1932

Abstract

Advanced satellite technology has been providing unique observations of global carbon dioxide (CO) concentrations. These observations have revealed important CO variability at different timescales and over regional and planetary scales. Satellite CO retrievals have revealed that stratospheric sudden warming and the Madden-Julian Oscillation can modulate atmospheric CO concentrations in the mid-troposphere. Atmospheric CO also demonstrates variability at interannual timescales. In the tropical region, the El Niño–Southern Oscillation and the Tropospheric Biennial Oscillation can change atmospheric CO concentrations. At high latitudes, mid-tropospheric CO concentrations can be influenced by the Northern Hemispheric annular mode. In addition to modulations by the large-scale circulations, sporadic events such as wildfires, volcanic eruptions, and droughts, which change CO surface emissions, can cause atmospheric CO concentrations to increase significantly. The natural variability of CO summarized in this review can help us better understand its sources and sinks and its redistribution by atmospheric motion.

  • ▪  Global satellite CO data offer a unique opportunity to explore CO variability in different regions.
  • ▪  Atmospheric CO concentration demonstrates variations at intraseasonal, seasonal, and interannual timescales.
  • ▪  Both large-scale circulations and variations of surface emissions can modulate CO concentrations in the atmosphere.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-053018-060447
2019-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/47/1/annurev-earth-053018-060447.html?itemId=/content/journals/10.1146/annurev-earth-053018-060447&mimeType=html&fmt=ahah

Literature Cited

  1. Bacastow RB 1976. Modulation of atmospheric carbon dioxide by the Southern Oscillation. Nature 261:116–18
    [Google Scholar]
  2. Bacastow RB, Adams J, Keeling CD, Moss D, Whorf T, Wong C 1980. Atmospheric carbon dioxide, the southern oscillation, and the weak 1975 El Niño. Science 210:66–68
    [Google Scholar]
  3. Bacastow RB, Keeling CD, Whorf TP 1985. Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959–1982. J. Geophys. Res. 90:D610529–40
    [Google Scholar]
  4. Barkley MP, Monks PS, Frieß U, Mittermeier RL, Fast H et al. 2006. Comparisons between SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS to ground based FTIR data and the TM3 chemistry transport model. Atmos. Chem. Phys. 6:4483–98
    [Google Scholar]
  5. Boesch H, Baker D, Connor B, Crisp D, Miller C 2011. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission. Remote Sens 3:270–304
    [Google Scholar]
  6. Buermann W, Lintner B, Koven C, Angert A, Pinzon JE et al. 2007. The changing carbon cycle at the Mauna Loa Observatory. PNAS 104:4249–54
    [Google Scholar]
  7. Chahine M, Barnet C, Olsen ET, Chen L, Maddy E 2005. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys. Res. Lett. 32:L22803
    [Google Scholar]
  8. Chahine M, Chen L, Dimotakis P, Jiang X, Li Q et al. 2008. Satellite remote sounding of mid-tropospheric CO2. Geophys. Res. Lett. 35:L17807
    [Google Scholar]
  9. Chang CP, Li T 2000. A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci. 57:2209–24
    [Google Scholar]
  10. Chatterjee A, Gierach MM, Sutton AJ, Feely RA, Crisp D et al. 2017. Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: findings from NASA's OCO-2 mission. Science 358:eaam5776
    [Google Scholar]
  11. Choi Y, Vay SA, Vadrevu KP, Soja AJ, Woo J et al. 2008. Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA. J. Geophys. Res. 113:D7D07301
    [Google Scholar]
  12. Cleveland MS, Freeny AE, Graedel TE 1983. The seasonal component of atmospheric CO2: information from new approaches to the decomposition of seasonal time series. J. Geophys. Res. 88:C1510934–46
    [Google Scholar]
  13. Crevoisier C, Chédin A, Matsueda H, Machida T, Armante R, Scott NA 2009. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmos. Chem. Phys. 9:4797–810
    [Google Scholar]
  14. Crisp D, Fisher BM, O'Dell C, Frankenberg C, Basilio R et al. 2012. The ACOS CO2 retrieval algorithm, part 2: global XCO2 data characterization. Atmos. Meas. Tech. 5:687–707
    [Google Scholar]
  15. Crisp D, Pollock HR, Rosenberg R, Chapsky L, Lee RAM et al. 2017. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 10:59–81
    [Google Scholar]
  16. Dickinson RE, Cicerone RJ 1986. Future global warming from atmospheric trace gases. Nature 319:109–15
    [Google Scholar]
  17. Dupont F, Tanguay F, Li M, Perron G, Miller CM et al. 2012. CARVE-FTS observations of Arctic CO2, CH4, and CO—overview of the instrument. Proc. SPIE 8532:853204
    [Google Scholar]
  18. Eldering A, Wennberg PO, Crisp D, Schimel DS, Gunson MR et al. 2017. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science 358:eaam5745
    [Google Scholar]
  19. Feely RA 1987. Distribution of chemical tracers in the eastern equatorial Pacific during and after the 1982–1983 El Niño/Southern Oscillation event. J. Geophys. Res. 92:C66545–58
    [Google Scholar]
  20. Feely RA, Takahashi T, Wanninkhof R, McPhaden MJ, Cosca CE et al. 2006. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res. 111:C8C08S90
    [Google Scholar]
  21. Feely RA, Wanninkhof R, Goyet C, Archer DE, Takahashi T 1997. Variability of CO2 distributions and sea-air fluxes in the central and eastern equatorial Pacific during the 1991–1994 El Niño. Deep Sea Res. Part II Top. Stud. Oceanogr. 44:1851–67
    [Google Scholar]
  22. Fisher JB, Sikka M, Oechel WC, Huntzinger DN, Melton JR et al. 2014. Carbon cycle uncertainty in the Alaskan Arctic. Biogeosciences 11:4271–88
    [Google Scholar]
  23. Foucher PY, Chédin A, Armante R, Boone C, Crevoisier C, Bernath P 2011. Carbon dioxide atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument. Atmos. Chem. Phys. 11:2455–70
    [Google Scholar]
  24. Francey R, Tans PP, Allison CE, Enting IG, White JWC, Trolier M 1995. Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373:326–30
    [Google Scholar]
  25. Gage KS, Reid GC 1987. Longitudinal variations in tropical tropopause properties in relation to tropical convection and El Nino-Southern Oscillation events. J. Geophys. Res. 92:C1314197–203
    [Google Scholar]
  26. GLOBALVIEW-CO2. 2010. Cooperative Atmospheric Data Integration Project: Carbon Dioxide Boulder, CO: NOAA Environ. Sci. Res. Lab. CD-ROM
  27. Goody RM, Yung YL 1989. Atmospheric Radiation: Theoretical Basis New York: Oxford Univ. Press
  28. Heymann J, Reuter M, Buchwitz M, Schneising O, Bovensmann H et al. 2017. CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations. Geophys. Res. Lett. 44:1537–44
    [Google Scholar]
  29. Inoue HY, Sugimura Y 1992. Variations and distributions of CO2 in and over the equatorial Pacific during the period from the 1986/88 El Niño event to the 1988/89 La Niña event. Tellus Ser. B 44:1–22
    [Google Scholar]
  30. IPCC (Intergov. Panel Clim. Change). 2013. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, GK Plattner, M Tignor, SK Allen et al. Cambridge, UK/New York: Cambridge Univ. Press
  31. Jiang X, Chahine MT, Li Q, Liang M, Olsen ET et al. 2012. CO2 semiannual oscillation in the middle troposphere and at the surface. Glob. Biogeochem. Cycles 26:GB3006
    [Google Scholar]
  32. Jiang X, Chahine MT, Olsen ET, Chen LL, Yung YL 2010. Interannual variability of mid-tropospheric CO2 from Atmospheric Infrared Sounder. Geophys. Res. Lett. 37:L13801
    [Google Scholar]
  33. Jiang X, Crisp D, Olsen ET, Kulawik SS, Miller CE et al. 2016. CO2 annual and semi-annual cycles from multiple satellite retrievals and models. Earth Space Sci 3:78–87
    [Google Scholar]
  34. Jiang X, Kao A, Corbett A, Olsen E, Pagano T et al. 2017. Influence of droughts on mid-tropospheric CO2. Remote Sens 9:852
    [Google Scholar]
  35. Jiang X, Li Q, Liang MC, Shia R, Chahine MT et al. 2008. Simulation of upper tropospheric CO2 from chemistry and transport models. Glob. Biogeochem. Cycles 22:GB4025
    [Google Scholar]
  36. Jiang X, Waliser DE, Tian B, Li JL, Olsen WS et al. 2009. Vertical heating structures associated with the MJO as characterized by TRMM estimates, ECMWF reanalyses, and forecasts: a case study during 1998/99 winter. J. Climate 22:6001–20
    [Google Scholar]
  37. Jiang X, Wang J, Olsen ET, Liang M, Pagano TS et al. 2013a. Influence of El Niño on mid-tropospheric CO2 from Atmospheric Infared Sounder and model. J. Atmos. Sci. 70:223–30
    [Google Scholar]
  38. Jiang X, Wang J, Olsen ET, Pagano T, Chen LL, Yung YL 2013b. Influence of stratospheric sudden warming on AIRS mid-tropospheric CO2. J. Atmos. Sci. 70:2566–73
    [Google Scholar]
  39. Jones CD, Collins M, Cox PM, Spall SA 2001. The carbon cycle response to ENSO: a coupled climate-carbon cycle model study. J. Climate 14:4113–29
    [Google Scholar]
  40. Keeling CD, Chin JFS, Whorf TP 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–49
    [Google Scholar]
  41. Keeling CD, Whorf TP, Wahlen M, Vanderplicht J 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–70
    [Google Scholar]
  42. Knutson TR, Weickmann KM 1987. 30–60 day atmospheric oscillations: composite life cycles of convection and circulation anomalies. Mon. Weather Rev. 115:1407–36
    [Google Scholar]
  43. Kuang Z, Margolis J, Toon G, Crisp D, Yung YL 2002. Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study. Geophys. Res. Lett. 29:1716
    [Google Scholar]
  44. Kulawik SS, Jones DBA, Nassar R, Irion FW, Worden JR et al. 2010. Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science. Atmos. Chem. Phys. 10:5601–23
    [Google Scholar]
  45. Kuze A, Suto H, Nakajima M, Hamazaki T 2009. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 48:6716–33
    [Google Scholar]
  46. Li KF 2018. An intraseasonal variability in CO2 over the Arctic induced by the Madden-Julian Oscillation. Geophys. Res. Lett. 45:1630–38
    [Google Scholar]
  47. Li KF, Tian B, Waliser DE, Yung YL 2010. Tropical mid-tropospheric CO2 variability driven by the Madden-Julian Oscillation. PNAS 107:19171–75
    [Google Scholar]
  48. Limpasuvan V, Thompson DWJ, Hartmann DL 2004. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate 17:2584–96
    [Google Scholar]
  49. Lindqvist H, O'Dell CW, Basu S, Boesch H, Chevallier F et al. 2015. Does GOSAT capture the true seasonal cycle of carbon dioxide?. Atmos. Chem. Phys. 15:13023–40
    [Google Scholar]
  50. Liu J, Bowman KW, Schimel DS, Parazoo NC, Jiang Z et al. 2017. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358:eaam5690
    [Google Scholar]
  51. Lovelock JE 1971. Atmospheric fluorine compounds as indicators of air movements. Nature 230:379
    [Google Scholar]
  52. Madden RA, Julian PR 1971. Detection of a 40–50 day oscillation in zonal wind in tropical Pacific. J. Atmos. Sci. 28:702–8
    [Google Scholar]
  53. Manney GL, Schwartz MJ, Kruger K, Santee ML, Pawson S et al. 2009. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett. 36:L12815
    [Google Scholar]
  54. Matsueda H, Inoue HY, Ishii M 2002. Aircraft observation of carbon dioxide at 8–13 km altitude over the western Pacific from 1993 to 1999. Tellus Ser. B 54:1–21
    [Google Scholar]
  55. Mooley DA, Parthasarathy B 1984. Fluctuations in All-India summer monsoon rainfall during 1871–1978. Clim. Change 6:287–301
    [Google Scholar]
  56. Nguyen H, Osterman G, Wunch D, O'Dell C, Mandrake L et al. 2014. A method for collocating satellite XCO2 data to ground-based data and its application to ACOS-GOSAT and TCCON. Atmos. Meas. Tech. 7:2631–44
    [Google Scholar]
  57. Pearman GI, Hyson P 1980. Activities of the global biosphere as reflected in atmospheric CO2 records. J. Geophys. Res. 85:C84457–67
    [Google Scholar]
  58. Pearman GI, Hyson P 1981. The annual variation of atmospheric CO2 concentration observed in the northern hemisphere. J. Geophys. Res. 86:C109839–43
    [Google Scholar]
  59. Petzold A, Thouret V, Gerbig C, Zahn A, Brenninkmeijer CAM et al. 2015. Global-scale atmosphere monitoring by in-service aircraft—current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus Ser. B 67:28452
    [Google Scholar]
  60. Rinsland CP, Chiou LS, Boone C, Bernath P 2010. Carbon dioxide retrievals from Atmospheric Chemistry Experiment solar occultation measurements. J. Geophys. Res. 115:D3D03105
    [Google Scholar]
  61. Russell JL, Wallace JM 2004. Annual carbon dioxide drawdown and the Northern Annular Mode. Glob. Biogeochem. Cycles 18:GB1012
    [Google Scholar]
  62. Sarmiento JL, Wofsy S 1999. A U.S. Carbon Cycle Science Plan: A Report of the Carbon and Climate Working Group Washington, DC: US Glob. Change Res. Program
  63. Schaefer K, Denning S, Leonard O 2005. The winter Arctic Oscillation, the timing of spring, and carbon fluxes in the Northern Hemisphere. Glob. Biogeochem. Cycles 19:GB3017
    [Google Scholar]
  64. Schwandner F 2017. Spaceborne detection of localized carbon dioxide sources. Science 358:eaam5782
    [Google Scholar]
  65. Shia R, Liang M, Miller CE, Yung Y 2006. CO2 in the upper troposphere: influence of stratosphere-troposphere exchange. Geophys. Res. Lett. 33:L14814
    [Google Scholar]
  66. Shiomi K, Kawakami S, Kina T, Mitomi Y, Yoshida M et al. 2008. GOSAT Level 1 processing and in-orbit calibration plan. Proc. SPIE 7106:71060O
    [Google Scholar]
  67. Singh H, Jacob D, Pfister L 2002. INTEX-NA: Intercontinental Chemical Transport Experiment—North America White Pap., NASA Ames Res. Cent Moffett Field, CA: https://geo.arc.nasa.gov/sgg/singh/white_paper.pdf
  68. Sofieva VF, Kalakoski N, Verronen PT, Paivarinta SM, Kyrola E et al. 2012. Polar-night O3, NO2 and NO3 distributions during sudden stratospheric warmings in 2003–2008 as seen by GOMOS/Envisat. Atmos. Chem. Phys. 12:1051–66
    [Google Scholar]
  69. Strow L, Hannon S 2008. A 4-year zonal climatology of lower-tropospheric CO2 derived from ocean-only Atmospheric Infrared Sounder observations. J. Geophys. Res. 113:D18D18302
    [Google Scholar]
  70. Tans P, Bakwin PS, Bruhwiler L, Conway TJ, Dlugokencky EJ et al. 1998. Carbon cycle. Climate Monitoring and Diagnostics Laboratory: Summary Report No. 24 1996–1997 DJ Hoffmann, JT Peterson, RM Rosson, Clim. Monit. Diagn. Lab. 30–51 Boulder, CO: Natl. Ocean. Atmos. Admin. Environ. Res. Lab.
    [Google Scholar]
  71. Tans P, Keeling R 2014. Trends in atmospheric carbon dioxide Rep., Natl. Ocean. Atmos. Adm. Earth Syst. Res. Lab Washington, DC: https://www.esrl.noaa.gov/gmd/ccgg/trends/
  72. Thompson DWJ, Wallace JM 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 25:1297–300
    [Google Scholar]
  73. Thompson DWJ, Wallace JM 2000. Annular modes in the extratropical circulation. Part I: month-to-month variability. J. Climate 13:1000–16
    [Google Scholar]
  74. Tian BJ, Yung YL, Waliser DE, Tyranowski T, Kuai L et al. 2007. Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation. Geophys. Res. Lett. 34:L08704
    [Google Scholar]
  75. Wang J, Jiang X, Chahine MT, Liang M, Olsen MT et al. 2011. The influence of tropospheric biennial oscillation on mid-tropospheric CO2. Geophys. Res. Lett. 38:L20805
    [Google Scholar]
  76. Washenfelder RA, Toon GC, Blavier JF, Yang Z, Allen NT et al. 2006. Carbon dioxide column abundances at the Wisconsin Tall Tower site. J. Geophys. Res. 111:D22D22305
    [Google Scholar]
  77. Watanabe H, Ishihara H, Hayashi K, Kawazoe F, Kikuchi N et al. 2008. Detailed design of the GOSAT DHF at NIES and data acquisition/processing/distribution strategy. Proc. SPIE 7106:71060N
    [Google Scholar]
  78. Wofsy SC 2011. HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos. Trans. R. Soc. A 369:2073–86
    [Google Scholar]
  79. Wong CS, Chan YH, Page JS, Smith GE, Bellegay RD 1993. Changes in equatorial CO2 flux and new production estimated from CO2 and nutrient levels in Pacific surface waters during the 1986/87 El Niño. Tellus Ser. B 45:64–79
    [Google Scholar]
  80. Wunch D, Wennberg PO, Toon GC, Connor BJ, Fisher B et al. 2011. A method for evaluating bias in global measurement of CO2 total columns from space. Atmos. Chem. Phys. 11:12317–37
    [Google Scholar]
  81. Yang Z, Washenfelder RA, Keppel-Aleks G, Wennberg PO, Krakauer NY et al. 2007. New constraints on Northern Hemisphere growing season net flux. Geophys. Res. Lett. 34:L12807
    [Google Scholar]
  82. Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T et al. 2009. Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results. SOLA 5:160–63
    [Google Scholar]
/content/journals/10.1146/annurev-earth-053018-060447
Loading
/content/journals/10.1146/annurev-earth-053018-060447
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error