1932

Abstract

Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives processes that result in common morphologic features including dunes, channels, lakes, and seas. Like lakes on Earth and early Mars, Titan's lakes and seas preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic processes. Accordingly, Titan's lakes and seas represent a compelling target for exploration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060115-012247
2016-06-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/earth/44/1/annurev-earth-060115-012247.html?itemId=/content/journals/10.1146/annurev-earth-060115-012247&mimeType=html&fmt=ahah

Literature Cited

  1. Aharonson O, Hayes AG, Hayne PO, Lopes RM, Lucas A, Perron JT. 2014. Titan's surface geology. Titan: Interior, Surface, Atmosphere, and Space Environment I Müller-Wodarg, CA Griffith, E Lellouch, TE Cravens 63–101 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  2. Aharonson O, Hayes AG, Lunine JI, Lorenz RD, Allison MD, Elachi C. 2009. An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nat. Geosci. 2:851–54 [Google Scholar]
  3. Bains W. 2004. Many chemistries could be used to build living systems. Astrobiology 4:137–67 [Google Scholar]
  4. Barnes JW, Bow J, Schwartz J, Brown RH, Soderblom JM. et al. 2011a. Organic sedimentary deposits in Titan's dry lakebeds: probable evaporite. Icarus 216:136–40 [Google Scholar]
  5. Barnes JW, Brown RH, Soderblom JM, Soderblom LA, Jaumann R. et al. 2009. Shoreline features of Titan's Ontario Lacus from Cassini/VIMS observations. Icarus 201:217–25 [Google Scholar]
  6. Barnes JW, Soderblom JM, Brown RH, Soderblom LA, Stephan K. et al. 2011b. Wave constraints for Titan's Jingpo Lacus and Kraken Mare from VIMS specular reflection lightcurves. Icarus 211:722–31 [Google Scholar]
  7. Barnes JW, Sotin C, Soderblom JM, Brown RH, Hayes AG. et al. 2014. Cassini/VIMS observes rough surfaces on Titan's Punga Mare in specular reflection. Planet. Sci. 3:1–17 [Google Scholar]
  8. Benner SA. 2004. Organic chemistry and the potential for life in the solar system. Abstr. Pap. Am. Chem. Soc. 228:U692 [Google Scholar]
  9. Benner SA, Ricardo A, Carrigan MA. 2004. Is there a common chemical model for life in the universe?. Curr. Opin. Chem. Biol. 8:672–89 [Google Scholar]
  10. Birch SPD, Hayes AG, Dietrich WE, Moore J, Mastrogiuseppe M. et al. 2016a. Geomorphology of Titan's polar terrains: using landscape form to understand surface processes. Icarus. Submitted
  11. Birch SPD, Hayes AG, Howard AD, Moore JM, Radebaugh J. 2016b. Alluvial fan morphology, distribution and formation on Titan. Icarus 270:238–47
  12. BP 2015. BP Statistical Review of World Energy 2015. London: BP http://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2015/bp-statistical-review-of-world-energy-2015-full-report.pdf
  13. Brown GS, Stanley HR, Roy NA. 1981. The wind-speed measurement capability of spaceborne radar altimeters. IEEE J. Ocean. Eng. 6:59–63 [Google Scholar]
  14. Brown ME, Schaller EL, Roe HG, Chen C, Roberts J. et al. 2009a. Discovery of lake-effect clouds on Titan. Geophys. Res. Lett. 36:L01103 [Google Scholar]
  15. Brown ME, Smith AL, Chen C, Adamkovics M. 2009b. Discovery of fog at the south pole of Titan. Astrophys. J. Lett. 706:L110 [Google Scholar]
  16. Brown RH, Baines KH, Bellucci G, Bibring JP, Buratti BJ. et al. 2003. Observations with the Visual and Infrared Mapping Spectrometer (VIMS) during Cassini's flyby of Jupiter. Icarus 164:461–70 [Google Scholar]
  17. Brown RH, Griffith CA, Lunine JI, Barnes JW. 2006. Polar caps on Titan? Presented at Eur. Planet. Sci. Congr., Berlin, Sept. 18–22. Abstr. 602
  18. Brown RH, Soderblom LA, Soderblom JM, Clark RN, Jaumann R. et al. 2008. The identification of liquid ethane in Titan's Ontario Lacus. Nature 454:607–10 [Google Scholar]
  19. Burr DM, Perron JT, Lamb MP, Irwin RP, Collins GC. et al. 2013. Fluvial features on Titan: insights from morphology and modeling. Geol. Soc. Am. Bull. 125:299–321 [Google Scholar]
  20. Cabrol NA, Grin EA. 2010. Searching for lakes on Mars: four decades of exploration. Lakes on Mars NA Cabrol, EA Grin 1–29 Amsterdam: Elsevier [Google Scholar]
  21. Cathles LM, Su Z, Chen DF. 2010. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Mar. Pet. Geol. 27:82–91 [Google Scholar]
  22. Choukroun M, Grasset O, Tobie G, Sotin C. 2010. Stability of methane clathrate hydrates under pressure: influence on outgassing processes of methane on Titan. Icarus 205:581–93 [Google Scholar]
  23. Clark RN, Curchin JM, Barnes JW, Jaumann R, Soderblom L. et al. 2010. Detection and mapping of hydrocarbon deposits on Titan. J. Geophys. Res. 115:E10005 [Google Scholar]
  24. Comas Solá J. 1908. Observations des satellites principaux de Jupiter et de Titan. Astron. Nachr. 179:289 [Google Scholar]
  25. Cordier D, Mousis O, Lunine JI, Lavvas P, Vuitton V. 2009. An estimate of the chemical composition of Titan's lakes. Astrophys. J. Lett. 707:L128–31 [Google Scholar]
  26. Cordier D, Mousis O, Lunine JI, Lebonnois S, Rannou P. et al. 2012. Titan's lakes chemical composition: sources of uncertainties and variability. Planet. Space Sci. 61:99–107 [Google Scholar]
  27. Cornet T, Bourgeois O, Le Mouelic S, Rodriguez S, Gonzalez TL. et al. 2012a. Geomorphological significance of Ontario Lacus on Titan: integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia). Icarus 218:788–806 [Google Scholar]
  28. Cornet T, Bourgeois O, Le Mouelic S, Rodriguez S, Sotin C. et al. 2012b. Edge detection applied to Cassini images reveals no measurable displacement of Ontario Lacus’ margin between 2005 and 2010. J. Geophys. Res. 117:E07005 [Google Scholar]
  29. Cornet T, Cordier D, Le Bahers T, Bourgeois O, Fleurant C. et al. 2015. Dissolution on Titan and on Earth: toward the age of Titan's karstic landscapes. J. Geophys. Res. Planets 120:1044–74 [Google Scholar]
  30. Coustenis A, Lunine J, Lebreton JP, Matson D, Erd C. et al. 2009. Earth-based support for the Titan Saturn System Mission. Earth Moon Planets 105:135–42 [Google Scholar]
  31. Dimitrov LI. 2002. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev. 59:49–76 [Google Scholar]
  32. Donelan MA, Plant WJ. 2009. A threshold for wind-wave growth. J. Geophys. Res. 114C07012
  33. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ. et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51:2388–97 [Google Scholar]
  34. Elachi C, Allison MD, Borgarelli L, Encrenaz P, Im E. et al. 2004. RADAR: the Cassini Titan radar mapper. Space Sci. Rev. 115:71–110 [Google Scholar]
  35. Farley KA, Malespin C, Mahaffy P, Grotzinger JP, Vasconcelos PM. et al. 2014. In situ radiometric and exposure age dating of the martian surface. Science 343:1247166 [Google Scholar]
  36. Fassett CI, Head JW. 2008. Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology. Icarus 198:37–56 [Google Scholar]
  37. Follmann H, Brownson C. 2009. Darwin's warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 96:1265–92 [Google Scholar]
  38. Ford DC, Williams PW. 1989. Karst Geomorphology and Hydrology London: Unwin Hyman
  39. Glein CR, Shock EL. 2013. A geochemical model of non-ideal solutions in the methane-ethane-propane-nitrogen-acetylene system on Titan. Geochim. Cosmochim. Acta 115:217–40 [Google Scholar]
  40. Griffith CA, Lora JM, Turner J, Penteado PF, Brown RH. et al. 2012. Possible tropical lakes on Titan from observations of dark terrain. Nature 486:237–39 [Google Scholar]
  41. Grotzinger JP, Hayes AG, Lamb MP, McLennan SM. 2013. Sedimentary processes on Earth, Mars, Titan, and Venus. Comparative Climatology of Terrestrial Planets SJ Mackwell, AA Simon-Miller, JW Harder, MA Bullock 439–72 Tucson: Univ. Ariz. Press [Google Scholar]
  42. Hamilton SK, Melack JM, Goodchild MF, Lewis W. 1992. Estimation of the fractal dimension of terrain from lake size distributions. Lowland Floodplain Rivers: Geomorphological Perspectives PA Carling, GE Petts 145–63 Chichester, UK: Wiley [Google Scholar]
  43. Hayes A, Aharonson O, Callahan P, Elachi C, Gim Y. et al. 2008. Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys. Res. Lett. 35:L09204 [Google Scholar]
  44. Hayes AG, Aharonson O, Lunine JI, Kirk RL, Zebker HA. et al. 2011. Transient surface liquid in Titan's polar regions from Cassini. Icarus 211:655–71 [Google Scholar]
  45. Hayes AG, Birch SPD, Dietrich WE, Howard AD, Kirk R. et al. 2016a. Topographic constraints on the evolution and connectivity of Titan's lacustrine basins. Geophys. Res. Lett. Submitted
  46. Hayes AG, Birch SPD, Michaelides RJ, Hofgartner JD, Loren RD. et al. 2016b. The distribution and volume of Titan's hydrocarbon lakes and seas. Nat. Geosci. Submitted
  47. Hayes AG, Lorenz RD, Donelan MA, Manga M, Lunine JI. et al. 2013. Wind driven capillary-gravity waves on Titan's lakes: hard to detect or non-existent?. Icarus 225:403–12 [Google Scholar]
  48. Hayes AG, Wolf AS, Aharonson O, Zebker H, Lorenz R. et al. 2010. Bathymetry and absorptivity of Titan's Ontario Lacus. J. Geophys. Res. 115:E09009 [Google Scholar]
  49. Head IM, Jones DM, Larter SR. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–52 [Google Scholar]
  50. Hofgartner JD, Hayes AG, Lunine JI, Zebker H, Lorenz RD. et al. 2016. Titan's “Magic Islands”: transient features in a hydrocarbon sea. Icarus 271:338–49
  51. Hofgartner JD, Hayes AG, Lunine JI, Zebker H, Stiles BW. et al. 2014. Transient features in a Titan sea. Nat. Geosci. 7:493–96 [Google Scholar]
  52. Hofgartner JD, Lunine JI. 2013. Does ice float in Titan's lakes and seas?. Icarus 223:628–31 [Google Scholar]
  53. Holmes GW, Hopkins DM, Foster HL. 1968. Pingos in central Alaska USGS Bull. 1241-H, US Dep. Inter., Washington, DC
  54. Hörst SM, Vuitton V, Yelle RV. 2008. Origin of oxygen species in Titan's atmosphere. J. Geophys. Res. 113:E10006 [Google Scholar]
  55. Howard AD. 1990. Role of hypsometry and planform in basin hydrologic response. Hydrol. Process. 4:373–85 [Google Scholar]
  56. Hunten DM. 1973. Escape of H2 from Titan. J. Atmos. Sci. 30:726–32 [Google Scholar]
  57. Iess L, Jacobson RA, Ducci M, Stevenson DJ, Lunine JI. et al. 2012. The tides of Titan. Science 337:457–59 [Google Scholar]
  58. Jackson MPA, Vendeville BC, Schultz-Ela DD. 1994. Structural dynamics of salt systems. Annu. Rev. Earth Planet. Sci. 22:93–117 [Google Scholar]
  59. Kraal ER, Asphaug E, Moore JM, Lorenz RD. 2006. Quantitative geomorphic modeling of Martian bedrock shorelines. J. Geophys. Res. 111:E03001 [Google Scholar]
  60. Kuiper GP. 1944. Titan: a satellite with an atmosphere. Astrophys. J. 100:378–83 [Google Scholar]
  61. Le Gall A, Malaska MJ, Lorenz RD, Janssen MA, Tokano T. et al. 2016. Composition, seasonal change and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission. J. Geophys. Res. Planets 121:233–51 [Google Scholar]
  62. Lindal GF, Wood GE, Hotz HB, Sweetnam DN, Eshleman VR, Tyler GL. 1983. The atmosphere of Titan: an analysis of the Voyager 1 radio occultation measurements. Icarus 53:348–63 [Google Scholar]
  63. Lora JM, Lunine JI, Russell JL, Hayes AG. 2014. Simulations of Titan's paleoclimate. Icarus 243:264–73 [Google Scholar]
  64. Lorenz RD. 1994. Crater lakes on Titan: rings, horseshoes and bullseyes. Planet. Space Sci. 42:1–4 [Google Scholar]
  65. Lorenz RD. 1996. Pillow lava on Titan: expectations and constraints on cryovolcanic processes. Planet. Space Sci. 44:1021–28 [Google Scholar]
  66. Lorenz RD. 1997. Impacts and cratering on Titan: a pre-Cassini view. Planet. Space Sci. 45:1009–19 [Google Scholar]
  67. Lorenz RD. 2009. Titan mission studies—a historical review. JBIS 62:162–74 [Google Scholar]
  68. Lorenz RD. 2014. Oceanography on Saturn's moon, Titan. Sea Technology Magazine June. http://www.sea-technology.com/features/2014/0614/5.php
  69. Lorenz RD. 2015. Voyage across Ligeia Mare: mechanics of sailing on the hydrocarbon seas of Saturn's moon, Titan. Ocean Eng. 104:119–28 [Google Scholar]
  70. Lorenz RD, Biolluz G, Encrenaz P, Janssen MA, West RD, Muhleman DO. 2003. Cassini RADAR: prospects for Titan surface investigations using the microwave radiometer. Planet. Space Sci. 51:353–64 [Google Scholar]
  71. Lorenz RD, Hayes AG. 2012. The growth of wind-waves in Titan's hydrocarbon seas. Icarus 219:468–75 [Google Scholar]
  72. Lorenz RD, Jackson B, Hayes A. 2010a. Racetrack and Bonnie Claire: southwestern US playa lakes as analogs for Ontario Lacus, Titan. Planet. Space Sci. 58:724–31 [Google Scholar]
  73. Lorenz RD, Kirk RL, Hayes AG, Anderson YZ, Lunine JI. et al. 2014. A radar map of Titan seas: tidal dissipation and ocean mixing through the throat of Kraken. Icarus 237:9–15 [Google Scholar]
  74. Lorenz RD, Lunine JI. 1996. Erosion on Titan: past and present. Icarus 122:79–91 [Google Scholar]
  75. Lorenz RD, Lunine JI. 1997. Titan's surface reviewed: the nature of bright and dark terrain. Planet. Space Sci. 45:981–92 [Google Scholar]
  76. Lorenz RD, Mitchell KL, Kirk RL, Hayes AG, Aharonson O. et al. 2008. Titan's inventory of organic surface materials. Geophys. Res. Lett. 35:L02206 [Google Scholar]
  77. Lorenz RD, Newman C, Lunine JI. 2010b. Threshold of wave generation on Titan's lakes and seas: effect of viscosity and implications for Cassini observations. Icarus 207:932–37 [Google Scholar]
  78. Lorenz RD, Oleson S, Woytach J, Jones R, Colazza A. et al. 2015. Titan submarine: vehicle design and operations concept for the exploration of the hydrocarbon seas of Saturn's giant moon. Lunar Planet. Sci. Conf. Abstr. 46:1259 [Google Scholar]
  79. Lorenz RD, Wall S, Radebaugh J, Boubin G, Reffet E. et al. 2006. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312:724–27 [Google Scholar]
  80. Lucas A, Aharonson O, Deledalle C, Hayes AG, Kirk R, Howington-Kraus E. 2014. Insights into Titan's geology and hydrology based on enhanced image processing of Cassini RADAR data. J. Geophys. Res. Planets 119:2149–66 [Google Scholar]
  81. Lunine JI. 2009. Saturn's Titan: a strict test for life's cosmic ubiquity. Proc. Am. Philos. Soc. 153:403–18 [Google Scholar]
  82. Lunine JI. 2010. Titan and habitable planets around M-dwarfs. Faraday Discuss. 147:405–18 [Google Scholar]
  83. Lunine JI, Atreya SK. 2008. The methane cycle on Titan. Nat. Geosci. 1:159–64 [Google Scholar]
  84. Lunine JI, Stevenson DJ, Yung YL. 1983. Ethane ocean on Titan. Science 222:1229–30 [Google Scholar]
  85. Luspay-Kuti A, Chevrier VF, Cordier D, Rivera-Valentin EG, Singh S. et al. 2015. Experimental constraints on the composition and dynamics of Titan's polar lakes. Earth Planet. Sci. Lett. 410:75–83 [Google Scholar]
  86. MacKenzie SM, Barnes JW, Sotin C, Soderblom JM. Mouelic S. , Le et al. 2014. Evidence of Titan's climate history from evaporite distribution. Icarus 243:191–207 [Google Scholar]
  87. Malaska MJ, Hodyss R. 2014. Dissolution of benzene, naphthalene, and biphenyl in a simulated Titan lake. Icarus 242:74–81 [Google Scholar]
  88. Mastrogiuseppe M, Hayes AG, Poggiali V, Seu R, Lunine J, Hofgartner JD. 2016a. Bathymetry and composition of Titan's Ontario Lacus derived from Monte Carlo-based waveform inversion of Cassini RADAR altimetry data. Icarus Submitted
  89. Mastrogiuseppe M, Hayes AG, Poggiali V, Seu R, Lunine J, Hofgartner JD. 2016b. Radar sounding using the Cassini altimeter: waveform modeling and Monte Carlo approach for data inversion of observations of Titan's seas. IEEE Trans. Geosci. Remote Sens. In press
  90. Mastrogiuseppe M, Poggiali V, Hayes A, Lorenz R, Lunine J. et al. 2014. The bathymetry of a Titan sea. Geophys. Res. Lett. 41:1432–37 [Google Scholar]
  91. McDonald CP, Rover JA, Stets EG, Striegl RG. 2012. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol. Oceanogr. 57:597–606 [Google Scholar]
  92. McKay CP, Pollack JB, Lunine JI, Courtin R. 1993. Coupled atmosphere-ocean models of Titan's past. Icarus 102:88–98 [Google Scholar]
  93. McKay CP, Porco CC, Altheide T, Davis WL, Kral TA. 2008. The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8:909–19 [Google Scholar]
  94. McKay CP, Smith HD. 2005. Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–76 [Google Scholar]
  95. Michaelides RJ, Hayes AG, Mastrogiuseppe M, Zebker HA, Farr TG. et al. 2016. Constraining the physical properties of Titan's empty lake basins using nadir and off-nadir Cassini RADAR backscatter. Icarus 270:57–66
  96. Mitchell KL, Barmatz MB, Jamieson CS, Lorenz RD, Lunine JI. 2015. Laboratory measurements of cryogenic liquid alkane microwave absorptivity and implications for the composition of Ligeia Mare, Titan. Geophys. Res. Lett. 42:1340–45 [Google Scholar]
  97. Mitri G, Coustenis A, Fanchini G, Hayes AG, Iess L. et al. 2014. The exploration of Titan with an orbiter and a lake probe. Planet. Space Sci. 104:78–92 [Google Scholar]
  98. Moore JM, Howard AD. 2011. Are the basins of Titan's Hotei Regio and Tui Regio sites of former low latitude seas?. Geophys. Res. Lett. 38:L04201 [Google Scholar]
  99. Moore JM, Howard AD, Morgan AM. 2014. The landscape of Titan as witness to its climate evolution. J. Geophys. Res. Planets 119:2060–77 [Google Scholar]
  100. Moriconi ML, Lunine JI, Adriani A, D'Aversa E, Negrao A. et al. 2010. Characterization of Titan's Ontario Lacus region from Cassini/VIMS observations. Icarus 210:823–31 [Google Scholar]
  101. Mousis O, Choukroun M, Lunine JI, Sotin C. 2014. Equilibrium composition between liquid and clathrate reservoirs on Titan. Icarus 239:39–45 [Google Scholar]
  102. NASA 2014. 2014 NASA Science Plan Washington, DC: NASA
  103. Niemann HB, Atreya SK, Demick JE, Gautier D, Haberman JA. et al. 2010. Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. 115:E12006 [Google Scholar]
  104. Notarnicola C, Ventura B, Casarano D, Posa F. 2009. Cassini radar data: estimation of Titan's lake features by means of a Bayesian inversion algorithm. IEEE Trans. Geosci. Remote Sens. 47:1501–11 [Google Scholar]
  105. NRC (Natl. Res. Counc.) 2011. Vision and Voyages for Planetary Science in the Decade 2013–2022 Washington, DC: Natl. Acad. Press
  106. Owen T, Niemann HB. 2009. The origin of Titan's atmosphere: some recent advances. Philos. Trans. R. Soc. A 367:607–15 [Google Scholar]
  107. Paillou P, Lunine J, Ruffie G, Encrenaz P, Wall S. et al. 2008a. Microwave dielectric constant of Titan-relevant materials. Geophys. Res. Lett. 35:L18202 [Google Scholar]
  108. Paillou P, Mitchell K, Wall S, Ruffie G, Wood C. et al. 2008b. Microwave dielectric constant of liquid hydrocarbons: application to the depth estimation of Titan's lakes. Geophys. Res. Lett. 35:L05202 [Google Scholar]
  109. Perron JT, Lamb MP, Koven CD, Fung IY, Yager E, Adamkovics M. 2006. Valley formation and methane precipitation rates on Titan. J. Geophys. Res. 111:E11001 [Google Scholar]
  110. Picardi G, Seu R, Coradini A, Zampolini E, Ciaffone A. 1992a. Radar geomorphologic characterization of Titan. Proc. Radar 92 Int. Conf., Oct. 12–13, Brighton, UK254–57 London: Inst. Electr. Eng. [Google Scholar]
  111. Picardi G, Seu R, Coradini A, Zampolini E, Ciaffone A. 1992b. The radar system for the exploration of Titan. Nuovo Cim. C 15:1149–61 [Google Scholar]
  112. Porco CC, West RA, Squyres S, McEwen A, Thomas P. et al. 2004. Cassini imaging science: instrument characteristics and anticipated scientific investigations at Saturn. Space Sci. Rev. 115:363–497 [Google Scholar]
  113. Pross A, Pascal R. 2013. The origin of life: what we know, what we can know and what we will never know. Open Biol. 3:120190 [Google Scholar]
  114. Raulin F, Brasse C, Poch O, Coll P. 2012. Prebiotic-like chemistry on Titan. Chem. Soc. Rev. 41:5380–93 [Google Scholar]
  115. Raulin F, McKay C, Lunine J, Owen T. 2009. Titan's astrobiology. Titan from Cassini-Huygens RH Brown, JP Lebreton, JH Waite 215–33 Dordrecht, Neth: Springer [Google Scholar]
  116. Roe HG, Grundy WM. 2012. Buoyancy of ice in the CH4–N2 system. Icarus 219:733–36 [Google Scholar]
  117. Romanberdiel T, Gapais D, Brun JP. 1995. Analog models of laccolith formation. J. Struct. Geol. 17:1337–46 [Google Scholar]
  118. Schneider T, Graves SDB, Schaller EL, Brown ME. 2012. Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature 481:58–61 [Google Scholar]
  119. Schulze-Makuch D, Grinspoon DH. 2005. Biologically enhanced energy and carbon cycling on Titan?. Astrobiology 5:560–67 [Google Scholar]
  120. Schulze-Makuch D, Grinspoon DH. 2006. Plausible metabolic pathways and energy cycling on Titan. Origins Life Evol. Biosph. 36:324–25 [Google Scholar]
  121. Sharma P, Byrne S. 2011. Comparison of Titan's north polar lakes with terrestrial analogs. Geophys. Res. Lett. 38:L24203 [Google Scholar]
  122. Sotin C, Barnes JW, Lawrence KJ, Soderblom JM, Audi E. et al. 2015. Bright, tidal currents between Titan's seas detected by solar glints Presented at AGU Fall Meet., Dec. 14–18, San Francisco. Abstr. P12B-04
  123. Srokosz MA, Challenor PG, Zarnecki JC, Green SF. 1992. Waves on Titan. Proc. Symp. Titan, Sept. 9–12 1991, Toulouse, Fr.321–23 Noordwijk, Neth: Eur. Space Agency [Google Scholar]
  124. Stephan K, Jaumann R, Brown RH, Soderblom JM, Soderblom LA. et al. 2010. Specular reflection on Titan: liquids in Kraken Mare. Geophys. Res. Lett. 37:L07104 [Google Scholar]
  125. Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B. et al. 2007. The lakes of Titan. Nature 445:61–64 [Google Scholar]
  126. Stofan ER, Lorenz R, Lunine J, Bierhaus EB, Clark B. et al. 2013. TiME—the Titan Mare Explorer. Proc. 2013 IEEE Aerosp. Conf., Mar. 2–9, Big Sky, Mont.1–10 Piscataway, NJ: IEEE [Google Scholar]
  127. Strobel DF. 2010. Molecular hydrogen in Titan's atmosphere: implications of the measured tropospheric and thermospheric mole fractions. Icarus 208:878–86 [Google Scholar]
  128. Tan SP, Kargel JS, Jennings DE, Mastrogiuseppe M, Adidharma H, Marion GM. 2015. Titan's liquids: exotic behavior and its implications on global fluid circulation. Icarus 250:64–75 [Google Scholar]
  129. Tan SP, Kargel JS, Marion GM. 2013. Titan's atmosphere and surface liquid: new calculation using Statistical Associating Fluid Theory. Icarus 222:53–72 [Google Scholar]
  130. Thompson WR, Squyres SW. 1990. Titan and other icy satellites: dielectric properties of constituent materials and implications for radar sounding. Icarus 86:336–54 [Google Scholar]
  131. Tobie G, Lunine JI, Monteux J, Mousis O, Nimmo F. 2014. The origin and evolution of Titan. Titan: Interior, Surface, Atmosphere, and Space Environment I Müller-Wodarg, CA Griffith, E Lellouch, TE Cravens 29–62 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  132. Tokano T. 2005a. Meteorological assessment of the surface temperatures on Titan: constraints on the surface type. Icarus 173:222–42 [Google Scholar]
  133. Tokano T. 2005b. Thermal structure of putative hydrocarbon lakes on Titan. Adv. Space Res. 36:286–94 [Google Scholar]
  134. Tokano T. 2009a. Impact of seas/lakes on polar meteorology of Titan: simulation by a coupled GCM-Sea model. Icarus 204:619–36 [Google Scholar]
  135. Tokano T. 2009b. Limnological structure of Titan's hydrocarbon lakes and its astrobiological implication. Astrobiology 9:147–64 [Google Scholar]
  136. Tokano T. 2010. Simulation of tides in hydrocarbon lakes on Saturn's moon Titan. Ocean Dyn. 60:803–17 [Google Scholar]
  137. Tokano T, Lorenz RD. 2015. Wind-driven circulation in Titan's seas. J. Geophys. Res. Planets 120:20–33 [Google Scholar]
  138. Tung SH, Lee HY, Raghavan SR. 2008. A facile route for creating “reverse” vesicles: insights into “reverse” self-assembly in organic liquids. J. Am. Chem. Soc. 130:8813–17 [Google Scholar]
  139. Turtle EP, Perry JE, Hayes AG, Lorenz RD, Barnes JW. et al. 2011a. Rapid and extensive surface changes near Titan's equator: evidence of April showers. Science 331:1414 [Google Scholar]
  140. Turtle EP, Perry JE, Hayes AG, McEwen AS. 2011b. Shoreline retreat at Titan's Ontario Lacus and Arrakis Planitia from Cassini Imaging Science Subsystem observations. Icarus 212:957–59 [Google Scholar]
  141. Turtle EP, Perry JE, McEwen AS, DelGenio AD, Barbara J. et al. 2009. Cassini imaging of Titan's high-latitude lakes, clouds, and south-polar surface changes. Geophys. Res. Lett. 36:L02204 [Google Scholar]
  142. Vixie G, Barnes JW, Jackson B, Rodriguez S, Le Mouélic S. et al. 2015. Possible temperate lakes on Titan. Icarus 257:313–23 [Google Scholar]
  143. Wall S, Hayes A, Bristow C, Lorenz R, Stofan E. et al. 2010. Active shoreline of Ontario Lacus, Titan: a morphological study of the lake and its surroundings. Geophys. Res. Lett. 37:L05202 [Google Scholar]
  144. Williams PW. 2008. The role of the epikarst in karst and cave hydrogeology: a review. Int. J. Speleol. 37:1–10 [Google Scholar]
  145. Wood CA. 2015. North polar crater and lake basins: a variety of shapes—a single origin?. Lunar Planet. Sci. Conf. Abstr. 46:2490 [Google Scholar]
  146. Wood CA, Mitchell KL, Lopes RMC, Radebaugh J, Stoffan E, Lunine J. 2007. Volcanic calderas in the north polar region of Titan. Lunar Planet. Sci. Conf. Abstr. 46:1454 [Google Scholar]
  147. Wye LC, Zebker HA, Lorenz RD. 2009. Smoothness of Titan's Ontario Lacus: constraints from Cassini RADAR specular reflection data. Geophys. Res. Lett. 36:L16201 [Google Scholar]
  148. Zebker H, Hayes A, Janssen M, Le Gall A, Lorenz R, Wye L. 2014. Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis. Geophys. Res. Lett. 41:308–13 [Google Scholar]
/content/journals/10.1146/annurev-earth-060115-012247
Loading
/content/journals/10.1146/annurev-earth-060115-012247
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error