1932

Abstract

Deep earthquakes behave like shallow earthquakes but must have fundamentally different physical processes. Their rupture behaviors, magnitude-frequency statistics, and aftershocks are diverse and imperfectly dependent on various factors, such as slab temperature, depth, and magnitude. The three leading mechanisms for deep earthquakes (i.e., transformational faulting, dehydration embrittlement, and thermal runaway) can each explain portions of the observations but have potentially fundamental difficulties explaining the rest. This situation calls for more serious consideration of hypotheses that involve more than one mechanism. For example, deep earthquakes may initiate by one mechanism, but the ruptures may propagate via another mechanism once triggered. To make further progress, it is critical to evaluate the hypotheses, both single- or dual-mechanism, under conditions as close to those of real slabs as possible to make accurate and specific predictions that are testable using seismic or other geophysical observations. Any new understanding of deep earthquakes promises new constraints on subduction zone structure and dynamics.

  • ▪   Deep earthquakes display the complex structure and dynamics of subduction zones in terms of geometry, stress state, rheology, hydration, and phase changes.
  • ▪   Phase transformation, dehydration, and thermal runaway are the leading mechanisms for deep earthquakes, but all have major gaps or fundamental difficulties.
  • ▪   Deep earthquakes may involve dual-mechanism processes, as hinted at by the diverse rupture and statistic properties and the break of self-similarity.
  • ▪   Further progresses would benefit from specific and testable predictions that consider realistic slab conditions with insights from geodynamics, petrology, and mineral physics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060314
2020-05-30
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-053018-060314.html?itemId=/content/journals/10.1146/annurev-earth-053018-060314&mimeType=html&fmt=ahah

Literature Cited

  1. Abers GA. 2000. Hydrated subducted crust at 100–250 km depth. Earth Planet. Sci. Lett. 176:3323–30
    [Google Scholar]
  2. Abers GA. 2005. Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Phys. Earth Planet. Inter. 149:1–27–29
    [Google Scholar]
  3. Abers GA, Nakajima J, van Keken PE, Kita S, Hacker BR 2013. Thermal-petrological controls on the location of earthquakes within subducting plates. Earth Planet. Sci. Lett. 369–70:178–87
    [Google Scholar]
  4. Alisic L, Gurnis M, Stadler G, Burstedde C, Wilcox LC, Ghattas O 2010. Slab stress and strain rate as constraints on global mantle flow. Geophys. Res. Lett. 37:22L22308
    [Google Scholar]
  5. Andersen TB, Mair K, Austrheim H, Podladchikov YY, Vrijmoed JC 2008. Stress release in exhumed intermediate and deep earthquakes determined from ultramafic pseudotachylyte. Geology 36:12995
    [Google Scholar]
  6. Bailey IW, Alpert LA, Becker TW, Miller MS 2012. Co-seismic deformation of deep slabs based on summed CMT data. J. Geophys. Res. 117:B4B04404
    [Google Scholar]
  7. Barcheck CG, Wiens DA, van Keken PE, Hacker BR 2012. The relationship of intermediate- and deep-focus seismicity to the hydration and dehydration of subducting slabs. Earth Planet. Sci. Lett. 349–50:153–60
    [Google Scholar]
  8. Bezada MJ, Humphreys ED. 2012. Contrasting rupture processes during the April 11, 2010 deep-focus earthquake beneath Granada, Spain. Earth Planet. Sci. Lett. 353–54:38–46
    [Google Scholar]
  9. Billen MI. 2008. Modeling the dynamics of subducting slabs. Annu. Rev. Earth Planet. Sci. 36:325–56
    [Google Scholar]
  10. Bina CR, Stein S, Marton FC, Van Ark EM 2001. Implications of slab mineralogy for subduction dynamics. Phys. Earth Planet. Inter. 127:1–451–66
    [Google Scholar]
  11. Bloch W, John T, Kummerow J, Salazar P, Krüger OS, Shapiro SA 2018. Watching dehydration: seismic indication for transient fluid pathways in the oceanic mantle of the subducting Nazca slab. Geochem. Geophys. Geosyst. 19:93189–207
    [Google Scholar]
  12. Boneh Y, Schottenfels E, Kwong K, Zelst I, Tong X et al. 2019. Intermediate‐depth earthquakes controlled by incoming plate hydration along bending‐related faults. Geophys. Res. Lett. 46:73688–97
    [Google Scholar]
  13. Bostock MG, Hyndman RD, Rondenay S, Peacock SM 2002. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417:6888536–38
    [Google Scholar]
  14. Bouchon M, Marsan D, Durand V, Campillo M, Perfettini H et al. 2016. Potential slab deformation and plunge prior to the Tohoku, Iquique and Maule earthquakes. Nat. Geosci. 9:5380–83
    [Google Scholar]
  15. Bouchon M, Marsan D, Jara J, Socquet A, Campillo M, Perfettini H 2018. Suspected deep interaction and triggering between giant earthquakes in the Chilean subduction zone. Geophys. Res. Lett. 45:115454–60
    [Google Scholar]
  16. Brantut N, Schubnel A, David EC, Héripré E, Guéguen Y, Dimanov A 2012. Dehydration-induced damage and deformation in gypsum and implications for subduction zone processes. J. Geophys. Res. 117:B3B03205
    [Google Scholar]
  17. Brantut N, Sulem J, Schubnel A 2011. Effect of dehydration reactions on earthquake nucleation: stable sliding, slow transients, and unstable slip. J. Geophys. Res. 116:B5B05304
    [Google Scholar]
  18. Brudzinski MR, Thurber CH, Hacker BR, Engdahl ER 2007. Global prevalence of double Benioff zones. Science 316:58301472–74
    [Google Scholar]
  19. Burnley PC, Green HW, Prior DJ 1991. Faulting associated with the olivine to spinel transformation in Mg2GeO4 and its implications for deep-focus earthquakes. J. Geophys. Res. 96:B1425–43
    [Google Scholar]
  20. Cai C, Wiens DA. 2016. Dynamic triggering of deep earthquakes within a fossil slab: earthquake triggering within fossil slab. Geophys. Res. Lett. 43:189492–99
    [Google Scholar]
  21. Chang Y, Warren LM, Zhu L, Prieto GA 2019. Earthquake focal mechanisms and stress field for the intermediate-depth Cauca cluster, Colombia. J. Geophys. Res. Solid Earth 124:1822–36
    [Google Scholar]
  22. Chen M, Manea VC, Niu F, Wei SS, Kiser E 2019. Genesis of intermediate‐depth and deep intraslab earthquakes beneath Japan constrained by seismic tomography, seismicity, and thermal modeling. Geophys. Res. Lett. 46:42025–36
    [Google Scholar]
  23. Chen M, Tromp J, Helmberger D, Kanamori H 2007. Waveform modeling of the slab beneath Japan. J. Geophys. Res. 112:B2B02305
    [Google Scholar]
  24. Chen WP, Brudzinski MR. 2001. Evidence for a large-scale remnant of subducted lithosphere beneath Fiji. Science 292:55262475–79
    [Google Scholar]
  25. Chen Y, Wen L. 2015. Global large deep-focus earthquakes: source process and cascading failure of shear instability as a unified physical mechanism. Earth Planet. Sci. Lett. 423:134–44
    [Google Scholar]
  26. Chen Y, Wen L, Ji C 2014. A cascading failure during the 24 May 2013 great Okhotsk deep earthquake. J. Geophys. Res. Solid Earth 119:43035–49
    [Google Scholar]
  27. Chernak LJ, Hirth G. 2011. Syndeformational antigorite dehydration produces stable fault slip. Geology 39:9847–50
    [Google Scholar]
  28. Craig TJ, Heyburn R. 2015. An enigmatic earthquake in the continental mantle lithosphere of stable North America. Earth Planet. Sci. Lett. 425:12–23
    [Google Scholar]
  29. Di Toro G. 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311:5761647–49
    [Google Scholar]
  30. Dobson DP. 2002. Simulation of subduction zone seismicity by dehydration of serpentine. Science 298:55971407–10
    [Google Scholar]
  31. Dorbath C, Gerbault M, Carlier G, Guiraud M 2008. Double seismic zone of the Nazca plate in northern Chile: high-resolution velocity structure, petrological implications, and thermomechanical modeling. Geochem. Geophys. Geosyst. 9:7Q07006
    [Google Scholar]
  32. Du Frane WL, Sharp TG, Mosenfelder JL, Leinenweber K 2013. Ringwoodite growth rates from olivine with ∼75 ppmw H2O: Metastable olivine must be nearly anhydrous to exist in the mantle transition zone. Phys. Earth Planet. Inter. 219:1–10
    [Google Scholar]
  33. Estabrook CH. 1999. Body wave inversion of the 1970 and 1963 South American large deep-focus earthquakes. J. Geophys. Res. 104:B1228751–67
    [Google Scholar]
  34. Faccenda M, Gerya TV, Mancktelow NS, Moresi L 2012. Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling. Geochem. Geophys. Geosyst. 13:1Q01010
    [Google Scholar]
  35. Fan W, Wei SS, Tian D, McGuire JJ, Wiens DA 2019. Complex and diverse rupture processes of the 2018 Mw 8.2 and Mw 7.9 Tonga‐Fiji deep earthquakes. Geophys. Res. Lett. 46:52434–48
    [Google Scholar]
  36. Ferrand TP, Hilairet N, Incel S, Deldicque D, Labrousse L et al. 2017. Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nat. Commun. 8:115247
    [Google Scholar]
  37. Ferrand TP, Labrousse L, Eloy G, Fabbri O, Hilairet N, Schubnel A 2018. Energy balance from a mantle pseudotachylyte, Balmuccia, Italy. J. Geophys. Res. Solid Earth 123:53943–67
    [Google Scholar]
  38. Florez MA, Prieto GA. 2019. Controlling factors of seismicity and geometry in double seismic zones. Geophys. Res. Lett. 46:4174–81
    [Google Scholar]
  39. Frohlich C. 1989. The nature of deep-focus earthquakes. Annu. Rev. Earth Planet. Sci. 17:227–54
    [Google Scholar]
  40. Frohlich C. 2006. Deep Earthquakes Cambridge, UK: Cambridge Univ. Press
  41. Frohlich C, Gan W, Herrmann RB 2015. Two deep earthquakes in Wyoming. Seismol. Res. Lett. 86:3810–18
    [Google Scholar]
  42. Frohlich C, Nakamura Y. 2009. The physical mechanisms of deep moonquakes and intermediate-depth earthquakes: how similar and how different?. Phys. Earth Planet. Inter. 173:3–4365–74
    [Google Scholar]
  43. Furumura T, Kennett BLN, Padhy S 2016. Enhanced waveguide effect for deep-focus earthquakes in the subducting Pacific slab produced by a metastable olivine wedge. J. Geophys. Res. Solid Earth 121:96779–96
    [Google Scholar]
  44. Garth T, Rietbrock A. 2014. Order of magnitude increase in subducted H2O due to hydrated normal faults within the Wadati-Benioff zone. Geology 42:3207–10
    [Google Scholar]
  45. Gasc J, Hilairet N, Yu T, Ferrand T, Schubnel A, Wang Y 2017. Faulting of natural serpentinite: implications for intermediate-depth seismicity. Earth Planet. Sci. Lett. 474:138–47
    [Google Scholar]
  46. Gasc J, Schubnel A, Brunet F, Guillon S, Mueller H-J, Lathe C 2011. Simultaneous acoustic emissions monitoring and synchrotron X-ray diffraction at high pressure and temperature: calibration and application to serpentinite dehydration. Phys. Earth Planet. Inter. 189:3–4121–33
    [Google Scholar]
  47. Giardini D. 1988. Frequency distribution and quantification of deep earthquakes. J. Geophys. Res. 93:B32095–105
    [Google Scholar]
  48. Gilbert F, Dziewonski AM. 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos. Trans. R. Soc. A 278:1280187–269
    [Google Scholar]
  49. Goes S, Agrusta R, van Hunen J, Garel F 2017. Subduction-transition zone interaction: a review. Geosphere 13:3644–64
    [Google Scholar]
  50. Green HW II, Burnley PC 1989. A new self-organizing mechanism for deep-focus earthquakes. Nature 341:733–37
    [Google Scholar]
  51. Green HW II, Chen WP, Brudzinski MR 2010. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature 467:7317828–31
    [Google Scholar]
  52. Green HW II, Houston H 1995. The mechanics of deep earthquakes. Annu. Rev. Earth Planet. Sci. 23:169–213
    [Google Scholar]
  53. Green HW II, Marone C 2002. Instability of deformation. Rev. Mineral. Geochem. 51:1181–99
    [Google Scholar]
  54. Green HW II, Scholz CH, Tingle TN, Young TE, Koczynski TA 1992. Acoustic emissions produced by anticrack faulting during the olivine→spinel transformation. Geophys. Res. Lett. 19:8789–92
    [Google Scholar]
  55. Griggs DT, Baker DW. 1969. The origin of deep-focus earthquakes. Properties of Matter Under Unusual Conditions H Mark, S Fernbach 23–42 New York: Wiley
    [Google Scholar]
  56. Guest A, Schubert G, Gable CW 2004. Stresses along the metastable wedge of olivine in a subducting slab: possible explanation for the Tonga double seismic layer. Phys. Earth Planet. Inter. 141:4253–67
    [Google Scholar]
  57. Gunawardana PM, Morra G. 2017. Correlation between elastic energy density and deep earthquakes distribution. J. Geodyn. 106:33–45
    [Google Scholar]
  58. Gutenberg B, Richter CF. 1949. Seismicity of the Earth and Associated Phenomena Princeton, NJ: Princeton Univ. Press
  59. Hacker BR, Peacock SM, Abers GA, Holloway SD 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?. J. Geophys. Res. 108:B12030
    [Google Scholar]
  60. Halpaap F, Rondenay S, Perrin A, Goes S, Ottemöller L et al. 2019. Earthquakes track subduction fluids from slab source to mantle wedge sink. Sci. Adv. 5:4eaav7369
    [Google Scholar]
  61. Hara T, Kuge K, Kawakatsu H 1995. Determination of the isotropic component of the 1994 Bolivia deep earthquake. Geophys. Res. Lett. 22:162265–68
    [Google Scholar]
  62. Hasegawa A, Nakajima J. 2017. Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes. Prog. Earth Planet. Sci. 4:112
    [Google Scholar]
  63. Hayes GP, Moore GL, Portner DE, Hearne M, Flamme H et al. 2018. Slab2, a comprehensive subduction zone geometry model. Science 362:641058–61
    [Google Scholar]
  64. Helffrich G. 2000. Topography of the transition zone seismic discontinuities. Rev. Geophys. 38:1141–58
    [Google Scholar]
  65. Hogrefe A, Rubie DC, Sharp TG, Seifert F 1994. Metastability of enstatite in deep subducting lithosphere. Nature 372:6504351–53
    [Google Scholar]
  66. Houston H. 2015. Deep earthquakes. Treatise on Geophysics G Schubert 329–54 Amsterdam: Elsevier
    [Google Scholar]
  67. Iidaka T, Furukawa Y. 1994. Double seismic zone for deep earthquakes in the Izu-Bonin subduction zone. Science 263:51501116–18
    [Google Scholar]
  68. Incel S, Hilairet N, Labrousse L, John T, Deldicque D et al. 2017. Laboratory earthquakes triggered during eclogitization of lawsonite-bearing blueschist. Earth Planet. Sci. Lett. 459:320–31
    [Google Scholar]
  69. Incel S, Labrousse L, Hilairet N, John T, Gasc J et al. 2019. Reaction-induced embrittlement of the lower continental crust. Geology 47:3235–38
    [Google Scholar]
  70. Isacks B, Molnar P. 1971. Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes. Rev. Geophys. 9:1103–74
    [Google Scholar]
  71. Jia Z, Shen Z, Zhan Z, Li C, Peng Z, Gurnis M 2019. The 2018 Fiji Mw 8.2 and 7.9 deep earthquakes: one doublet in two slabs. EarthArXiv. https://doi.org/10.31223/osf.io/kfma4
    [Crossref] [Google Scholar]
  72. Jiang G, Zhao D. 2011. Metastable olivine wedge in the subducting Pacific slab and its relation to deep earthquakes. J. Asian Earth Sci. 42:61411–23
    [Google Scholar]
  73. Jiao W, Silver PG, Fei Y, Prewitt CT 2000. Do intermediate- and deep-focus earthquakes occur on preexisting weak zones? An examination of the Tonga subduction zone. J. Geophys. Res. 105:B1228125–38
    [Google Scholar]
  74. John T, Medvedev S, Rüpke LH, Andersen TB, Podladchikov YY, Austrheim H 2009. Generation of intermediate-depth earthquakes by self-localizing thermal runaway. Nat. Geosci. 2:2137–40
    [Google Scholar]
  75. Jung H, Fei Y, Silver PG, Green HW 2009. Frictional sliding in serpentine at very high pressure. Earth Planet. Sci. Lett. 277:1–2273–79
    [Google Scholar]
  76. Jung H, Green HW II, Dobrzhinetskaya LF 2004. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428:6982545–49
    [Google Scholar]
  77. Kanamori H, Anderson DL, Heaton TH 1998. Frictional melting during the rupture of the 1994 Bolivian earthquake. Science 279:5352839–42
    [Google Scholar]
  78. Karato S, Riedel MR, Yuen DA 2001. Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Phys. Earth Planet. Inter. 127:1–483–108
    [Google Scholar]
  79. Kawakatsu H. 1991. Insignificant isotropic component in the moment tensor of deep earthquakes. Nature 351:632150–53
    [Google Scholar]
  80. Kawakatsu H, Watada S. 2007. Seismic evidence for deep-water transportation in the mantle. Science 316:58301468–71
    [Google Scholar]
  81. Kawakatsu H, Yoshioka S. 2011. Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth Planet. Sci. Lett. 303:11–10
    [Google Scholar]
  82. Kelemen PB, Hirth G. 2007. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature 446:7137787–90
    [Google Scholar]
  83. Kikuchi M, Kanamori H. 1994. The mechanism of the deep Bolivia earthquake of June 9, 1994. Geophys. Res. Lett. 21:222341–44
    [Google Scholar]
  84. Kirby SH. 1987. Localized polymorphic phase transformations in high-pressure faults and applications to the physical mechanism of deep earthquakes. J. Geophys. Res. 92:B1313789–800
    [Google Scholar]
  85. Kirby SH, Durham WB, Stern LA 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science 252:5003216–25
    [Google Scholar]
  86. Kirby SH, Okal EA, Engdahl ER 1995. The 9 June 94 Bolivian deep earthquake: an exceptional event in an extraordinary subduction zone. Geophys. Res. Lett. 22:162233–36
    [Google Scholar]
  87. Kirby SH, Stein S, Okal EA, Rubie DC 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys. 34:2261–306
    [Google Scholar]
  88. Kita S, Ferrand TP. 2018. Physical mechanisms of oceanic mantle earthquakes: comparison of natural and experimental events. Sci. Rep. 8:117049
    [Google Scholar]
  89. Kita S, Okada T, Hasegawa A, Nakajima J, Matsuzawa T 2010. Anomalous deepening of a seismic belt in the upper-plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: possible evidence for thermal shielding caused by subducted forearc crust materials. Earth Planet. Sci. Lett. 290:3–4415–26
    [Google Scholar]
  90. Kita S, Okada T, Nakajima J, Matsuzawa T, Hasegawa A 2006. Existence of a seismic belt in the upper plane of the double seismic zone extending in the along-arc direction at depths of 70–100 km beneath NE Japan. Geophys. Res. Lett. 33:24L24310
    [Google Scholar]
  91. Koper KD, Wiens DA. 2000. The waveguide effect of metastable olivine in slabs. Geophys. Res. Lett. 27:4581–84
    [Google Scholar]
  92. Kufner S-K, Schurr B, Haberland C, Zhang Y, Saul J et al. 2017. Zooming into the Hindu Kush slab break-off: a rare glimpse on the terminal stage of subduction. Earth Planet. Sci. Lett. 461:127–40
    [Google Scholar]
  93. Kuge K. 1994. Rapid rupture and complex faulting of the May 12, 1990, Sakhalin deep earthquake: analysis of regional and teleseismic broadband data. J. Geophys. Res. 99:B22671–85
    [Google Scholar]
  94. Kuge K. 2017. Seismic observations indicating that the 2015 Ogasawara (Bonin) earthquake ruptured beneath the 660 km discontinuity. Geophys. Res. Lett. 44:2110855–62
    [Google Scholar]
  95. Lay T, Ye L, Ammon CJ, Kanamori H 2017. Intraslab rupture triggering megathrust rupture coseismically in the 17 December 2016 Solomon Islands Mw 7.9 earthquake. Geophys. Res. Lett. 44:31286–92
    [Google Scholar]
  96. Li C, Peng Z, Yao D, Guo H, Zhan Z, Zhang H 2018a. Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake. Geophys. J. Int. 213:21121–34
    [Google Scholar]
  97. Li J, Zheng Y, Thomsen L, Lapen TJ, Fang X 2018b. Deep earthquakes in subducting slabs hosted in highly anisotropic rock fabric. Nat. Geosci. 11:9696–700
    [Google Scholar]
  98. Lister G, Kennett B, Richards S, Forster M 2008. Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. Nat. Geosci. 1:3196–201
    [Google Scholar]
  99. Liu L, Zhang JS. 2015. Differential contraction of subducted lithosphere layers generates deep earthquakes. Earth Planet. Sci. Lett. 421:98–106
    [Google Scholar]
  100. Marton FC, Bina CR, Stein S, Rubie DC 1999. Effects of slab mineralogy on subduction rates. Geophys. Res. Lett. 26:1119–22
    [Google Scholar]
  101. McGuire JJ, Wiens DA, Shore PJ, Bevis MG 1997. The March 9, 1994 (Mw 7.6), deep Tonga earthquake: rupture outside the seismically active slab. J. Geophys. Res. 102:B715163–82
    [Google Scholar]
  102. Meade C, Jeanloz R. 1991. Deep-focus earthquakes and recycling of water into the Earth's mantle. Science 252:500268–72
    [Google Scholar]
  103. Meng L, Ampuero J-P, Bürgmann R 2014. The 2013 Okhotsk deep-focus earthquake: rupture beyond the metastable olivine wedge and thermally controlled rise time near the edge of a slab. Geophys. Res. Lett. 41:113779–85
    [Google Scholar]
  104. Mishra OP, Zhao D. 2004. Seismic evidence for dehydration embrittlement of the subducting Pacific slab. Geophys. Res. Lett. 31:9L09610
    [Google Scholar]
  105. Molnar P, Bendick R. 2019. Seismic moments of intermediate‐depth earthquakes beneath the Hindu Kush: active stretching of a blob of sinking thickened mantle lithosphere?. Tectonics 38:1651–65
    [Google Scholar]
  106. Mosenfelder JL, Marton FC, Ross CR, Kerschhofer L, Rubie DC 2001. Experimental constraints on the depth of olivine metastability in subducting lithosphere. Phys. Earth Planet. Inter. 127:1–4165–80
    [Google Scholar]
  107. Myhill R. 2013. Slab buckling and its effect on the distributions and focal mechanisms of deep-focus earthquakes. Geophys. J. Int. 192:2837–53
    [Google Scholar]
  108. Nakajima J, Hasegawa A, Kita S 2011. Seismic evidence for reactivation of a buried hydrated fault in the Pacific slab by the 2011 M9.0 Tohoku earthquake. Geophys. Res. Lett. 38:7L00G06
    [Google Scholar]
  109. Nakajima J, Tsuji Y, Hasegawa A, Kita S, Okada T, Matsuzawa T 2009. Tomographic imaging of hydrated crust and mantle in the subducting Pacific slab beneath Hokkaido, Japan: evidence for dehydration embrittlement as a cause of intraslab earthquakes. Gondwana Res 16:3–4470–81
    [Google Scholar]
  110. Nakajima J, Uchida N, Shiina T, Hasegawa A, Hacker BR, Kirby SH 2013. Intermediate-depth earthquakes facilitated by eclogitization-related stresses. Geology 41:6659–62
    [Google Scholar]
  111. Nicholson T, Bostock M, Cassidy JF 2005. New constraints on subduction zone structure in northern Cascadia. Geophys. J. Int. 161:3849–59
    [Google Scholar]
  112. Obayashi M, Fukao Y, Yoshimitsu J 2017. Unusually deep Bonin earthquake of 30 May 2015: a precursory signal to slab penetration?. Earth Planet. Sci. Lett. 459:221–26
    [Google Scholar]
  113. Ogawa M. 1987. Shear instability in a viscoelastic material as the cause of deep focus earthquakes. J. Geophys. Res. 92:B1313801–10
    [Google Scholar]
  114. Ohuchi T, Lei X, Ohfuji H, Higo Y, Tange Y et al. 2017. Intermediate-depth earthquakes linked to localized heating in dunite and harzburgite. Nat. Geosci. 10:10771–76
    [Google Scholar]
  115. Okal EA. 1996. Radial modes from the great 1994 Bolivian earthquake: no evidence for an isotropic component to the source. Geophys. Res. Lett. 23:5431–34
    [Google Scholar]
  116. Okal EA, Geller RJ. 1979. On the observability of isotropic seismic sources: the July 31, 1970 Colombian earthquake. Phys. Earth Planet. Inter. 18:3176–96
    [Google Scholar]
  117. Okal EA, Kirby SH. 1995. Frequency-moment distribution of deep earthquakes; implications for the seismogenic zone at the bottom of slabs. Phys. Earth Planet. Inter. 92:3–4169–87
    [Google Scholar]
  118. Okal EA, Saloor N, Kirby SH, Nettles M 2018. An implosive component to the source of the deep Sea of Okhotsk earthquake of 24 May 2013: evidence from radial modes and CMT inversion. Phys. Earth Planet. Inter. 281:68–78
    [Google Scholar]
  119. Okazaki K, Hirth G. 2016. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Nature 530:758881–84
    [Google Scholar]
  120. Omori S, Komabayashi T, Maruyama S 2004. Dehydration and earthquakes in the subducting slab: empirical link in intermediate and deep seismic zones. Phys. Earth Planet. Inter. 146:1–2297–311
    [Google Scholar]
  121. Panet I, Bonvalot S, Narteau C, Remy D, Lemoine J-M 2018. Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data. Nat. Geosci. 11:5367–73
    [Google Scholar]
  122. Peacock SM. 2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology. 29299–302
  123. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L et al. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:7491221–24
    [Google Scholar]
  124. Persh SE, Houston H. 2004a. Deep earthquake rupture histories determined by global stacking of broadband P waveforms. J. Geophys. Res. 109:B4B04311
    [Google Scholar]
  125. Persh SE, Houston H. 2004b. Strongly depth-dependent aftershock production in deep earthquakes. Bull. Seismol. Soc. Am. 94:51808–16
    [Google Scholar]
  126. Petley-Ragan A, Ben-Zion Y, Austrheim H, Ildefonse B, Renard F, Jamtveit B 2019. Dynamic earthquake rupture in the lower crust. Sci. Adv. 5:7eaaw0913
    [Google Scholar]
  127. Plümper O, John T, Podladchikov YY, Vrijmoed JC, Scambelluri M 2017. Fluid escape from subduction zones controlled by channel-forming reactive porosity. Nat. Geosci. 10:2150–56
    [Google Scholar]
  128. Poli P, Prieto G. 2014. Global and along-strike variations of source duration and scaling for intermediate-depth and deep-focus earthquakes. Geophys. Res. Lett. 41:238315–24
    [Google Scholar]
  129. Porritt RW, Yoshioka S. 2016. Slab pileup in the mantle transition zone and the 30 May 2015 Chichi‐jima earthquake. Geophys. Res. Lett. 43:104905–12
    [Google Scholar]
  130. Prieto GA, Florez M, Barrett SA, Beroza GC, Pedraza P et al. 2013. Seismic evidence for thermal runaway during intermediate-depth earthquake rupture. Geophys. Res. Lett. 40:236064–68
    [Google Scholar]
  131. Prieto GA, Froment B, Yu C, Poli P, Abercrombie R 2017. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle. Sci. Adv. 3:3e1602642
    [Google Scholar]
  132. Proctor B, Hirth G. 2015. Role of pore fluid pressure on transient strength changes and fabric development during serpentine dehydration at mantle conditions: implications for subduction-zone seismicity. Earth Planet. Sci. Lett. 421:1–12
    [Google Scholar]
  133. Raleigh CB, Paterson MS. 1965. Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res. 70:163965–85
    [Google Scholar]
  134. Ranero CR, Phipps Morgan J, McIntosh K, Reichert C 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:6956367–73
    [Google Scholar]
  135. Ranero CR, Villaseñor A, Phipps Morgan J, Weinrebe W 2005. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochem. Geophys. Geosyst. 6:12Q12002
    [Google Scholar]
  136. Reynard B, Nakajima J, Kawakatsu H 2010. Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones. Geophys. Res. Lett. 37:24L24309
    [Google Scholar]
  137. Richards S, Holm R, Barber G 2011. When slabs collide: a tectonic assessment of deep earthquakes in the Tonga-Vanuatu region. Geology 39:8787–90
    [Google Scholar]
  138. Rondenay S, Abers GA, van Keken PE 2008. Seismic imaging of subduction zone metamorphism. Geology 36:4275–78
    [Google Scholar]
  139. Russakoff D, Ekström G, Tromp J 1997. A new analysis of the great 1970 Colombia earthquake and its isotropic component. J. Geophys. Res. 102:B920423–34
    [Google Scholar]
  140. Savage B. 2012. Seismic constraints on the water flux delivered to the deep Earth by subduction. Geology 40:3235–38
    [Google Scholar]
  141. Scambelluri M, Pennacchioni G, Gilio M, Bestmann M, Plümper O, Nestola F 2017. Fossil intermediate-depth earthquakes in subducting slabs linked to differential stress release. Nat. Geosci. 10:12960–66
    [Google Scholar]
  142. Schmandt B, Jacobsen SD, Becker TW, Liu Z, Dueker KG 2014. Dehydration melting at the top of the lower mantle. Science 344:61891265–68
    [Google Scholar]
  143. Scholz CH. 2019. The Mechanics of Earthquakes and Faulting New York: Cambridge Univ. Press
  144. Schubnel A, Brunet F, Hilairet N, Gasc J, Wang Y, Green HW 2013. Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory. Science 341:61521377–80
    [Google Scholar]
  145. Schulte-Pelkum V, Monsalve G, Sheehan AF, Shearer P, Wu F, Rajaure S 2019. Mantle earthquakes in the Himalayan collision zone. Geology 47:815–19
    [Google Scholar]
  146. Shen Z, Zhan Z. 2019. Metastable olivine wedge beneath the Japan Sea imaged by seismic interferometry. EarthArXiv. https://doi.org/10.31223/osf.io/d5r6t
    [Crossref] [Google Scholar]
  147. Shi F, Wang Y, Yu T, Zhu L, Zhang J et al. 2018. Lower-crustal earthquakes in southern Tibet are linked to eclogitization of dry metastable granulite. Nat. Commun. 9:13483
    [Google Scholar]
  148. Shiina T, Nakajima J, Matsuzawa T 2013. Seismic evidence for high pore pressures in the oceanic crust: implications for fluid-related embrittlement. Geophys. Res. Lett. 40:102006–10
    [Google Scholar]
  149. Silver PG, Beck SL, Wallace TC, Meade C, Myers SC et al. 1995. Rupture characteristics of the deep Bolivian earthquake of 9 June 1994 and the mechanism of deep-focus earthquakes. Science 268:69–73
    [Google Scholar]
  150. So B-D, Yuen DA. 2015. Influence on earthquake distributions in slabs from bimaterial shear heating. Geophys. Monogr. Ser. 2015:157–67
    [Google Scholar]
  151. Sobolev AV, Asafov EV, Gurenko AA, Arndt NT, Batanova VG et al. 2019. Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago. Nature 571:7766555–59
    [Google Scholar]
  152. Steblov GM, Ekström G, Kogan MG, Freymueller JT, Titkov NN et al. 2014. First geodetic observations of a deep earthquake: the 2013 Sea of Okhotsk Mw 8.3, 611 km-deep, event. Geophys. Res. Lett. 41:113826–32
    [Google Scholar]
  153. Stein SA, Rubie DC. 1999. Deep earthquakes in real slabs. Science 286:5441909–10
    [Google Scholar]
  154. Suzuki M, Yagi Y. 2011. Depth dependence of rupture velocity in deep earthquakes. Geophys. Res. Lett. 38:5L05308
    [Google Scholar]
  155. Tetzlaff M, Schmeling H. 2000. The influence of olivine metastability on deep subduction of oceanic lithosphere. Phys. Earth Planet. Inter. 120:1–229–38
    [Google Scholar]
  156. Thielmann M. 2018. Grain size assisted thermal runaway as a nucleation mechanism for continental mantle earthquakes: impact of complex rheologies. Tectonophysics 746:611–23
    [Google Scholar]
  157. Thielmann M, Rozel A, Kaus BJP, Ricard Y 2015. Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating. Geology 43:9791–94
    [Google Scholar]
  158. Tibi R, Bock G, Wiens DA 2003a. Source characteristics of large deep earthquakes: constraint on the faulting mechanism at great depths. J. Geophys. Res. 108:B22091
    [Google Scholar]
  159. Tibi R, Wiens DA, Inoue H 2003b. Remote triggering of deep earthquakes in the 2002 Tonga sequences. Nature 424:6951921–25
    [Google Scholar]
  160. Tocheport A, Rivera L, Chevrot S 2007. A systematic study of source time functions and moment tensors of intermediate and deep earthquakes. J. Geophys. Res. 112:B7B07311
    [Google Scholar]
  161. Tschauner O, Huang S, Greenberg E, Prakapenka VB, Ma C et al. 2018. Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth's deep mantle. Science 359:63801136–39
    [Google Scholar]
  162. Tsuji Y, Nakajima J, Hasegawa A 2008. Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: implications for water transportation in subduction zones. Geophys. Res. Lett. 35:14L14308
    [Google Scholar]
  163. Twardzik C, Ji C. 2015. The Mw7.9 2014 intraplate intermediate-depth Rat Islands earthquake and its relation to regional tectonics. Earth Planet. Sci. Lett. 431:26–35
    [Google Scholar]
  164. Vallée M. 2013. Source time function properties indicate a strain drop independent of earthquake depth and magnitude. Nat. Commun. 4:2606
    [Google Scholar]
  165. Vallée M, Juhel K. 2019. Multiple observations of the prompt elastogravity signals heralding direct seismic waves. J. Geophys. Res. Solid Earth 124:32970–89
    [Google Scholar]
  166. Van der Hilst RD. 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature 374:154–57
    [Google Scholar]
  167. Vassiliou MS, Hager BH. 1988. Subduction zone earthquakes and stress in slabs. PAGEOPH 128:3–4547–624
    [Google Scholar]
  168. Vidale JE, Williams Q, Houston H 1991. Waveform effects of a metastable olivine tongue in subducting slabs. Geophys. Res. Lett. 18:122201–4
    [Google Scholar]
  169. Wadati K. 1928. Shallow and deep earthquakes. Geophys. Mag. 1:161–202
    [Google Scholar]
  170. Wang X, Zhao D, Li J 2016. The 2013 Wyoming upper mantle earthquakes: tomography and tectonic implications. J. Geophys. Res. Solid Earth 121:96797–808
    [Google Scholar]
  171. Wang Y, Zhu L, Shi F, Schubnel A, Hilairet N et al. 2017. A laboratory nanoseismological study on deep-focus earthquake micromechanics. Sci. Adv. 3:7e1601896
    [Google Scholar]
  172. Warren LM. 2014. Dominant fault plane orientations of intermediate-depth earthquakes beneath South America. J. Geophys. Res. Solid Earth 119:75762–85
    [Google Scholar]
  173. Warren LM, Baluyut EC, Osburg T, Lisac K, Kokkinen S 2015. Fault plane orientations of intermediate-depth and deep-focus earthquakes in the Japan-Kuril-Kamchatka subduction zone. J. Geophys. Res. Solid Earth 120:128366–82
    [Google Scholar]
  174. Warren LM, Hughes AN, Silver PG 2007. Earthquake mechanics and deformation in the Tonga-Kermadec subduction zone from fault plane orientations of intermediate- and deep-focus earthquakes. J. Geophys. Res. 112:B5B05314
    [Google Scholar]
  175. Warren LM, Langstaff MA, Silver PG 2008. Fault plane orientations of intermediate-depth earthquakes in the Middle America trench. J. Geophys. Res. 113:B1B01304
    [Google Scholar]
  176. Wei S, Helmberger D, Zhan Z, Graves R 2013. Rupture complexity of the Mw 8.3 Sea of Okhotsk earthquake: rapid triggering of complementary earthquakes?. Geophys. Res. Lett. 40:195034–39
    [Google Scholar]
  177. Wei SS, Wiens DA, van Keken PE, Cai C 2017. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration. Sci. Adv. 3:1e1601755
    [Google Scholar]
  178. White LT, Rawlinson N, Lister GS, Waldhauser F, Hejrani B et al. 2019. Earth's deepest earthquake swarms track fluid ascent beneath nascent arc volcanoes. Earth Planet. Sci. Lett. 521:25–36
    [Google Scholar]
  179. Wiens DA. 2001. Seismological constraints on the mechanism of deep earthquakes: temperature dependence of deep earthquake source properties. Phys. Earth Planet. Inter. 127:1–4145–63
    [Google Scholar]
  180. Wiens DA, Gilbert HJ. 1996. Effect of slab temperature on deep-earthquake aftershock productivity and magnitude-frequency relations. Nature 384:6605153–56
    [Google Scholar]
  181. Wiens DA, McGuire JJ. 1995. The 1994 Bolivia and Tonga events: fundamentally different types of deep earthquakes?. Geophys. Res. Lett. 22:162245–48
    [Google Scholar]
  182. Wiens DA, McGuire JJ, Shore PJ 1993. Evidence for transformational faulting from a deep double seismic zone in Tonga. Nature 364:6440790–93
    [Google Scholar]
  183. Wiens DA, McGuire JJ, Shore PJ, Bevis MG, Draunidalo K et al. 1994. A deep earthquake aftershock sequence and implications for the rupture mechanism of deep earthquakes. Nature 372:6506540–43
    [Google Scholar]
  184. Wiens DA, Snider NO. 2001. Repeating deep earthquakes: evidence for fault reactivation at great depth. Science 293:55341463–66
    [Google Scholar]
  185. Xia G. 2013. Experimental studies on dehydration embrittlement of serpentinized peridotite and the effect of pressure on creep of olivine PhD Thesis, Univ. Calif., Riverside
  186. Xu C, Su X, Liu T, Sun W 2017. Geodetic observations of the co- and post-seismic deformation of the 2013 Okhotsk Sea deep-focus earthquake. Geophys. J. Int. 209:31924–33
    [Google Scholar]
  187. Yamasaki T, Seno T. 2003. Double seismic zone and dehydration embrittlement of the subducting slab. J. Geophys. Res. 108:B42212
    [Google Scholar]
  188. Yang T, Gurnis M, Zhan Z 2017. Trench motion‐controlled slab morphology and stress variations: implications for the isolated 2015 Bonin Islands deep earthquake. Geophys. Res. Lett. 44:136641–50
    [Google Scholar]
  189. Ye L, Lay T, Kanamori H, Koper KD 2013. Energy release of the 2013 Mw 8.3 Sea of Okhotsk earthquake and deep slab stress heterogeneity. Science 341:61521380–84
    [Google Scholar]
  190. Ye L, Lay T, Kanamori H, Zhan Z, Duputel Z 2016a. Diverse rupture processes in the 2015 Peru deep earthquake doublet. Sci. Adv. 2:6e1600581
    [Google Scholar]
  191. Ye L, Lay T, Zhan Z, Kanamori H, Hao J-L 2016b. The isolated ∼680 km deep 30 May 2015 MW 7.9 Ogasawara (Bonin) Islands earthquake. Earth Planet. Sci. Lett. 433:169–79
    [Google Scholar]
  192. Yu W-C, Wen L. 2012. Deep-focus repeating earthquakes in the Tonga-Fiji subduction zone. Bull. Seismol. Soc. Am. 102:41829–49
    [Google Scholar]
  193. Zhan Z. 2017. Gutenberg–Richter law for deep earthquakes revisited: a dual-mechanism hypothesis. Earth Planet. Sci. Lett. 461:1–7
    [Google Scholar]
  194. Zhan Z, Helmberger DV, Kanamori H, Shearer PM 2014a. Supershear rupture in a Mw 6.7 aftershock of the 2013 Sea of Okhotsk earthquake. Science 345:6193204–7
    [Google Scholar]
  195. Zhan Z, Kanamori H. 2016. Recurring large deep earthquakes in Hindu Kush driven by a sinking slab. Geophys. Res. Lett. 43:147433–41
    [Google Scholar]
  196. Zhan Z, Kanamori H, Tsai VC, Helmberger DV, Wei S 2014b. Rupture complexity of the 1994 Bolivia and 2013 Sea of Okhotsk deep earthquakes. Earth Planet. Sci. Lett. 385:89–96
    [Google Scholar]
  197. Zhan Z, Shearer PM. 2014. Dynamic triggering of deep earthquakes—a global perspective. Paper presented at the American Geophysical Union, Fall Meeting 2014 San Francisco:
  198. Zhang H, Brudzinski MR. 2019. Evidence for rupture through a double Benioff zone during the 2017 Mw 8.2 Chiapas, Mexico earthquake. Geophys. Res. Lett. 46:2652–60
    [Google Scholar]
  199. Zhang H, Thurber CH, Shelly D, Ide S, Beroza GC, Hasegawa A 2004. High-resolution subducting-slab structure beneath northern Honshu, Japan, revealed by double-difference tomography. Geology 32:4361–64
    [Google Scholar]
  200. Zhang H, Wang F, Myhill R, Guo H 2019. Slab morphology and deformation beneath Izu-Bonin. Nat. Commun. 10:11310
    [Google Scholar]
  201. Zhao D, Fujisawa M, Toyokuni G 2017. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9). Sci. Rep. 7:44487
    [Google Scholar]
  202. Zhu L. 2003. Recovering permanent displacements from seismic records of the June 9, 1994 Bolivia deep earthquake. Geophys. Res. Lett. 30:141740
    [Google Scholar]
  203. Zhu L, Helmberger DV. 1996. Intermediate depth earthquakes beneath the India-Tibet collision zone. Geophys. Res. Lett. 23:5435–38
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060314
Loading
/content/journals/10.1146/annurev-earth-053018-060314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error