1932

Abstract

The element oxygen has three stable isotopes: 16O, 17O, and 18O. For a defined process, a change in 18O/16O scales with the corresponding change in 17O/16O, or the fractionation factors 18α and 17α have a relationship of θ = ln17α/ln18α, in which the triple oxygen isotope exponent θ is relatively fixed but does vary with reaction path, temperature, and species involved. When the small variation is of interest, the distinction of three concepts—θ, (a slope through data points in δ17O–δ18O space), and (an arbitrary referencing number for the degree of 17O deviation)—becomes important. Triple oxygen isotope variations can be measured by modern instruments and thus offer an additional line of information on the underlying reaction processes and conditions. Analytical methods and Earth science applications have recently been developed for air oxygen, carbon dioxide, water, silicates, oxides, sulfates, carbonates, and phosphates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060115-012340
2016-06-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/44/1/annurev-earth-060115-012340.html?itemId=/content/journals/10.1146/annurev-earth-060115-012340&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn I, Lee JI, Kusakabe M, Choi BG. 2012. Oxygen isotope measurements of terrestrial silicates using a CO2-laser BrF5 fluorination technique and the slope of terrestrial fractionation line. Geosci. J. 16:7–16 [Google Scholar]
  2. Angert A, Cappa CD, DePaolo DJ. 2004. Kinetic 17O effects in the hydrologic cycle: indirect evidence and implications. Geochim. Cosmochim. Acta 68:3487–95 [Google Scholar]
  3. Angert A, Rachmilevitch S, Barkan E, Luz B. 2003. Effects of photorespiration, the cytochrome pathway, and the alternative pathway on the triple isotopic composition of atmospheric O2. Glob. Biogeochem. Cycles 17:1030 [Google Scholar]
  4. Armytage RMG, Georg RB, Williams HM, Halliday AN. 2012. Silicon isotopes in lunar rocks: implications for the Moon's formation and the early history of the Earth. Geochim. Cosmochim. Acta 77:504–14 [Google Scholar]
  5. Assonov SS, Brenninkmeijer CAM. 2005. Reporting small Δ17O values: existing definitions and concepts. Rapid Commun. Mass Spectrom. 19:627–36 [Google Scholar]
  6. Bao H. 2015. Sulfate: a time capsule for Earth's O2, O3, and H2O. Chem. Geol. 395:108–18 [Google Scholar]
  7. Bao H, Cao X, Hayles JA. 2015. The confines of triple oxygen isotope exponents in elemental and complex mass-dependent processes. Geochim. Cosmochim. Acta 170:39–50 [Google Scholar]
  8. Bao H, Fairchild IJ, Wynn PM, Spoetl C. 2009. Stretching the envelope of past surface environments: Neoproterozoic glacial lakes from Svalbard. Science 323:119–22 [Google Scholar]
  9. Bao H, Gu BH. 2004. Natural perchlorate has a unique oxygen isotope signature. Environ. Sci. Technol. 38:5073–77 [Google Scholar]
  10. Bao H, Jenkins KA, Khachaturyan M, Diaz GC. 2004. Different sulfate sources and their post-depositional migration in Atacama soils. Earth Planet. Sci. Lett. 224:577–87 [Google Scholar]
  11. Bao H, Lyons JR, Zhou C. 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453:504–6 [Google Scholar]
  12. Bao H, Rumble D III, Lowe DR. 2007. The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim. Cosmochim. Acta 71:4868–79 [Google Scholar]
  13. Bao H, Thiemens MH, Farquhar J, Campbell DA, Lee CCW. et al. 2000. Anomalous 17O compositions in massive sulphate deposits on the Earth. Nature 406:176–78 [Google Scholar]
  14. Bao H, Yu S, Tong DQ. 2010. Massive volcanic SO2 oxidation and sulphate aerosol deposition in Cenozoic North America. Nature 465:909–12 [Google Scholar]
  15. Barkan E, Luz B. 2005. High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun. Mass Spectrom. 19:3737–42 [Google Scholar]
  16. Barkan E, Luz B. 2007. Diffusivity fractionations of H216O/H217O and H216O/H218O in air and their implications for isotope hydrology. Rapid Commun. Mass Spectrom. 21:2999–3005 [Google Scholar]
  17. Barkan E, Luz B. 2012. High-precision measurements of 17O/16O and 18O/16O ratios in CO2. Rapid Commun. Mass Spectrom. 26:2733–38 [Google Scholar]
  18. Beard BL, Handler RM, Scherer MM, Wu LL, Czaja AD. et al. 2010. Iron isotope fractionation between aqueous ferrous iron and goethite. Earth Planet. Sci. Lett. 295:241–50 [Google Scholar]
  19. Benedix GK, Leshin LA, Farquhar J, Jackson T, Thiemens MH. 2003. Carbonates in CM2 chondrites: constraints on alteration conditions from oxygen isotopic compositions and petrographic observations. Geochim. Cosmochim. Acta 67:1577–88 [Google Scholar]
  20. Bergquist BA, Blum JD. 2007. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318:417–20 [Google Scholar]
  21. Berman ESF, Levin NE, Landais A, Li SN, Owano T. 2013. Measurement of δ18O, δ17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry. Anal. Chem. 85:10392–98 [Google Scholar]
  22. Bhattacharya SK, Thiemens MH. 1989. New evidence for symmetry dependent isotope effects: O+CO reaction. Z. Naturforsch. Sect. B 44:435–44 [Google Scholar]
  23. Bigeleisen J, Mayer MG. 1947. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15:261–67 [Google Scholar]
  24. Bindeman IN, Serebryakov NS, Schmitt AK, Vazquez JA, Guan Y. et al. 2014. Field and microanalytical isotopic investigation of ultradepleted in 18O Paleoproterozoic “Slushball Earth” rocks from Karelia, Russia. Geosphere 10:308–39 [Google Scholar]
  25. Blunier T, Barnett B, Bender ML, Hendricks MB. 2002. Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements. Glob. Biogeochem. Cycles 16. doi: 10.1029/2001GB001460
  26. Boering KA, Jackson T, Hoag KJ, Cole AS, Perri MJ. et al. 2004. Observations of the anomalous oxygen isotopic composition of carbon dioxide in the lower stratosphere and the flux of the anomaly to the troposphere. Geophys. Res. Lett. 31:L03109 [Google Scholar]
  27. Brenninkmeijer CAM, Janssen C, Kaiser J, Rockmann T, Rhee TS, Assonov SS. 2003. Isotope effects in the chemistry of atmospheric trace compounds. Chem. Rev. 103:5125–61 [Google Scholar]
  28. Cao XB, Bao HM. 2013. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth. PNAS 110:14546–50 [Google Scholar]
  29. Cao XB, Liu Y. 2011. Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes. Geochim. Cosmochim. Acta 75:7435–45 [Google Scholar]
  30. Casciotti KL. 2009. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim. Cosmochim. Acta 73:2061–76 [Google Scholar]
  31. Chacko T, Cole DR, Horita J. 2001. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev. Mineral. Geochem. 43:1–81 [Google Scholar]
  32. Chang SJ, Blake RE. 2015. Precise calibration of equilibrium oxygen isotope fractionations between dissolved phosphate and water from 3 to 37°C. Geochim. Cosmochim. Acta 150:314–29 [Google Scholar]
  33. Chialvo AA, Horita J. 2009. Liquid-vapor equilibrium isotopic fractionation of water: How well can classical water models predict it?. J. Chem. Phys. 130:094509 [Google Scholar]
  34. Clark ID, Fontes JC, Fritz P. 1992. Stable isotope disequilibria in travertine from high pH waters—laboratory investigations and field observations from Oman. Geochim. Cosmochim. Acta 56:2041–50 [Google Scholar]
  35. Clark ID, Lauriol B. 1992. Kinetic enrichment of stable isotopes in cryogenic calcites. Chem. Geol. 102:217–28 [Google Scholar]
  36. Clayton D. 2003. Handbook of Isotopes in the Cosmos: Hydrogen to Gallium Cambridge, UK: Cambridge Univ. Press
  37. Clayton RN. 1993. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21:115–49 [Google Scholar]
  38. Clayton RN, Grossman L, Mayeda TK. 1973. A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–88 [Google Scholar]
  39. Clayton RN, Mayeda TK. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27:43–52 [Google Scholar]
  40. Clayton RN, Mayeda TK. 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67:151–61 [Google Scholar]
  41. Clayton RN, Mayeda TK. 1988. Formation of ureilites by nebular processes. Geochim. Cosmochim. Acta 52:1313–18 [Google Scholar]
  42. Clayton RN, Mayeda TK, Rubin AE. 1984. Oxygen isotopic compositions of enstatite chondrites and aubrites. J. Geophys. Res. 89:S01C245–249 [Google Scholar]
  43. Cliff SS, Thiemens MH. 1994. High-precision isotopic determination of the 18O/16O and 17O/16O ratios in nitrous oxide. Anal. Chem. 66:2791–93 [Google Scholar]
  44. Cliff SS, Thiemens MH. 1997. The 18O/16O and 17O/16O ratios in atmospheric nitrous oxide: a mass-independent anomaly. Science 278:1774–76 [Google Scholar]
  45. Coplen TB. 1988. Normalization of oxygen and hydrogen isotope data. Chem. Geol. 72:293–97 [Google Scholar]
  46. Coplen TB. 1995. Discontinuance of SMOW and PDB. Nature 375:285 [Google Scholar]
  47. Dauphas N, Craddock PR, Asimow PD, Bennett VC, Nutman AP, Ohnenstetter D. 2009. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet. Sci. Lett. 288:255–67 [Google Scholar]
  48. Eiler J, Cartigny P, Hofmann AE, Piasecki A. 2013. Non-canonical mass laws in equilibrium isotopic fractionations: evidence from the vapor pressure isotope effect of SF6. Geochim. Cosmochim. Acta 107:205–19 [Google Scholar]
  49. Eiler JM. 2007. “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet. Sci. Lett. 262:309–27 [Google Scholar]
  50. Eyring H. 1936. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4:283–91 [Google Scholar]
  51. Farquhar J, Bao HM, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–58 [Google Scholar]
  52. Farquhar J, Johnston DT, Wing BA. 2007. Implications of conservation of mass effects on mass-dependent isotope fractionations: influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction. Geochim. Cosmochim. Acta 71:5862–75 [Google Scholar]
  53. Farquhar J, Thiemens MH, Jackson T. 1998. Atmosphere-surface interactions on Mars: Δ17O measurements of carbonate from ALH 84001. Science 280:1580–82 [Google Scholar]
  54. Farquhar J, Thiemens MH, Jackson TL. 1999. Δ17O anomalies in carbonate from Nakhla and Lafayette and Δ33S anomalies in sulfur from Nakhla: implications for atmospheric chemical interactions with the Martian regolith. Lunar Planet. Sci. Conf. Abstr. 30:1675 [Google Scholar]
  55. Gehler A, Tutken T, Pack A. 2011. Triple oxygen isotope analysis of bioapatite as tracer for diagenetic alteration of bones and teeth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310:84–91 [Google Scholar]
  56. Georg RB, Halliday AN, Schauble EA, Reynolds BC. 2007. Silicon in the Earth's core. Nature 447:1102–6 [Google Scholar]
  57. Gonfiantini R. 1978. Standards for stable isotope measurements in natural compounds. Nature 271:534–36 [Google Scholar]
  58. Guilbaud R, Butler IB, Ellam RM, Rickard D, Oldroyd A. 2011. Experimental determination of the equilibrium Fe isotope fractionation between Fe2+aqand FeSm (mackinawite) at 25 and 2°C. Geochim. Cosmochim. Acta 75:2721–34 [Google Scholar]
  59. Hallis LJ, Anand M, Greenwood RC, Miller MF, Franchi IA, Russell SS. 2010. The oxygen isotope composition, petrology and geochemistry of mare basalts: evidence for large-scale compositional variation in the lunar mantle. Geochim. Cosmochim. Acta 74:6885–99 [Google Scholar]
  60. Heidenreich JE III, Thiemens MH. 1983. A non-mass-dependent isotope effect in the production of ozone from molecular oxygen. J. Chem. Phys. 78:892–95 [Google Scholar]
  61. Heidenreich JE III, Thiemens MH. 1986. A non-mass-dependent oxygen isotope effect in the production of ozone from molecular oxygen: the role of molecular symmetry in isotope chemistry. J. Chem. Phys. 84:2129–36 [Google Scholar]
  62. Helman Y, Barkan E, Eisenstadt D, Luz B, Kaplan A. 2005. Fractionation of the three stable oxygen isotopes by oxygen-producing and oxygen-consuming reactions in photosynthetic organisms. Plant Physiol. 138:2292–98 [Google Scholar]
  63. Herwartz D, Pack A, Krylov D, Xiao Y, Muehlenbachs K. et al. 2015. Revealing the climate of snowball Earth from Δ17O systematics of hydrothermal rocks. PNAS 112:5337–41 [Google Scholar]
  64. Hill PS, Tripati AK, Schauble EA. 2014. Theoretical constraints on the effects of pH, salinity, and temperature on clumped isotope signatures of dissolved inorganic carbon species and precipitating carbonate minerals. Geochim. Cosmochim. Acta 125:610–52 [Google Scholar]
  65. Hirschi J, Singleton DA. 2005. The normal range for secondary Swain-Schaad exponents without tunneling or kinetic complexity. J. Am. Chem. Soc. 127:3294–95 [Google Scholar]
  66. Hoag KJ, Still CJ, Fung IY, Boering KA. 2005. Triple oxygen isotope composition of tropospheric carbon dioxide as a tracer of terrestrial gross carbon fluxes. Geophys. Res. Lett. 32:L02802 [Google Scholar]
  67. Hofmann MEG, Horvath B, Pack A. 2012. Triple oxygen isotope equilibrium fractionation between carbon dioxide and water. Earth Planet. Sci. Lett. 319:159–64 [Google Scholar]
  68. Hofmann MEG, Pack A. 2010. Technique for high-precision analysis of triple oxygen isotope ratios in carbon dioxide. Anal. Chem. 82:4357–61 [Google Scholar]
  69. Horvath B, Hofmann MEG, Pack A. 2012. On the triple oxygen isotope composition of carbon dioxide from some combustion processes. Geochim. Cosmochim. Acta 95:160–68 [Google Scholar]
  70. Hulston JR, Thode HG. 1965. Variations in the 33S, 34S, and 36S contents of meteorites and their relation to chemical and nuclear effects. J. Geophys. Res. 70:3475–84 [Google Scholar]
  71. Jabeen I, Kusakabe M. 1997. Determination of δ17O values of reference water samples VSMOW and SLAP. Chem. Geol. 143:115–19 [Google Scholar]
  72. Jaffres JBD, Shields GA, Wallmann K. 2007. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth-Sci. Rev. 83:83–122 [Google Scholar]
  73. Kaiser J, Rockmann T, Brenninkmeijer CAM. 2004. Contribution of mass-dependent fractionation to the oxygen isotope anomaly of atmospheric nitrous oxide. J. Geophys. Res. 109:D03305 [Google Scholar]
  74. Kohen A, Jensen JH. 2002. Boundary conditions for the Swain-Schaad relationship as a criterion for hydrogen tunneling. J. Am. Chem. Soc. 124:3858–64 [Google Scholar]
  75. Krankowsky D, Lammerzahl P, Mauersberger K, Janssen C, Tuzson B, Rockmann T. 2007. Stratospheric ozone isotope fractionations derived from collected samples. J. Geophys. Res. 112:D08301 [Google Scholar]
  76. Kusakabe M, Matsuhisa Y. 2008. Oxygen three-isotope ratios of silicate reference materials determined by direct comparison with VSMOW-oxygen. Geochem. J. 42:309–17 [Google Scholar]
  77. Landais A, Barkan E, Luz B. 2008a. Record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years. Geophys. Res. Lett. 35:L02709 [Google Scholar]
  78. Landais A, Barkan E, Luz B. 2008b. Reply to comment by Martin F. Miller on “Record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years. Geophys. Res. Lett. 35:L23709 [Google Scholar]
  79. Landais A, Barkan E, Yakir D, Luz B. 2006. The triple isotopic composition of oxygen in leaf water. Geochim. Cosmochim. Acta 70:4105–15 [Google Scholar]
  80. Landais A, Ekaykin A, Barkan E, Winkler R, Luz B. 2012a. Seasonal variations of 17O-excess and d-excess in snow precipitation at Vostok station, East Antarctica. J. Glaciol. 58:725–33 [Google Scholar]
  81. Landais A, Risi C, Bony S, Vimuex F, Descroix L. et al. 2010. Combined measurements of 17Oexcess and d-excess in African monsoon precipitation: implications for evaluating convective parameterizations. Earth Planet. Sci. Lett. 298:104–22 [Google Scholar]
  82. Landais A, Steen-Larsen HC, Guillevic M, Masson-Delmotte V, Vinther B, Winkler R. 2012b. Triple isotopic composition of oxygen in surface snow and water vapor at NEEM (Greenland). Geochim. Cosmochim. Acta 77:304–16 [Google Scholar]
  83. Lecuyer C, Grandjean P, Sheppard SMF. 1999. Oxygen isotope exchange between dissolved phosphate and water at temperatures ≤135°C: inorganic versus biological fractionations. Geochim. Cosmochim. Acta 63:855–62 [Google Scholar]
  84. Levin NE, Raub TD, Dauphas N, Eiler JM. 2014. Triple oxygen isotope variations in sedimentary rocks. Geochim. Cosmochim. Acta 139:173–89 [Google Scholar]
  85. Li S, Levin NE, Chesson LA. 2015. Continental scale variation in 17O-excess of meteoric waters in the United States. Geochim. Cosmochim. Acta 164:110–26 [Google Scholar]
  86. Li WJ, Ni B, Jin D, Zhang Q. 1988. Comparison of the oxygen-17 abundance in three international standard waters. Huaxue Tongbao 6:39–40 (in Chinese) [Google Scholar]
  87. Liang MC, Mahata S. 2015. Oxygen anomaly in near surface carbon dioxide reveals deep stratospheric intrusion. Sci. Rep. 5:11352 [Google Scholar]
  88. Lin Y, Clayton RN, Groning M. 2010. Calibration of δ17O and δ18O of international measurement standards—VSMOW, VSMOW2, SLAP, and SLAP2. Rapid Commun. Mass Spectrom. 24:773–76 [Google Scholar]
  89. Lin Y, Clayton RN, Huang L, Nakamura N, Lyons JR. 2013a. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere. PNAS 110:15608–13 [Google Scholar]
  90. Lin Y, Clayton RN, Huang L, Nakamura N, Lyons JR. 2013b. Reply to Miller: Concerning the oxygen isotope anomaly observed in water vapor from Alert, Canada, and its stratospheric source. PNAS 110:E4568 [Google Scholar]
  91. Luz B, Barkan E. 2000. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288:2028–31 [Google Scholar]
  92. Luz B, Barkan E. 2005. The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry. Geochim. Cosmochim. Acta 69:1099–110 [Google Scholar]
  93. Luz B, Barkan E. 2010. Variations of 17O/16O and 18O/16O in meteoric waters. Geochim. Cosmochim. Acta 74:6276–86 [Google Scholar]
  94. Luz B, Barkan E, Bender ML, Thiemens MH, Boering KA. 1999. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400:547–50 [Google Scholar]
  95. Lyons JR. 2001. Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere. Geophys. Res. Lett. 28:3231–34 [Google Scholar]
  96. MacPherson GJ, Mittlefehldt DW, Jones JH. 2008. Rev. Mineral. Geochem. 68
  97. Mahata S, Bhattacharya SK, Wang CH, Liang MC. 2013. Oxygen isotope exchange between O2 and CO2 over hot platinum: an innovative technique for measuring Δ17O in CO2. Anal. Chem. 85:6894–901 [Google Scholar]
  98. Matsuhisa Y, Goldsmith JR, Clayton RN. 1978. Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kilobars. Geochim. Cosmochim. Acta 42:173–82 [Google Scholar]
  99. Matthews A, Goldsmith JR, Clayton RN. 1983. On the mechanisms and kinetics of oxygen isotope exchange in quartz and feldspars at elevated temperatures and pressures. Geol. Soc. Am. Bull. 94:396–412 [Google Scholar]
  100. McCrea JM. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 18:849–57 [Google Scholar]
  101. McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC. 1950. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev. Sci. Instrum. 21:724–30 [Google Scholar]
  102. Meijer HAJ, Li WJ. 1998. The use of electrolysis for accurate δ17O and δ18O isotope measurements in water. Isot. Environ. Health Stud. 34:349–69 [Google Scholar]
  103. Michalski G, Savarino J, Bohlke JK, Thiemens M. 2002. Determination of the total oxygen isotopic composition of nitrate and the calibration of a Δ17O nitrate reference material. Anal. Chem. 74:4989–93 [Google Scholar]
  104. Miller MF. 2002. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim. Cosmochim. Acta 66:1881–89 [Google Scholar]
  105. Miller MF. 2008. Comment on “Record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years” by Amaelle Landais et al.. Geophys. Res. Lett. 35:L23708 [Google Scholar]
  106. Miller MF. 2013. Oxygen isotope anomaly not present in water vapor from Alert, Canada. PNAS 110:E4567 [Google Scholar]
  107. Miller MF, Franchi IA, Sexton AS, Pillinger CT. 1999. High precision δ17O isotope measurements of oxygen from silicates and other oxides: method and applications. Rapid Commun. Mass Spectrom. 13:1211–17 [Google Scholar]
  108. Miller MF, Franchi IA, Thiemens MH, Jackson TL, Brack A. et al. 2002. Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates. PNAS 99:10988–93 [Google Scholar]
  109. Miller MF, Greenwood RC, Franchi IA. 2015. Comment on “The triple oxygen isotope composition of the Earth mantle and understanding Δ17O variations in terrestrial rocks and minerals” by Pack and Herwartz [Earth Planet. Sci. Lett. 390 (2014) 138–145]. Earth Planet. Sci. Lett. 418:181–83 [Google Scholar]
  110. Mook WG. 2001. Environmental Isotopes in the Hydrological Cycle: Principles and Applications I Introduction: Theory, Methods, Review Paris: UNESCO, IAEA
  111. Muehlenbachs K, Clayton RN. 1976. Oxygen isotope composition of oceanic crust and its bearing on seawater. J. Geophys. Res. 81:4365–69 [Google Scholar]
  112. O'Neil JR. 1986. Theoretical and experimental aspects of isotopic fractionation. Rev. Mineral. Geochem. 16:1–40 [Google Scholar]
  113. Ono S, Wing B, Johnston D, Farquhar J, Rumble D. 2006. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70:2238–52 [Google Scholar]
  114. Osawa T, Ono M, Esaka F, Okayasu S, Iguchi Y. et al. 2009. Mass-dependent isotopic fractionation of a solid tin under a strong gravitational field. Europhys. Lett. 85:64001 [Google Scholar]
  115. Pack A, Gehler A, Sussenberger A. 2013. Exploring the usability of isotopically anomalous oxygen in bones and teeth as paleo-CO2-barometer. Geochim. Cosmochim. Acta 102:306–17 [Google Scholar]
  116. Pack A, Herwartz D. 2014. The triple oxygen isotope composition of the Earth mantle and understanding Δ17O variations in terrestrial rocks and minerals. Earth Planet. Sci. Lett. 390:138–45 [Google Scholar]
  117. Pack A, Herwartz D. 2015. Observation and interpretation of Δ17O variations in terrestrial rocks—response to the comment by Miller et al. on the paper by Pack & Herwartz (2014). Earth Planet. Sci. Lett. 418:184–86 [Google Scholar]
  118. Pack A, Toulouse C, Przybilla R. 2007. Determination of oxygen triple isotope ratios of silicates without cryogenic separation of NF3—technique with application to analyses of technical O2 gas and meteorite classification. Rapid Commun. Mass Spectrom. 21:3721–28 [Google Scholar]
  119. Pang H, Hou S, Landais A, Masson-Delmotte V, Prie F. et al. 2015. Spatial distribution of 17O-excess in surface snow along a traverse from Zhongshan station to Dome A, East Antarctica. Earth Planet. Sci. Lett. 414:126–33 [Google Scholar]
  120. Passey BH, Hu HT, Ji HY, Montanari S, Li SN. et al. 2014. Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochim. Cosmochim. Acta 141:1–25 [Google Scholar]
  121. Risi C, Landais A, Bony S, Jouzel J, Masson-Delmotte V, Vimeux F. 2010. Understanding the 17O excess glacial-interglacial variations in Vostok precipitation. J. Geophys. Res. 115:D10112 [Google Scholar]
  122. Risi C, Landais A, Winkler R, Vimeux F. 2013. Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?. Clim. Past 9:2173–93 [Google Scholar]
  123. Rosenbaum JM. 1997. Gaseous, liquid, and supercritical fluid H2O and CO2: oxygen isotope fractionation behavior. Geochim. Cosmochim. Acta 61:4993–5003 [Google Scholar]
  124. Rumble D, Miller MF, Franchi IA, Greenwood RC. 2007. Oxygen three-isotope fractionation lines in terrestrial silicate minerals: an inter-laboratory comparison of hydrothermal quartz and eclogitic garnet. Geochim. Cosmochim. Acta 71:3592–600 [Google Scholar]
  125. Schoenemann SW, Schauer AJ, Steig EJ. 2013. Measurement of SLAP2 and GISP 17O and proposed VSMOW-SLAP normalization for 17O and 17Oexcess. Rapid Commun. Mass Spectrom. 27:582–90 [Google Scholar]
  126. Schoenemann SW, Steig EJ, Ding QH, Markle BR, Schauer AJ. 2014. Triple water-isotopologue record from WAIS Divide, Antarctica: controls on glacial-interglacial changes in 17Oexcess of precipitation. J. Geophys. Res. Atmos. 119:8741–63 [Google Scholar]
  127. Schrag DP, Hampt G, Murray DW. 1996. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272:1930–32 [Google Scholar]
  128. Shahar A, Young ED, Manning CE. 2008. Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: an experimental calibration. Earth Planet. Sci. Lett. 268:330–38 [Google Scholar]
  129. Shaheen R, Abramian A, Horn J, Dominguez G, Sullivan R, Thiemens MH. 2010. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars. PNAS 107:20213–18 [Google Scholar]
  130. Shaheen R, Niles PB, Chong K, Corrigan CM, Thiemens MH. 2015. Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere. PNAS 112:336–41 [Google Scholar]
  131. Spicuzza MJ, Day JMD, Taylor LA, Valley JW. 2007. Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253:254–65 [Google Scholar]
  132. Starkey NA, Jackson C, Greenwood RC, Parman S, Franchi IA. et al. 2015. Triple oxygen isotopic composition of the high-3He/4He mantle. Geochim. Cosmochim. Acta 176:227–38 [Google Scholar]
  133. Steig EJ, Gkinis V, Schauer AJ, Schoenemann SW, Samek K. et al. 2014. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance. Atmos. Meas. Tech. 7:2421–35 [Google Scholar]
  134. Swain CG, Stivers EC, Reuwer JF, Schaad LJ. 1958. Use of hydrogen isotope effects to identify the attacking nucleophile in the enolization of ketones catalyzed by acetic acid. J. Am. Chem. Soc. 80:5885–93 [Google Scholar]
  135. Tanaka R, Nakamura E. 2013. Determination of 17O-excess of terrestrial silicate/oxide minerals with respect to Vienna Standard Mean Ocean Water (VSMOW). Rapid Commun. Mass Spectrom. 27:285–97 [Google Scholar]
  136. Thiemens MH. 1999. Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–45 [Google Scholar]
  137. Thiemens MH. 2003. Non-mass-dependent isotopic processes: mechanisms and recent observations in terrestrial and extra-terrestrial environments. Treatise on Geochemistry 4 The Atmosphere RF Keeling, HD Holland, KK Turekian 159–73 Amsterdam: Elsevier [Google Scholar]
  138. Thiemens MH. 2006. History and applications of mass-independent isotope effects. Annu. Rev. Earth Planet. Sci. 34:217–62 [Google Scholar]
  139. Thiemens MH, Chakraborty S, Dominguez G. 2012. The physical chemistry of mass-independent isotope effects and their observation in nature. Annu. Rev. Phys. Chem. 63:155–77 [Google Scholar]
  140. Thiemens MH, Chakraborty S, Jackson TL. 2014. Decadal Δ17O record of tropospheric CO2: verification of a stratospheric component in the troposphere. J. Geophys. Res. Atmos. 119:6221–29 [Google Scholar]
  141. Thiemens MH, Heidenreich JE III. 1983. The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219:1073–75 [Google Scholar]
  142. Thiemens MH, Jackson T, Mauersberger K, Schueler B, Morton J. 1991. Oxygen isotope fractionation in stratospheric CO2. Geophys. Res. Lett. 18:669–72 [Google Scholar]
  143. Thiemens MH, Jackson T, Zipf EC, Erdman PW, van Egmond C. 1995a. Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere. Science 270:969–72 [Google Scholar]
  144. Thiemens MH, Jackson TL, Brenninkmeijer CAM. 1995b. Observation of a mass independent oxygen isotopic composition in terrestrial stratospheric CO2, the link to ozone chemistry, and the possible occurrence in the Martian atmosphere. Geophys. Res. Lett. 22:255–57 [Google Scholar]
  145. Thiemens MH, Savarino J, Farquhar J, Bao HM. 2001. Mass-independent isotopic compositions in terrestrial and extraterrestrial solids and their applications. Acc. Chem. Res. 34:645–52 [Google Scholar]
  146. Thode HG, Rees CE. 1971. Measurement of sulphur concentrations and the isotope ratios 33S/32S, 34S/32S, and 36S/32S in Apollo 12 samples. Earth Planet. Sci. Lett. 12:434–38 [Google Scholar]
  147. Uemura R, Barkan E, Abe O, Luz B. 2010. Triple isotope composition of oxygen in atmospheric water vapor. Geophys. Res. Lett. 37:L04402 [Google Scholar]
  148. Urey HC. 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947:562–81 [Google Scholar]
  149. Wasson JT. 2000. Oxygen-isotopic evolution of the solar nebula. Rev. Geophys. 38:491–512 [Google Scholar]
  150. Wert C, Zener C. 1949. Interstitial atomic diffusion coefficients. Phys. Rev. 76:1169–75 [Google Scholar]
  151. Wiechert U, Halliday AN. 2007. Non-chondritic magnesium and the origins of the inner terrestrial planets. Earth Planet. Sci. Lett. 256:360–71 [Google Scholar]
  152. Wiechert UH, Halliday AN, Palme H, Rumble D. 2004. Oxygen isotope evidence for rapid mixing of the HED meteorite parent body. Earth Planet. Sci. Lett. 221:373–82 [Google Scholar]
  153. Williams HM, Wood BJ, Wade J, Frost DJ, Tuff J. 2012. Isotopic evidence for internal oxidation of the Earth's mantle during accretion. Earth Planet. Sci. Lett. 321:54–63 [Google Scholar]
  154. Winkler R, Landais A, Risi C, Baroni M, Ekaykin A. et al. 2013. Interannual variation of water isotopologues at Vostok indicates a contribution from stratospheric water vapor. PNAS 110:17674–79 [Google Scholar]
  155. Winkler R, Landais A, Sodemann H, Dumbgen L, Prie F. et al. 2012. Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites. Clim. Past 8:1–16 [Google Scholar]
  156. Yang H, Gandhi H, Ostrom NE, Hegg EL. 2014. Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N2O. Environ. Sci. Technol. 48:10707–15 [Google Scholar]
  157. Yankwich PE, Promislow AL, Nystrom RF. 1954. C14 and C13 intramolecular isotope effects in the decarboxylation of liquid malonic acid at 140.5°. J. Am. Chem. Soc. 76:5893–94 [Google Scholar]
  158. Yeh HW, Epstein S. 1978. 29Si/28Si and 30Si/28Si of meteorites and Allende inclusions. Lunar Planet. Sci. Conf. Abstr. 9:1289–91 [Google Scholar]
  159. Young E, Galy A. 2004. The isotope geochemistry and cosmochemistry of magnesium. Rev. Mineral. Geochem. 55:197–230 [Google Scholar]
  160. Young ED, Galy A, Nagahara H. 2002. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66:1095–104 [Google Scholar]
  161. Young ED, Kohl IE, Warren PH, Rubie DC, Jacobson SA, Morbidelli A. 2016. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Nature 351:493–96 [Google Scholar]
  162. Young ED, Yeung LY, Kohl IE. 2014. On the Δ17O budget of atmospheric O2. Geochim. Cosmochim. Acta 135:102–25 [Google Scholar]
/content/journals/10.1146/annurev-earth-060115-012340
Loading
/content/journals/10.1146/annurev-earth-060115-012340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error