1932

Abstract

Earth's climate affects nearly all aspects of landscape evolution, from the breakdown of rock to the delivery of sediment to the oceans. Yet quantifying climate's influence on landscapes is a major challenge, not only because it is difficult to know how landscapes responded to past changes in climate, but also because landscapes are shaped by various processes that respond to climate in different ways. I review the current state of efforts to quantify climate's effects on the rates of the main processes that drive landscape evolution, with a focus on unglaciated landscapes formed by bedrock erosion. Although many uncertainties remain, recent research has clarified how the processes governing hillslopes, bedrock channels, and chemical erosion depend on major climate factors such as precipitation and temperature. A few themes emerge, including the importance of climatically mediated biological processes, the role of variability, and the value of natural experiments for revealing climate's effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-060614-105405
2017-08-30
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-060614-105405.html?itemId=/content/journals/10.1146/annurev-earth-060614-105405&mimeType=html&fmt=ahah

Literature Cited

  1. Aldred J, Eppes MC, Aquino K, Deal R, Garbini J. et al. 2016. The influence of solar-induced thermal stresses on the mechanical weathering of rocks in humid mid-latitudes. Earth Surf. Process. Landf. 41:603–14 [Google Scholar]
  2. Allan JC, Komar PD. 2006. Climate controls on US West Coast erosion processes. J. Coast. Res. 223:511–29 [Google Scholar]
  3. Anderson HW. 1959. Summer slides and winter scour: dry-wet erosion in southern California mountains Tech. pap. 36, US Dep. Agric., US For. Serv. Pac. Southwest For. Range Exp Stn., Berkeley, CA:
  4. Armitage JJ, Duller RA, Whittaker AC, Allen PA. 2011. Transformation of tectonic and climatic signals from source to sedimentary archive. Nat. Geosci. 4:231–35 [Google Scholar]
  5. Attal M, Cowie PA, Whittaker AC, Hobley D, Tucker GE, Roberts GP. 2011. Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy. J. Geophys. Res. 116:F02005 [Google Scholar]
  6. Beaumont C, Fullsack P, Hamilton J. 1992. Erosional control of active compressional orogens. Thrust Tectonics KR McClay 1–18 New York: Chapman & Hall [Google Scholar]
  7. Bellugi D, Milledge DG, Dietrich WE, Perron JT, McKean J. 2015. Predicting shallow landslide size and location across a natural landscape: application of a spectral clustering search algorithm. J. Geophys. Res. Earth Surf. 120:2552–85 [Google Scholar]
  8. Bennett GL, Roering JJ, Mackey BH, Handwerger AL, Schmidt DA, Guillod BP. 2016. Historic drought puts the brakes on earthflows in Northern California. Geophys. Res. Lett. 43:5725–31 [Google Scholar]
  9. Berner EK, Berner RA, Moulton KL. 2003. Plants and mineral weathering: present and past. Treatise on Geochemistry 5 JI Drever 169–88 Amsterdam: Elsevier [Google Scholar]
  10. Berner RA, Lasaga AC, Garrels RM. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:641–83 [Google Scholar]
  11. Bierman PB, Nichols KK. 2004. Rock to sediment—slope to sea with 10Be—rates of landscape change. Annu. Rev. Earth Planet. Sci. 32:215–55 [Google Scholar]
  12. Bookhagen B, Strecker MR. 2012. Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: examples from the southern Central Andes. Earth Planet. Sci. Lett. 327–328:97–110 [Google Scholar]
  13. Booth AM, Roering JJ, Rempel AW. 2013. Topographic signatures and a general transport law for deep-seated landslides in a landscape evolution model. J. Geophys. Res. Earth Surf. 118:603–24 [Google Scholar]
  14. Burbank DW, Blythe AE, Putkonen J, Pratt-Sitaula B, Gabet E. et al. 2003. Decoupling of erosion and precipitation in the Himalayas. Nature 426:652–55 [Google Scholar]
  15. Burnett BN, Meyer GA, McFadden LD. 2008. Aspect-related microclimatic influences on slope forms and processes, northeastern Arizona. J. Geophys. Res. Earth Surf. 113:F03002 [Google Scholar]
  16. Caine N. 1980. The rainfall intensity: duration control of shallow landslides and debris flows. Geogr. Ann. Ser. A 62:23–27 [Google Scholar]
  17. Callaghan LE. 2012. Climate and vegetation effects on sediment transport and catchment properties along an arid to humid climatic gradient PhD thesis, Univ Edinburgh, UK:
  18. Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG. et al. 2003. The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 202:195–223 [Google Scholar]
  19. Chadwick OA, Roering JJ, Heimsath AM, Levick SR, Asner GP, Khomo L. 2013. Shaping post-orogenic landscapes by climate and chemical weathering. Geology 41:1171–74 [Google Scholar]
  20. Cook TL, Yellen BC, Woodruff JD, Miller D. 2015. Contrasting human versus climatic impacts on erosion. Geophys. Res. Lett. 42:6680–87 [Google Scholar]
  21. Craddock WH, Burbank DW, Bookhagen B, Gabet EJ. 2007. Bedrock channel geometry along an orographic rainfall gradient in the upper Marsyandi River valley in central Nepal. J. Geophys. Res. Earth Surf. 112:F03007 [Google Scholar]
  22. Davy P, Crave A. 2000. Upscaling local-scale transport processes in large-scale relief dynamics. Phys. Chem. Earth A 25:533–41 [Google Scholar]
  23. Dessert C, Dupré B, Gaillardet J, François LM, Allègre CJ. 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202:257–73 [Google Scholar]
  24. DiBiase RA, Whipple KX. 2011. The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate. J. Geophys. Res. Earth Surf. 116:F04036 [Google Scholar]
  25. Dietrich WE, Bellugi DG, Sklar LS, Stock JD, Heimsath AM, Roering JJ. 2003. Geomorphic transport laws for predicting landscape form and dynamics. Prediction in Geomorphology 135 PR Wilcock, RM Iverson 103–32 Washington, DC: Am. Geophys. Union [Google Scholar]
  26. Dietrich WE, Perron JT. 2006. The search for a topographic signature of life. Nature 439:411–18 [Google Scholar]
  27. Dixon JL, Chadwick OA, Vitousek PM. 2016. Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand. J. Geophys. Res. Earth Surf. 121:1619–34 [Google Scholar]
  28. Dixon JL, Hartshorn AS, Heimsath AM, DiBiase RA, Whipple KX. 2012. Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains, California. Earth Planet. Sci. Lett. 323/324:40–49 [Google Scholar]
  29. Dixon JL, Heimsath AM, Amundson R. 2009. The critical role of climate and saprolite weathering in landscape evolution. Earth Surf. Process. Landf. 34:1507–21 [Google Scholar]
  30. Doughty CE, Taylor LL, Girardin CAJ, Malhi Y, Beerling DJ. 2014. Montane forest root growth and soil organic layer depth as potential factors stabilizing Cenozoic global change. Geophys. Res. Lett. 41:983–90 [Google Scholar]
  31. Dunne T, Malmon DV, Mudd SM. 2010. A rain splash transport equation assimilating field and laboratory measurements. J. Geophys. Res. Earth Surf. 115:F01001 [Google Scholar]
  32. Eagleson PS. 1978. Climate, soil, and vegetation. 2. The distribution of annual precipitation derived from observed storm sequences. Water Resour. Res. 14:713–21 [Google Scholar]
  33. Evans KG, Saynor MJ, Willgoose GR, Riley SJ. 2000. Post-mining landform evolution modelling. 1. Derivation of sediment transport model and rainfall-runoff model parameters. Earth Surf. Process. Landf. 25:743–63 [Google Scholar]
  34. Ferrier KL, Huppert KL, Perron JT. 2013a. Climatic control of bedrock river incision. Nature 496:206–9 [Google Scholar]
  35. Ferrier KL, Kirchner JW. 2008. Effects of physical erosion on chemical denudation rates: a numerical modeling study of soil-mantled hillslopes. Earth Planet. Sci. Lett. 272:591–99 [Google Scholar]
  36. Ferrier KL, Kirchner JW, Finkel RC. 2012. Weak influences of climate and mineral supply rates on chemical erosion rates: measurements along two altitudinal transects in the Idaho Batholith. J. Geophys. Res. Earth Surf. 117:F02026 [Google Scholar]
  37. Ferrier KL, Perron JT, Mukhopadhyay S, Rosener M, Stock JD. et al. 2013b. Covariation of climate and long-term erosion rates across a steep rainfall gradient on the Hawaiian island of Kaua‘i. Geol. Soc. Am. Bull. 125:1146–63 [Google Scholar]
  38. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P, Keeling RF. et al. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–40 [Google Scholar]
  39. Finnegan NJ, Roe G, Montgomery DR, Hallet B. 2005. Controls on the channel width of rivers: implications for modeling fluvial incision of bedrock. Geology 33:229–32 [Google Scholar]
  40. Finnegan NJ, Sklar LS, Fuller TK. 2007. Interplay of sediment supply, river incision, and channel morphology revealed by the transient evolution of an experimental bedrock channel. J. Geophys. Res. Earth Surf. 112:F03S11 [Google Scholar]
  41. FitzGerald DM, Fenster MS, Argow BA, Buynevich IV. 2008. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 36:601–47 [Google Scholar]
  42. Fu P, Rich PM. 1999. Design and implementation of the Solar Analyst: An ArcView extension for modeling solar radiation at landscape scales. Proc. 19th Annu. Esri User Conf.1–24
  43. Gabet EJ. 2003. Sediment transport by dry ravel. J. Geophys. Res. Solid Earth 108:2049 [Google Scholar]
  44. Gabet EJ, Pratt-Sitaula BA, Burbank DW. 2004. Climatic controls on hillslope angle and relief in the Himalayas. Geology 32:629–32 [Google Scholar]
  45. Gabet EJ, Reichman OJ, Seabloom EW. 2003. The effects of bioturbation on soil processes and sediment transport. Annu. Rev. Earth Planet. Sci. 31:249–73 [Google Scholar]
  46. Gaillardet J, Dupré B, Louvat P, Allègre CJ. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159:3–30 [Google Scholar]
  47. Gasparini NM, Whipple KX, Bras RL. 2007. Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models. J. Geophys. Res. Earth Surf. 112:F03S09 [Google Scholar]
  48. Geng H, Pan B, Milledge DG, Huang B, Zhang G. 2015. Quantifying sheet wash erosion rates in a mountainous semi-arid basin using environmental radionuclides and a stream power model. Earth Surf. Process. Landf. 40:1814–26 [Google Scholar]
  49. Gilbert GK. 1877. Report on the Geology of the Henry Mountains Washington, DC: US Gov. Print. Off.
  50. Godard V, Tucker GE, Fisher GB, Burbank DW, Bookhagen B. 2013. Frequency-dependent landscape response to climatic forcing. Geophys. Res. Lett. 40:859–63 [Google Scholar]
  51. Guzzetti F, Peruccacci S, Rossi M, Stark CP. 2008. The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17 [Google Scholar]
  52. Hahm WJ, Riebe CS, Lukens CE, Araki S. 2014. Bedrock composition regulates mountain ecosystems and landscape evolution. PNAS 111:3338–43 [Google Scholar]
  53. Hajek EA, Straub KM. 2017. Autogenic sedimentation in clastic stratigraphy. Annu. Rev. Earth Planet. Sci. 45:681–709 [Google Scholar]
  54. Hallet B, Hunter L, Bogen J. 1996. Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change 12:213–35 [Google Scholar]
  55. Han J, Gasparini NM, Johnson JPL, Murphy BP. 2014. Modeling the influence of rainfall gradients on discharge, bedrock erodibility, and river profile evolution, with application to the Big Island, Hawai‘i. J. Geophys. Res. Earth Surf. 119:1418–40 [Google Scholar]
  56. Heimsath AM, Chappell J, Fifield K. 2010. Eroding Australia: rates and processes from Bega Valley to Arnhem Land. Geol. Soc. Lond. Spec. Publ. 346:225–41 [Google Scholar]
  57. Heimsath AM, DiBiase RA, Whipple KX. 2012. Soil production limits and the transition to bedrock-dominated landscapes. Nat. Geosci. 5:210–14 [Google Scholar]
  58. Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC. 1997. The soil production function and landscape equilibrium. Nature 388:358–61 [Google Scholar]
  59. Heimsath AM, Fink D, Hancock GR. 2009. The “humped” soil production function: eroding Arnhem Land, Australia. Earth Surf. Process. Landf. 34:1674–84 [Google Scholar]
  60. Heimsath AM, Furbish DJ, Dietrich WE. 2005. The illusion of diffusion: field evidence for depth-dependent sediment transport. Geology 33:949–52 [Google Scholar]
  61. Herman F, Champagnac J-D. 2016. Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change. Terra Nova 28:2–10 [Google Scholar]
  62. Herman F, Seward D, Valla PG, Carter A, Kohn B. et al. 2013. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504:423–26 [Google Scholar]
  63. Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F. 2004. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304:1952–55 [Google Scholar]
  64. Horton RE. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 56:275–370 [Google Scholar]
  65. Howard A. 1994. A detachment‐limited model of drainage basin evolution. Water Resour. Res. 30:2261–85 [Google Scholar]
  66. Howard AD, Kerby G. 1983. Channel changes in badlands. Bull. Geol. Soc. Am. 94:739–52 [Google Scholar]
  67. Hsu L, Dietrich WE, Sklar LS. 2008. Experimental study of bedrock erosion by granular flows. J. Geophys. Res. Earth Surf. 113:F02001 [Google Scholar]
  68. Hsu L, Dietrich WE, Sklar LS. 2014. Mean and fluctuating basal forces generated by granular flows: laboratory observations in a large vertically rotating drum. J. Geophys. Res. Earth Surf. 119:1283–309 [Google Scholar]
  69. Hurst MD, Mudd SM, Yoo K, Attal M, Walcott R. 2013. Influence of lithology on hillslope morphology and response to tectonic forcing in the northern Sierra Nevada of California. J. Geophys. Res. Earth Surf. 118:832–51 [Google Scholar]
  70. Istanbulluoglu E, Bras RL. 2005. Vegetation-modulated landscape evolution: effects of vegetation on landscape processes, drainage density, and topography. J. Geophys. Res. Earth Surf. 110:F02012 [Google Scholar]
  71. Istanbulluoglu E, Yetemen O, Vivoni ER, Gutiérrez-Jurado HA, Bras RL. 2008. Eco-geomorphic implications of hillslope aspect: inferences from analysis of landscape morphology in central New Mexico. Geophys. Res. Lett. 35:14403 [Google Scholar]
  72. Iverson RM. 1997. The physics of debris flows. Rev. Geophys. 35:245–96 [Google Scholar]
  73. Iverson RM. 2000. Landslide triggering by rain infiltration. Water Resour. Res. 36:1897–910 [Google Scholar]
  74. Jefferson AJ, Ferrier KL, Perron JT, Ramalho R. 2014. Controls on the hydrological and topographic evolution of shield volcanoes and volcanic ocean islands. The Galapagos: A Natural Laboratory for the Earth Sciences KS Harpp, E Mittelstaedt, N d'Ozouville, DW Graham 185–213 New York: Wiley [Google Scholar]
  75. Jeffery ML, Yanites BJ, Poulsen CJ, Ehlers TA. 2014. Vegetation-precipitation controls on Central Andean topography. J. Geophys. Res. Earth Surf. 119:1354–75 [Google Scholar]
  76. Jerolmack DJ, Paola C. 2010. Shredding of environmental signals by sediment transport. Geophys. Res. Lett. 37:L19401 [Google Scholar]
  77. Kump LR, Brantley SL, Arthur MA. 2000. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28:611–67 [Google Scholar]
  78. Lague D. 2014. The stream power river incision model: evidence, theory and beyond. Earth Surf. Process. Landf. 39:38–61 [Google Scholar]
  79. Lague D, Hovius N, Davy P. 2005. Discharge, discharge variability, and the bedrock channel profile. J. Geophys. Res. Earth Surf. 110:F04006 [Google Scholar]
  80. Lal D. 1988. In situ-produced cosmogenic isotopes in terrestrial rocks. Annu. Rev. Earth Planet. Sci. 16:355–88 [Google Scholar]
  81. Lamb MP, Scheingross JS, Amidon WH, Swanson E, Limaye A. 2011. A model for fire-induced sediment yield by dry ravel in steep landscapes. J. Geophys. Res. Earth Surf. 116:F03006 [Google Scholar]
  82. Langbein WB, Schumm SA. 1958. Yield of sediment in relation to mean annual precipitation. Trans. Am. Geophys. Union. 39:1076–84 [Google Scholar]
  83. Larsen IJ, Almond PC, Eger A, Stone JO, Montgomery DR, Malcolm B. 2014. Rapid soil production and weathering in the Southern Alps, New Zealand. Science 343:637–40 [Google Scholar]
  84. Lavé J, Burbank DW. 2004. Denudation processes and rates in the Transverse Ranges, southern California: erosional response of a transitional landscape to external and anthropogenic forcing. J. Geophys. Res. Earth Surf. 109:F01006 [Google Scholar]
  85. Leopold LB, Maddock T. 1953. The hydraulic geometry of channels and some physiographic implications US Geol. Surv. prof. pap. 252 Reston, VA:
  86. Li G, Hartmann J, Derry LA, West AJ, You C-F. et al. 2016. Temperature dependence of basalt weathering. Earth Planet. Sci. Lett. 443:59–69 [Google Scholar]
  87. Lieth H. 1973. Primary production: terrestrial ecosystems. Hum. Ecol. 1:303–32 [Google Scholar]
  88. Lisiecki LE, Raymo ME. 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:1–17 [Google Scholar]
  89. Maher K, Chamberlain CP. 2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343:1502–4 [Google Scholar]
  90. Malamud BD, Turcotte DL. 2006. The applicability of power-law frequency statistics to floods. J. Hydrol. 322:168–80 [Google Scholar]
  91. Marshall JA, Sklar LS. 2012. Mining soil databases for landscape-scale patterns in the abundance and size distribution of hillslope rock fragments. Earth Surf. Process. Landf. 37:287–300 [Google Scholar]
  92. McCoy SW, Tucker GE, Kean JW, Coe JA. 2013. Field measurement of basal forces generated by erosive debris flows. J. Geophys. Res. Earth Surf. 118:589–602 [Google Scholar]
  93. Milliman JD, Farnsworth KL. 2011. River Discharge to the Coastal Ocean: A Global Synthesis New York: Cambridge Univ. Press
  94. Molnar P. 2004. Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates?. Annu. Rev. Earth Planet. Sci. 32:67–89 [Google Scholar]
  95. Molnar P, Anderson RS, Kier G, Rose J. 2006. Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision. J. Geophys. Res. Earth Surf. 111:F02001 [Google Scholar]
  96. Molnar P, Boos WR, Battisti DS. 2010. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38:77–102 [Google Scholar]
  97. Molnar P, England P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature 346:29–34 [Google Scholar]
  98. Montgomery DR, Dietrich WE. 1994. A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 30:1153–71 [Google Scholar]
  99. Montgomery DR, Gran KB. 2001. Downstream variations in the width of bedrock channels. Water Resour. Res. 37:1841–46 [Google Scholar]
  100. Montgomery DR, Schmidt KM, Greenberg HM, Dietrich WE. 2000. Forest clearing and regional landsliding. Geology 28:311 [Google Scholar]
  101. Moon S, Page Chamberlain C, Blisniuk K, Levine N, Rood DH, Hilley GE. 2011. Climatic control of denudation in the deglaciated landscape of the Washington Cascades. Nat. Geosci. 4:469–73 [Google Scholar]
  102. Murphy BP, Johnson JPL, Gasparini NM, Sklar LS. 2016. Chemical weathering as a mechanism for the climatic control of bedrock river incision. Nature 532:223–27 [Google Scholar]
  103. Nelson PA, Seminara G. 2011. Modeling the evolution of bedrock channel shape with erosion from saltating bed load. Geophys. Res. Lett. 38:L17406 [Google Scholar]
  104. Norton KP, Molnar P, Schlunegger F. 2014. The role of climate-driven chemical weathering on soil production. Geomorphology 204:510–17 [Google Scholar]
  105. O'Gorman PA, Schneider T. 2009. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. PNAS 106:14773–77 [Google Scholar]
  106. Owen J. 2009. Soil formation and transport processes on hillslopes along a precipitation gradient in the Atacama Desert, Chile PhD thesis, Univ. Calif Berkeley:
  107. Owen JJ, Amundson R, Dietrich WE, Nishiizumi K, Sutter B, Chong G. 2011. The sensitivity of hillslope bedrock erosion to precipitation. Earth Surf. Process. Landf. 36:117–35 [Google Scholar]
  108. Pelletier JD, Murray AB, Pierce JL, Bierman PR, Breshears DD. et al. 2015. Forecasting the response of Earth's surface to future climatic and land use changes: a review of methods and research needs. Earth's Future 3:220–51 [Google Scholar]
  109. Pelletier JD, Rasmussen C. 2009. Quantifying the climatic and tectonic controls on hillslope steepness and erosion rate. Lithosphere 1:73–80 [Google Scholar]
  110. Perron JT. 2011. Numerical methods for nonlinear hillslope transport laws. J. Geophys. Res. Earth Surf. 116:F02021 [Google Scholar]
  111. Perron JT, Hamon J. 2012. Equilibrium form of horizontally retreating, soil-mantled hillslopes: model development and application to a groundwater sapping landscape. J. Geophys. Res. Earth Surf. 117:F01027 [Google Scholar]
  112. Perron JT, Kirchner JW, Dietrich WE. 2009. Formation of evenly spaced ridges and valleys. Nature 460:502–5 [Google Scholar]
  113. Perron JT, Richardson PW, Ferrier KL, Lapôtre M. 2012. The root of branching river networks. Nature 492:100–3 [Google Scholar]
  114. Phillips JD. 2009. Biological energy in landscape evolution. Am. J. Sci. 309:271–89 [Google Scholar]
  115. Portenga EW, Bierman PR. 2011. Understanding Earth's eroding surface with 10Be. GSA Today 21:4–10 [Google Scholar]
  116. Poulos MJ, Pierce JL, Flores AN, Benner SG. 2012. Hillslope asymmetry maps reveal widespread, multi-scale organization. Geophys. Res. Lett. 39:L06406 [Google Scholar]
  117. Prosser IP, Dietrich WE. 1995. Field experiments on erosion by overland flow and their implication for a digital terrain model of channel initiation. Water Resour. Res. 31:2867–76 [Google Scholar]
  118. Prosser IP, Dietrich WE, Stevenson J. 1995. Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology 13:71–86 [Google Scholar]
  119. Rad S, Allegre C, Louvat P. 2007. Hidden erosion on volcanic islands. Earth Planet. Sci. Lett. 262:109–24 [Google Scholar]
  120. Raymo ME, Ruddiman WF. 1992. Tectonic forcing of late Cenozoic climate. Nature 359:117–22 [Google Scholar]
  121. Reiners PW, Ehlers TA, Mitchell SG, Montgomery DR. 2003. Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature 426:645–47 [Google Scholar]
  122. Renard K, Foster G, Weesies G, McCool D, Yoder D. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE) Washington, DC: US Dep. Agric. Res. Serv. [Google Scholar]
  123. Richardson PW. 2015. Topographic asymmetry and climate controls on landscape evolution PhD thesis, MIT Cambridge, MA:
  124. Riebe CS, Kirchner JW, Finkel RC. 2003. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim. Cosmochim. Acta 67:4411–27 [Google Scholar]
  125. Riebe CS, Kirchner JW, Finkel RC. 2004a. Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth Planet. Sci. Lett. 218:421–34 [Google Scholar]
  126. Riebe CS, Kirchner JW, Finkel RC. 2004b. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet. Sci. Lett. 224:547–62 [Google Scholar]
  127. Riebe CS, Kirchner JW, Granger DE, Finkel RC. 2001a. Minimal climatic control on erosion rates in the Sierra Nevada, California. Geology 29:447–50 [Google Scholar]
  128. Riebe CS, Kirchner JW, Granger DE, Finkel RC. 2001b. Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology 29:511–14 [Google Scholar]
  129. Riebe CS, Sklar LS, Lukens CE, Shuster DL. 2015. Climate and topography control the size and flux of sediment produced on steep mountain slopes. PNAS 112:15574–79 [Google Scholar]
  130. Roe GH, Stolar DB, Willett SD. 2006. Response of a steady-state critical wedge orogen to changes in climate and tectonic forcing. Special Papers of the Geological Society of America 398 Tectonics, Climate, and Landscape Evolution227–39 Boulder, CO: Geol. Soc. Am. [Google Scholar]
  131. Roering JJ, Gerber M. 2005. Fire and the evolution of steep, soil-mantled landscapes. Geology 33:349–52 [Google Scholar]
  132. Roering JJ, Kirchner JW, Dietrich WE. 1999. Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology. Water Resour. Res. 35:853–70 [Google Scholar]
  133. Rossi MW, Whipple KX, Vivoni ER. 2016. Precipitation and evapotranspiration controls on daily runoff variability in the contiguous United States and Puerto Rico. J. Geophys. Res. Earth Surf. 121:128–45 [Google Scholar]
  134. Rosso R, Rulli MC, Vannucchi G. 2006. A physically based model for the hydrologic control on shallow landsliding. Water Resour. Res. 42:W06410 [Google Scholar]
  135. Royden L, Perron JT. 2013. Solutions of the stream power equation and application to the evolution of river longitudinal profiles. J. Geophys. Res. Earth Surf. 118:497–518 [Google Scholar]
  136. Ruddiman WF, Kutzbach JE. 1989. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res. Atmos. 94:18409 [Google Scholar]
  137. Salciarini D, Godt JW, Savage WZ, Conversini P, Baum RL, Michael JA. 2006. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria region of central Italy. Landslides 3:181–94 [Google Scholar]
  138. Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T. 2001. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can. Geotech. J. 38:995–1024 [Google Scholar]
  139. Schopka HH, Derry LA. 2012. Chemical weathering fluxes from volcanic islands and the importance of groundwater: the Hawaiian example. Earth Planet. Sci. Lett. 339/340:67–78 [Google Scholar]
  140. Seidl MA, Dietrich WE. 1992. The problem of channel erosion into bedrock. CATENA 23:101–24 [Google Scholar]
  141. Sidle RC, Ochiai H. 2006. Landslides: Processes, Prediction, and Land-Use Boulder, CO: Am. Geophys. Union
  142. Sklar LS, Dietrich WE. 2001. Sediment and rock strength controls on river incision into bedrock. Geology 29:1087–90 [Google Scholar]
  143. Sklar LS, Riebe CS, Marshall JA, Genetti J, Leclere S. et al. 2016. The problem of predicting the size distribution of sediment supplied by hillslopes to rivers. Geomorphology 277:31–49 [Google Scholar]
  144. Snyder NP, Whipple KX, Tucker GE, Merritts DJ. 2003. Importance of a stochastic distribution of floods and erosion thresholds in the bedrock river incision problem. J. Geophys. Res. Solid Earth 108:2117 [Google Scholar]
  145. Stark CP, Barbour JR, Hayakawa YS, Hattanji T, Hovius N. et al. 2010. The climatic signature of incised river meanders. Science 327:1497–501 [Google Scholar]
  146. Stock JD, Dietrich WE. 2003. Valley incision by debris flows: evidence of a topographic signature. Water Resour. Res. 39:1089 [Google Scholar]
  147. Stock JD, Dietrich WE. 2006. Erosion of steepland valleys by debris flows. Geol. Soc. Am. Bull. 118:1125–48 [Google Scholar]
  148. Strecker MR, Alonso RN, Bookhagen B, Carrapa B, Hilley GE. et al. 2007. Tectonics and climate of the Southern Central Andes. Annu. Rev. Earth Planet. Sci. 35:747–87 [Google Scholar]
  149. Summerfield MA, Hulton NJ. 1994. Natural controls of fluvial denudation rates in major world drainage basins. J. Geophys. Res. Solid Earth 99:13871–83 [Google Scholar]
  150. Syvitski JPM, Milliman JD. 2007. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115:1–19 [Google Scholar]
  151. Tucker GE. 2004. Drainage basin sensitivity to tectonic and climatic forcing: implications of a stochastic model for the role of entrainment and erosion thresholds. Earth Surf. Process. Landf. 29:185–205 [Google Scholar]
  152. Tucker GE, Bras RL. 2000. A stochastic approach to modelling the role of rainfall variability in drainage basin evolution. Water Resour. Res. 36:1953–64 [Google Scholar]
  153. Tucker GE, Slingerland R. 1997. Drainage basin responses to climate change. Water Resour. Res. 33:2031–47 [Google Scholar]
  154. Turcotte DL, Greene L. 1993. A scale-invariant approach to flood-frequency analysis. Stoch. Hydrol. Hydraul. 7:33–40 [Google Scholar]
  155. Turowski JM, Lague D, Hovius N. 2007. Cover effect in bedrock abrasion: a new derivation and its implications for the modeling of bedrock channel morphology. J. Geophys. Res. Earth Surf. 112:F04006 [Google Scholar]
  156. von Blanckenburg F. 2005. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237:462–79 [Google Scholar]
  157. Walling DE, Webb BW. 1983. Patterns of sediment yields. Background to Paleohydrology KJ Gregory 69–100 London: Wiley [Google Scholar]
  158. West AJ, Galy A, Bickle M. 2005. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235:211–28 [Google Scholar]
  159. West N, Kirby E, Bierman P, Clarke BA. 2014. Aspect-dependent variations in regolith creep revealed by meteoric 10Be. Geology 42:507–10 [Google Scholar]
  160. Whipple KX. 2004. Bedrock rivers and the geomorphology of active orogens. Annu. Rev. Earth Planet. Sci. 32:151–85 [Google Scholar]
  161. Whipple KX. 2009. The influence of climate on the tectonic evolution of mountain belts. Nat. Geosci. 2:97–104 [Google Scholar]
  162. Whipple KX, Meade BJ. 2004. Controls on the strength of coupling among climate, erosion, and deformation in two-sided, frictional orogenic wedges at steady state. J. Geophys. Res. Earth Surf. 109:F01011 [Google Scholar]
  163. Whipple KX, Tucker GE. 1999. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 104:17661–74 [Google Scholar]
  164. White AF, Blum AE. 1995. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 59:1729–47 [Google Scholar]
  165. Whittaker AC. 2012. How do landscapes record tectonics and climate?. Lithosphere 4:160–64 [Google Scholar]
  166. Willenbring JK, Jerolmack DJ. 2016. The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation. Terra Nova 28:11–18 [Google Scholar]
  167. Willenbring JK, von Blanckenburg F. 2010. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465:211–14 [Google Scholar]
  168. Willett SD. 1999. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104:28957–81 [Google Scholar]
  169. Wohl E, David GCL. 2008. Consistency of scaling relations among bedrock and alluvial channels. J. Geophys. Res. Earth Surf. 113:F04013 [Google Scholar]
  170. Wolman MG, Miller JP. 1960. Magnitude and frequency of forces in geomorphic processes. J. Geol. 68:54–74 [Google Scholar]
  171. Yoo K, Amundson R, Heimsath AM, Dietrich WE. 2005. Process-based model linking pocket gopher (Thomomys bottae) activity to sediment transport and soil thickness. Geology 33:917–20 [Google Scholar]
  172. Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–83 [Google Scholar]
  173. Zhang P, Molnar P, Downs WR. 2001. Increased sedimentation rates and grain sizes 2–4 Ma ago due to the influence of climate change on erosion rates. Nature 410:891–97 [Google Scholar]
/content/journals/10.1146/annurev-earth-060614-105405
Loading
/content/journals/10.1146/annurev-earth-060614-105405
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error