions of the human body to its physical environment. Q. J. R. Meteorol. Soc. 69:77–114
    [Google Scholar]
  14. Budd GM 2008. Wet-bulb globe temperature (WBGT)—its history and its limitations. J. Sci. Med. Sport 11:20–32
    [Google Scholar]
  15. Burke MB, Hsiang SM, Miguel E 2015. Global non-linear effect of temperature on economic production. Nature 527:235–39
    [Google Scholar]
  16. Burke MB, Miguel E, Satyanath S, Dykema JA, Lobell DB 2009. Warming increases the risk of civil war in Africa.. PNAS 106:20670–74
    [Google Scholar]
  17. Buzan JR, Oleson K, Huber M 2015. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8:151–70
    [Google Scholar]
  18. Bynum GD, Pandolf KB, Schuette WH, Goldman RF, Lees DE, et al 1978. Induced hyperthermia in sedated humans and the concept of critical thermal maximum. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 235:R228–36
    [Google Scholar]
  19. Byrne MP, O'Gorman PA 2013. Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett. 40:5223–27
    [Google Scholar]
  20. Byrne MP, O'Gorman PA 2016. Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. J. Climate 29:9045–61
    [Google Scholar]
  21. Cain B 2006. A Preliminary Study of Heat Strain Using Modelling and Simulation Toronto, Can.: Defense Research and Development Toronto (Canada)
  22. Coffel ED, de Sherbinin A, Horton RM, Lane K, Kienberger S, Wilhelmi O 2018. The science of adaptation to extreme heat. . In Resilience Z Zommers, K Alverson89–103. Cambridge, MA:: Elsevier
    [Google Scholar]
  23. Coumou D, Petoukhov V, Rahmstorf S, Petri S, Schellnhuber HJ 2014. Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. PNAS 111:12331–36
    [Google Scholar]
  24. Cramwinckel MJ, Huber M, Kocken IJ, Agnini C, Bijl PK, et al 2018. New equations for computing vapor pressure and enhancement factor. Nature 559:382–86
    [Google Scholar]
  25. Crowe J, Moya-Bonilla JM, Román-Solano B, Robles-Ramírez A 2010. Heat exposure in sugarcane workers in Costa Rica during the non-harvest season. Glob. Health Action 3:5619
    [Google Scholar]
  26. Crowe J, van Wendel de Joode B, Wesseling C 2009. A pilot field evaluation on heat stress in sugarcane workers in Costa Rica: what to do next?. Glob. Health Action 2:2062
    [Google Scholar]
  27. D'Ambrosia AR, Clyde WC, Fricke HC, Gingerich PD, Abels HA 2017. Repetitive mammalian dwarfing during ancient greenhouse warming events. Sci. Adv. 3:e1601430
    [Google Scholar]
  28. Davies-Jones R 2008. An efficient and accurate method for computing the wet-bulb temperature along pseudoadiabats. Mon. Weather Rev. 136:2764–85
    [Google Scholar]
  29. Davies-Jones R 2009. On formulas for equivalent potential temperature. Mon. Weather Rev. 137:3137–48
    [Google Scholar]
  30. Day E, Fankhauser S, Kingsmill N, Costa H, Mavrogianni A 2019. Upholding labour productivity under climate change: an assessment of adaptation options. Climate Policy 19:367–85
    [Google Scholar]
  31. de Freitas CR, Grigorieva EA 2014. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 59:109–20
    [Google Scholar]
  32. Delgado Cortez O 2009. Heat stress assessment among workers in a Nicaraguan sugarcane farm. Glob. Health Action 2:2069
    [Google Scholar]
  33. Diffenbaugh NS, Ashfaq M 2010. Intensification of hot extremes in the United States. Geophys. Res. Lett. 37:L15701
    [Google Scholar]
  34. Diffenbaugh NS, Giorgi F 2012. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114:813–22
    [Google Scholar]
  35. Diffenbaugh NS, Pal J, Giorgi F, Gao X 2007. Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett. 34:L11706
    [Google Scholar]
  36. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, et al 2011. Was there a basis for anticipating the 2010 Russian heat wave?. Geophys. Res. Lett. 38:L06702
    [Google Scholar]
  37. Donat MG, Pitman AJ, Seneviratne SI 2017. Regional warming of hot extremes accelerated by surface energy fluxes. Geophys. Res. Lett. 44:7011–19
    [Google Scholar]
  38. Dunne JP, Stouffer RJ, John JG 2013. Reductions in labour capacity from heat stress under climate warming. Nat. Climate Change 3:563–66
    [Google Scholar]
  39. Emanuel KA 1995. On thermally direct circulations in moist atmospheres. J. Atmos. Sci. 52:1529–34
    [Google Scholar]
  40. Emanuel KA, Neelin JD, Bretherton CS 1994. On large-scale circulations in convecting atmospheres. Q. J. R. Meteorol. Soc. 120:1111–43
    [Google Scholar]
  41. Epstein Y, Moran DS 2006. Thermal comfort and the heat stress indices. Ind. Health 44:388–98
    [Google Scholar]
  42. Fiala D, Lomas KJ, Stohrer M 1999. A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J. Appl. Physiol. 87:1957–72
    [Google Scholar]
  43. Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, et al 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
  44. Fischer EM, Knutti R 2012. Robust projections of combined humidity and temperature extremes. Nat. Climate Change 3:126–30
    [Google Scholar]
  45. Fischer EM, Oleson KW, Lawrence DM 2012. Contrasting urban and rural heat stress responses to climate change. Geophys. Res. Lett. 39:L03705
    [Google Scholar]
  46. Frieling J, Gebhardt H, Huber M, Adekeye OA, Akande SO, et al 2017. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum. Sci. Adv. 3:e1600891
    [Google Scholar]
  47. Frierson DMW 2006. Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett. 33:L24816
    [Google Scholar]
  48. Fyke J, Matthews HD 2015. A probabilistic analysis of cumulative carbon emissions and long-term planetary warming. Environ. Res. Lett. 10:115007
    [Google Scholar]
  49. Gao C, Kuklane K, Ostergren PO, Kjellstrom T 2018. Occupational heat stress assessment and protective strategies in the context of climate change. Int. J. Biometeorol. 62:359–71
    [Google Scholar]
  50. Garcia-Herrera R, Díaz J, Trigo RM, Luterbacher J, Fischer EM 2010. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 40:267–306
    [Google Scholar]
  51. Gaughan J, Lacetera N, Valtorta SE, Khalifa HH, Hahn LR, Mader T 2009. Response of domestic animals to climate challenges. Biometeorology for Adaptation to Climate Variability and Change KL Ebi131–70. Dordrecht, Neth.:: Springer
    [Google Scholar]
  52. Gaughan JB, Bonner SL, Loxton I, Mader TL 2013. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle. J. Anim. Sci. 91:120–29
    [Google Scholar]
  53. Gingerich PD 2006. Environment and evolution through the Paleocene–Eocene thermal maximum. Trends Ecol. Evol. 21:246–53
    [Google Scholar]
  54. Goldblatt C, Robinson TD, Zahnle KJ, Crisp D 2013. Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6:661–67
    [Google Scholar]
  55. Gonzalez RR, Halford C, Keach EM 2010. Environmental and physiological simulation of heat stroke: a case study analysis and validation. J. Therm. Biol. 35:441–49
    [Google Scholar]
  56. Haldane JS 1905. The influence of high air temperatures no. I. J. Hyg. 5:494–513
    [Google Scholar]
  57. Havenith G 1999. Heat balance when wearing protective clothing. Ann. Occupat. Hyg. 43:289–96
    [Google Scholar]
  58. Hightower LE, Guidon PT 1989. Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J. Cell. Physiol. 138:257–66
    [Google Scholar]
  59. Horton DE, Johnson NC, Singh D, Swain DL, Rajaratnam B, Diffenbaugh NS 2015. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522:465–69
    [Google Scholar]
  60. Houser T, Hsiang S, Kopp R, Larson K, Delgado M, et al 2015. Economic Risks of Climate Change: An American Prospectus New York: Columbia Univ. Press
  61. Hoyos CD, Webster PJ 2011. Evolution and modulation of tropical heating from the last glacial maximum through the twenty-first century. Climate Dyn. 38:1501–19
    [Google Scholar]
  62. Hsiang S, Kopp R, Jina A, Rising J, Delgado M, et al 2017. Estimating economic damage from climate change in the United States.. Science 356:1362–69
    [Google Scholar]
  63. Hsiang SM, Sobel AH 2016. Potentially extreme population displacement and concentration in the tropics under non-extreme warming. Sci. Rep. 6:25697
    [Google Scholar]
  64. Huber M 2008. A hotter greenhouse?. Science 321:353–54
    [Google Scholar]
  65. Huber V, Ibarreta D, Frieler K 2017. Cold- and heat-related mortality: a cautionary note on current damage functions with net benefits from climate change. Clim. Change 142:407–18
    [Google Scholar]
  66. Hurley JV, Boos WR 2015. A global climatology of monsoon low-pressure systems. Q. J. R. Meteorol. Soc. 141:1049–64
    [Google Scholar]
  67. Hyatt OM, Lemke B, Kjellstrom T 2010. Regional maps of occupational heat exposure: past, present, and potential future. Glob. Health Action 3:741
    [Google Scholar]
  68. Im ES, Kang S, Eltahir EAB 2018. Projections of rising heat stress over the western maritime continent from dynamically downscaled climate simulations. Glob. Planet. Change 165:160–72
    [Google Scholar]
  69. Im ES, Pal JS, Eltahir EAB 2017. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci. Adv. 3:e1603322
    [Google Scholar]
  70. Ito K, Lane K, Olson C 2018. Equitable access to air conditioning: a city health department's perspective on preventing heat-related deaths. Epidemiology 29:749–52
    [Google Scholar]
  71. Jendritzky G, Tinz B 2009. The thermal environment of the human being on the global scale. Glob. Health Action 2:2005
    [Google Scholar]
  72. Kang S, Eltahir EAB 2018. North China plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9:2894
    [Google Scholar]
  73. Kasai M, Okaze T, Mochida A, Hanaoka K 2017. Heatstroke risk predictions for current and near-future summers in Sendai, Japan, based on mesoscale WRF simulations. Sustainability 9:1467
    [Google Scholar]
  74. Kelley CP, Mohtadi S, Cane MA, Seager R, Kushnir Y 2015. Climate change in the Fertile Crescent and implications of the recent Syrian drought. PNAS 112:3241–46
    [Google Scholar]
  75. Kjellstrom T, Briggs D, Freyberg C, Lemke B, Otto M, Hyatt O 2016. Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 37:97–112
    [Google Scholar]
  76. Kjellstrom T, Holmer I, Lemke B 2009a. Workplace heat stress, health and productivity—an increasing challenge for low and middle-income countries during climate change. Glob. Health Action 2:2047
    [Google Scholar]
  77. Kjellstrom T, Kovats RS, Lloyd SJ, Holt T, Tol RS 2009b. The direct impact of climate change on regional labor productivity. Arch. Environ. Occup. Health 64:217–27
    [Google Scholar]
  78. Kjellstrom T, Lemke B, Otto M 2013. Mapping occupational heat exposure and effects in South-East Asia: ongoing time trends 1980–2011 and future estimates to 2050. Ind. Health 51:56–67
    [Google Scholar]
  79. Kjellstrom T, Mercado S 2008. Towards action on social determinants for health equity in urban settings. Environ. Urban. 20:551–74
    [Google Scholar]
  80. Kobayashi S, Ota Y, Harada Y, Ebita A 2015. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93:5–48
    [Google Scholar]
  81. Komurcu M, Emanuel K, Huber M, Acosta R 2018. High-resolution climate projections for the northeastern United States using dynamical downscaling at convection-permitting scales. Earth Space Sci. 5:801–26
    [Google Scholar]
  82. Koppe C, Kovats S, Jendritzky G, Menne B 2004.Heat-Waves: Risks and Responses. Copenhagen, Den.:: World Health Organ.
  83. Korty RL, Emanuel KA, Huber M, Zamora RA 2017. Tropical cyclones downscaled from simulations with very high carbon dioxide levels. J. Climate 30:649–67
    [Google Scholar]
  84. Korty RL, Schneider T 2007. A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate 20:5977–91
    [Google Scholar]
  85. Kovats RS, Hajat S 2008. Heat stress and public health: a critical review. Annu. Rev. Public Health 29:41–55
    [Google Scholar]
  86. Kraning KK, Gonzalez RR 1997. A mechanistic computer simulation of human work in heat that accounts for physical and physiological effects of clothing, aerobic fitness, and progressive dehydration. J. Therm. Biol. 22:331–42
    [Google Scholar]
  87. Kuehn LA, Stubbs RA, Weaver RS 1970. Theory of the globe thermometer. J. Appl. Physiol. 29:750–57
    [Google Scholar]
  88. Kumar R, Mishra V, Buzan J, Kumar R, Shindell D, Huber M 2017. Dominant control of agriculture and irrigation on urban heat island in India. Sci. Rep. 7:14054
    [Google Scholar]
  89. Lauwaet D, Hooyberghs H, Maiheu B, Lefebvre W, Driesen G, et al 2015. Detailed urban heat island projections for cities worldwide: dynamical downscaling CMIP5 global climate models. Climate 3:391–415
    [Google Scholar]
  90. Lehmann J, Coumou D 2015. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5:17491
    [Google Scholar]
  91. Li B, Sain S, Mearns L, Anderson H, Kovats S, et al 2012. The impact of extreme heat on morbidity in Milwaukee, Wisconsin. Clim. Change 110:959–76
    [Google Scholar]
  92. Li J, Chen YD, Gan TY, Lau NC 2018. Elevated increases in human-perceived temperature under climate warming. Nat. Climate Change 8:43–47
    [Google Scholar]
  93. Liljegren JC, Carhart RA, Lawday P, Tschopp S, Sharp R 2008. Modeling the wet bulb globe temperature using standard meteorological measurements. J. Occup. Environ. Hyg. 5:645–55
    [Google Scholar]
  94. Liu X, Tang Q, Liu W, Yang H, Groisman P, et al 2019. The asymmetric impact of abundant preceding rainfall on heat stress in low latitudes. Environ. Res. Lett. 14:044010
    [Google Scholar]
  95. Lu Y, Kueppers L 2015. Increased heat waves with loss of irrigation in the United States. Environ. Res. Lett. 10:064010
    [Google Scholar]
  96. Margolis HG 2014. Heat waves and rising temperatures: human health impacts and the determinants of vulnerability. Global Climate Change and Public Health KE Pinkerton, WN Rom85–120. New York:: Springer
    [Google Scholar]
  97. Masterson JM, Richardson FA 1979. Humidex: A Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity Downsview, Can.: Atmospheric Environment
  98. Matthews T 2018. Humid heat and climate change. Progress Phys. Geogr.-Earth Environ. 42:391–405
    [Google Scholar]
  99. Matthews TKR, Wilby RL, Murphy C 2017. Communicating the deadly consequences of global warming for human heat stress. PNAS 114:3861–66
    [Google Scholar]
  100. McCarthy MP, Best MJ, Betts RA 2010. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. 37:L09705
    [Google Scholar]
  101. McGregor GR, Vanos JK 2018. Heat: a primer for public health researchers. Public Health 161:138–46
    [Google Scholar]
  102. McKinnon KA, Rhines A, Tingley MP, Huybers P 2016. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Geosci. 9:389
    [Google Scholar]
  103. Meehl GA, Tebaldi C 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–97
    [Google Scholar]
  104. Minard D, Belding HS, Kingston JR 1957. Prevention of heat casualties. J. Am. Med. Assoc. 165:1813–18
    [Google Scholar]
  105. Mitchell D, Fuller A, Maloney SK 2009. Homeothermy and primate bipedalism: Is water shortage or solar radiation the main threat to baboon (Papio hamadryas) homeothermy?. J. Hum. Evol. 56:439–46
    [Google Scholar]
  106. Mitchell D, Maloney S, Jessen C, Laburn H, Kamerman P, et al 2002. Adaptive heterothermy and selective brain cooling in arid-zone mammals. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 131:571–85
    [Google Scholar]
  107. Mitchell D, Snelling EP, Hetem RS, Maloney SK, Strauss WM, Fuller A 2018. Revisiting concepts of thermal physiology: predicting responses of mammals to climate change. J. Anim. Ecol. 87:956–73
    [Google Scholar]
  108. Monteiro A, Carvalho V, Velho S, Sousa C 2013. The accuracy of the heat index to explain the excess of mortality and morbidity during heat waves—a case study in a Mediterranean climate. Bull. Geogr. Soc.-Econ. Ser. 20:71–84
    [Google Scholar]
  109. Moore FC, Baldos U, Hertel T, Diaz D 2017. New science of climate change impacts on agriculture implies higher social cost of carbon. Nat. Commun. 8:1607
    [Google Scholar]
  110. Mora C, Counsell CWW, Bielecki CR, Louis LV 2017a. Twenty-seven ways a heat wave can kill you: deadly heat in the era of climate change. Circ.-Cardiovasc. Q. Outcomes 10:e004233
    [Google Scholar]
  111. Mora C, Dousset B, Caldwell IR, Powell FE, Geronimo RC, et al 2017b. Global risk of deadly heat. Nat. Climate Change 7:501–6
    [Google Scholar]
  112. Nilsson M, Kjellstrom T 2010. Climate change impacts on working people: how to develop prevention policies. Glob. Health Action 3:1543
    [Google Scholar]
  113. O'Donnell J, Tobey M, Weiner D, Stevens L, Johnson S, et al 2011. Prevalence of and risk factors for chronic kidney disease in rural Nicaragua. Nephrol. Dial. Transplant. 26:2798–805
    [Google Scholar]
  114. O'Neill M, Zanobetti A, Schwartz J 2003. Modifiers of the temperature and mortality association in seven US cities. Am. J. Epidemiol. 157:1074–82
    [Google Scholar]
  115. Oppermann E, Strengers Y, Maller C, Rickards L, Brearley M 2018. Beyond threshold approaches to extreme heat: repositioning adaptation as everyday practice. Weather Climate Soc. 10:885–98
    [Google Scholar]
  116. Pal JS, Eltahir EA 2016. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Climate Change 6:197–200
    [Google Scholar]
  117. Pandolf K, Kamon E 1974. Respiratory responses to intermittent and prolonged exercise in a hot-dry environment. Life Sci. 14:187–98
    [Google Scholar]
  118. Parsons K 2006. Heat stress standard ISO 7243 and its global application. Ind. Health 44:368–79
    [Google Scholar]
  119. Petoukhov V, Petri S, Rahmstorf S, Coumou D, Kornhuber K, Schellnhuber HJ 2016. Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events. PNAS 113:6862–67
    [Google Scholar]
  120. Petoukhov V, Rahmstorf S, Petri S, Schellnhuber HJ 2013. Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. PNAS 110:5336–41
    [Google Scholar]
  121. Pierrehumbert RT 1995. Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci. 52:1784–806
    [Google Scholar]
  122. Platt M, Vicario S 2013. Heat illness. Rosen's Emergency Medicine—Concepts and Clinical Practice J Marx, R Walls, R Hockberger1896–905. Philadelphia, PA:: Elsevier
    [Google Scholar]
  123. Randell H, Gray C 2019. Climate change and educational attainment in the global tropics. PNAS 116:8840–45
    [Google Scholar]
  124. Ratnam JV, Behera SK, Ratna SB, Rajeevan M, Yamagata T 2016. Anatomy of Indian heatwaves. Sci. Rep. 6:24395
    [Google Scholar]
  125. Raymond C, Singh D, Horton RM 2017. Spatiotemporal patterns and synoptics of extreme wet-bulb temperature in the contiguous United States. J. Geophys. Res. Atmos. 122:13108–24
    [Google Scholar]
  126. Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, et al 2008. Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol. 331:171–78
    [Google Scholar]
  127. Rogers JC 2013. The 20th century cooling trend over the southeastern United States. Climate Dyn. 40:341–52
    [Google Scholar]
  128. Ross ME, Vicedo-Cabrera AM, Kopp RE, Song L, Goldfarb DS, et al 2018. Assessment of the combination of temperature and relative humidity on kidney stone presentations. Environ. Res. 162:97–105
    [Google Scholar]
  129. Rothfusz L 1990.The heat index equation (or, more than you ever wanted to know about heat index). Tech. Attach. SR 90-23, Natl. Weather Serv., Fort Worth, TX
  130. Russo S, Sillmann J, Sterl A 2017. Humid heat waves at different warming levels. Sci. Rep. 7:7477
    [Google Scholar]
  131. Schär C 2015. The worst heat waves to come. Nat. Climate Change 6:128–29
    [Google Scholar]
  132. Schleussner CF, Donges JF, Donner RV, Schellnhuber HJ 2016. Armed-conflict risks enhanced by climate-related disasters in ethnically fractionalized countries. PNAS 113:9216–21
    [Google Scholar]
  133. Screen JA, Simmonds I 2014. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Climate Change 4:704–9
    [Google Scholar]
  134. Semenza JC, Rubin CH, Falter KH, Selanikio JD, Flanders WD, et al 1996. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 335:84–90
    [Google Scholar]
  135. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S 2012. Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation CB Field, V Barros, TF Stocker, Q Dahe, DJ Dokken109–230. New York:: Cambridge Univ. Press
    [Google Scholar]
  136. Sheffield P, Herrera J, Lemke B, Kjellstrom T, Romero L 2013. Current and future heat stress in Nicaraguan work places under a changing climate. Ind. Health 51:123–27
    [Google Scholar]
  137. Sherwood SC 2018. How important is humidity in heat stress?. J. Geophys. Res. Atmos. 123:11808–10
    [Google Scholar]
  138. Sherwood SC, Huber M 2010. An adaptability limit to climate change due to heat stress. PNAS 107:9552–55
    [Google Scholar]
  139. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D 2013. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J. Geophys. Res. Atmos. 118:2473–93
    [Google Scholar]
  140. Simon H 1993. Hyperthermia. N. Engl. J. Med. 329:483–87
    [Google Scholar]
  141. Smith KR, Woodward A, Lemke B, Otto M, Chang CJ, et al 2016. The last Summer Olympics? Climate change, health, and work outdoors. Lancet 388:642–44
    [Google Scholar]
  142. Smith T, Itterbeeck JV, Missiaen P 2004. Oldest Plesiadapiform (Mammalia, Proprimates) from Asia and its palaeobiogeographical implications for faunal interchange with North America. C. R. Palevol 3:43–52
    [Google Scholar]
  143. Speakman JR, Król E 2010. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms: heat dissipation limit theory. J. Anim. Ecol. 79:726–46
    [Google Scholar]
  144. Speakman JR, Król E 2011. Limits to sustained energy intake. XIII. Recent progress and future perspectives. J. Exp. Biol. 214:230–41
    [Google Scholar]
  145. St-Pierre N, Cobanov B, Schnitkey G 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86:E52–77
    [Google Scholar]
  146. Steadman RG 1979. The assessment of sultriness. Part I: a temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. 18:861–73
    [Google Scholar]
  147. Stolwijk JA 1971.A mathematical model of physiological temperature regulation in man. NASA Contract. Rep. CR-1855, Washington, DC
  148. Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, et al 2012. Coping with thermal challenges: physiological adaptations to environmental temperatures. Compr. Physiol. 2:2151–202
    [Google Scholar]
  149. Taylor KE, Stouffer RJ, Meehl GA 2012. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93:485–98
    [Google Scholar]
  150. Teng H, Branstator G, Meehl GA, Washington WM 2016. Projected intensification of subseasonal temperature variability and heat waves in the Great Plains. Geophys. Res. Lett. 43:2165–73
    [Google Scholar]
  151. Teng H, Branstator G, Wang H, Meehl GA, Washington WM 2013. Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci. 6:1056–61
    [Google Scholar]
  152. van Hooidonk R, Huber M 2009. Equivocal evidence for a thermostat and unusually low levels of coral bleaching in the Western Pacific Warm Pool. Geophys. Res. Lett. 36:L06705
    [Google Scholar]
  153. Wang Y, Nordio F, Nairn J, Zanobetti A, Schwartz JD 2018. Accounting for adaptation and intensity in projecting heat wave-related mortality. Environ. Res. 161:464–71
    [Google Scholar]
  154. Weber S, Sadoff N, Zell E, de Sherbinin A 2015. Policy-relevant indicators for mapping the vulnerability of urban populations to extreme heat events: a case study of Philadelphia. Appl. Geogr. 63:231–43
    [Google Scholar]
  155. Whitman S, Good G, Donoghue ER, Benbow N, Shou W, Mou S 1997. Mortality in Chicago attributed to the July 1995 heat wave. Am. J. Public Health 87:1515–18
    [Google Scholar]
  156. Willett KM, Sherwood S 2010. Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol. 32:161–77
    [Google Scholar]
  157. Williams IN, Pierrehumbert RT 2017. Observational evidence against strongly stabilizing tropical cloud feedbacks. Geophys. Res. Lett. 44:1503–10
    [Google Scholar]
  158. Williams IN, Pierrehumbert RT, Huber M 2009. Global warming, convective threshold and false thermostats. Geophys. Res. Lett. 36:L21805
    [Google Scholar]
  159. Wu Y, Pauluis O 2014. Midlatitude tropopause and low-level moisture. J. Atmos. Sci. 71:1187–200
    [Google Scholar]
  160. Wu Y, Pauluis O 2015. What is the representation of the moisture–tropopause relationship in CMIP5 models?. J. Climate 28:4877–89
    [Google Scholar]
  161. Wyndham CH, Atkins AR 1968. A physiological scheme and mathematical model of temperature regulation in man. Pflügers Arch. 303:14–30
    [Google Scholar]
  162. Yang J, Wang ZH, Kaloush KE 2015. Environmental impacts of reflective materials: Is high albedo a silver bullet for mitigating urban heat island?. Renew. Sustain. Energy Rev. 47:830–43
    [Google Scholar]
  163. Yokota M, Berglund L, Cheuvront S, Santee W, Latzka W, et al 2008. Thermoregulatory model to predict physiological status from ambient environment and heart rate. Comput. Biol. Med. 38:1187–93
    [Google Scholar]
  164. Zamora RA, Korty RL, Huber M 2016. Thermal stratification in simulations of warm climates: a climatology using saturation potential vorticity. J. Climate 29:5083–102
    [Google Scholar]
  165. Zhao Y, Ducharne A, Sultan B, Braconnot P, Vautard R 2015. Estimating heat stress from climate-based indicators: present-day biases and future spreads in the CMIP5 global climate model ensemble. Environ. Res. Lett. 10:084013
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060100
Loading
/content/journals/10.1146/annurev-earth-053018-060100
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error