1932

Abstract

The terrestrial vegetation is unambiguously an important factor in the climate system, modulating the exchange of energy, momentum, water vapor, and other trace gases between land and atmosphere. Here, we review the evolution of the terrestrial flora from the Proterozoic through to the Neogene at three distinct scales—the overall evolution of floral composition, the evolution of plant physiology, and the evolution of landscape occupation both spatially and seasonally—all in the context of how the vegetation may have influenced climate through time and which deep-time evolutionary transitions may have had the greatest effect. Our focus is upon the direct impacts of the vegetation on temperature and precipitation, but we also consider the indirect impacts of plants on climate via atmospheric composition. We argue that the times of greatest change in plant climate feedbacks are likely to have been the Carboniferous and the early Paleogene.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-063016-015629
2017-08-30
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/earth/45/1/annurev-earth-063016-015629.html?itemId=/content/journals/10.1146/annurev-earth-063016-015629&mimeType=html&fmt=ahah

Literature Cited

  1. Algeo TJ, Scheckler SE. 1998. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. B 353:113–30 [Google Scholar]
  2. Asner GP, Scurlock JMO, Hicke JA. 2003. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr. 12:191–205 [Google Scholar]
  3. Assouline S, Or D. 2013. Plant water use efficiency over geological time—evolution of leaf stomata configurations affecting plant gas exchange. PLOS ONE 8:e67757 [Google Scholar]
  4. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB. et al. 2007. Combined climate and carbon-cycle effects of large-scale deforestation. PNAS 104:6550–55 [Google Scholar]
  5. Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP. et al. 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu. Rev. Ecol. Syst. 29:263–92 [Google Scholar]
  6. Bateman RM, Rothwell GW. 1990. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 1. Floristics and the development of whole-plant concepts. Trans. R. Soc. Edinb. Earth Sci. 81:127–59 [Google Scholar]
  7. Beerling DJ, Osborne CP. 2006. The origin of the savanna biome. Glob. Change Biol. 12:2023–31 [Google Scholar]
  8. Beerling DJ, Woodward FI. 1997. Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Bot. J. Linn. Soc. 124:137–53 [Google Scholar]
  9. Belnap J. 1995. Surface disturbances: their role in accelerating desertification. Environ. Monit. Assess. 37:39–57 [Google Scholar]
  10. Berner RA. 1992. Weathering, plants, and the long-term carbon cycle. Geochim. Cosmochim. Acta 56:3225–31 [Google Scholar]
  11. Berner RA. 2004. The Phanerozoic Carbon Cycle: CO2 and O2 Oxford, UK: Oxford Univ. Press
  12. Berner RA. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70:5653–64 [Google Scholar]
  13. Berner RA, Caldeira K. 1997. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25:955–56 [Google Scholar]
  14. Berner RA, Lasaga AC, Garrels RM. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283:641–83 [Google Scholar]
  15. Berry JA, Beerling DJ, Franks PJ. 2010. Stomata: key players in the Earth system, past and present. Curr. Opin. Plant Biol. 13:233–40 [Google Scholar]
  16. Betts AK, Viterbo P. 2005. Land-surface, boundary layer, and cloud-field coupling over the southwestern Amazon in ERA-40. J. Geophys. Res. 110:D14108 [Google Scholar]
  17. Betts RA. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–90 [Google Scholar]
  18. Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–49 [Google Scholar]
  19. Bonan GB. 2015. Ecological Climatology: Concepts and Applications Cambridge, UK: Cambridge Univ. Press. , 3rd ed..
  20. Bonan GB, Pollard D, Thompson SL. 1992. Effects of boreal forest vegetation on global climate. Nature 59:716–18 [Google Scholar]
  21. Bond WJ. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36:227–49 [Google Scholar]
  22. Bond WJ, Scott AC. 2010. Fire and the spread of flowering plants in the Cretaceous. New Phytol 188:1137–50 [Google Scholar]
  23. Boyce CK. 2008. How green was Cooksonia? The importance of size in understanding the early evolution of physiology in the vascular plant lineage. Paleobiology 34:179–94 [Google Scholar]
  24. Boyce CK. 2010. The evolution of plant development in a paleontological context. Curr. Opin. Plant Biol. 13:1–6 [Google Scholar]
  25. Boyce CK, Abrecht M, Zhou D, Gilbert PUPA. 2010a. X-ray photoelectron emission spectromicroscopic analysis of arborescent lycopsid cell wall composition and Carboniferous coal ball preservation. Int. J. Coal Geol. 83:146–53 [Google Scholar]
  26. Boyce CK, Brodribb T, Feild TS, Zwieniecki MA. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. R. Soc. B 276:1771–76 [Google Scholar]
  27. Boyce CK, DiMichele WA. 2016. Arborescent lycopsid productivity and lifespan: constraining the possibilities. Rev. Palaeobot. Palynol. 227:97–110 [Google Scholar]
  28. Boyce CK, Lee JE. 2010. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proc. R. Soc. B 277:3437–43 [Google Scholar]
  29. Boyce CK, Lee JE, Feild TS, Brodribb T, Zwieniecki MA. 2010b. Angiosperms helped put the rain in the rainforests: the impact of plant physiological evolution on tropical biodiversity. Ann. Mo. Bot. Gardens 97:527–40 [Google Scholar]
  30. Boyce CK, Leslie AB. 2012. The paleontological context of angiosperm vegetative evolution. Int. J. Plant Sci. 173:561–68 [Google Scholar]
  31. Boyce CK, Zwieniecki MA. 2012. Leaf fossil record suggests limited influence of atmospheric CO2 on terrestrial productivity prior to angiosperm evolution. PNAS 109:10403–8 [Google Scholar]
  32. Brezinski DK, Cecil CB, Skema VW. 2010. Late Devonian glacigenic and associated facies from the central Appalachian Basin, eastern United States. Geol. Soc. Am. Bull. 122:265–81 [Google Scholar]
  33. Brodribb TJ, Feild TS. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13:175–83 [Google Scholar]
  34. Brodribb TJ, Holbrook NM. 2004. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol 162:663–70 [Google Scholar]
  35. Burnham RJ. 2009. An overview of the fossil record of climbers: bejucos, sogas, trepadoras, lianas, cipós, and vines. Rev. Bras. Paleontol. 12:149–60 [Google Scholar]
  36. Chagnon FJF, Bras RL. 2005. Contemporary climate change in the Amazon. Geophys. Res. Lett. 32:L13703 [Google Scholar]
  37. Chiang JCH, Friedman AR. 2012. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci. 40:383–412 [Google Scholar]
  38. Crane PR, Lidgard S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246:675–78 [Google Scholar]
  39. Crocker RL, Major J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J. Ecol. 43:427–48 [Google Scholar]
  40. Dagan T, Roettger M, Stucken K, Landan G, Koch R. et al. 2013. Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol. Evol. 5:31–44 [Google Scholar]
  41. Dai A, Trenberth KE. 2002. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeorol. 3:660–87 [Google Scholar]
  42. Decombeix AL, Meyer-Berthaud B. 2013. A Callixylon (Archaeopteridales, Progymnospermopsida) trunk with preserved secondary phloem from the Late Devonian of Morocco. Am. J. Bot. 100:2219–30 [Google Scholar]
  43. Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF. 1986. Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model Tech. Note NCAR/TN-275+STR, Natl. Cent. Atmos. Res. (NCAR) Boulder, CO:
  44. DiMichele WA, Aronson RB. 1992. The Pennsylvanian–Permian vegetational transition: a terrestrial analogue to the onshore-offshore hypothesis. Evolution 46:807–24 [Google Scholar]
  45. DiMichele WA, Montañez IP, Poulsen CJ, Tabor NJ. 2009. Climate and vegetational regime shifts in the late Paleozoic ice age Earth. Geobiology 7:200–26 [Google Scholar]
  46. Dott JRH. 2003. The importance of eolian abrasion in supermature quartz sandstones and the paradox of weathering on vegetation-free landscapes. J. Geol. 111:387–405 [Google Scholar]
  47. Duckett JG, Pressel S, P'ng KMY, Renzaglia KS. 2009. Exploding a myth: the capsule dehiscence mechanism and the function of pseudostomata in Sphagnum. New Phytol 183:1053–63 [Google Scholar]
  48. Dunn RE, Strömberg CAE, Madden RH, Kohn MJ, Carlini AA. 2015. Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science 347:258–61 [Google Scholar]
  49. Edwards D, Abbott GD, Raven JA. 1996. Cuticles of early land plants: a palaeoecophysiological evaluation. Plant Cuticles G Kerstiens 1–31 Oxford, UK: BIOS Sci. Publ. [Google Scholar]
  50. Edwards D, Morel EM, Paredes F, Ganuza DG, Zúñiga A. 2001. Plant assemblages from the Silurian of southern Bolivia and their palaeogeographic significance. Bot. J. Linn. Soc. 135:229–50 [Google Scholar]
  51. Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, C4 Grasses Consort. 2010. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–91 [Google Scholar]
  52. Fairman JG, Nair US, Christopher SA, Mölg T. 2011. Land use change impacts on regional climate over Kilimanjaro. J. Geophys. Res. 116:D03110 [Google Scholar]
  53. Falcon-Lang HJ, Bashforth AR. 2004. Pennsylvanian uplands were forested by giant cordaitalean trees. Geology 32:417–20 [Google Scholar]
  54. Feild TS, Arens NC. 2007. The ecophysiology of early angiosperms. Plant Cell Environ 30:291–309 [Google Scholar]
  55. Feild TS, Brodribb TJ. 2013. Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks. New Phytol 199:720–26 [Google Scholar]
  56. Feild TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A. et al. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. PNAS 108:8363–66 [Google Scholar]
  57. Feild TS, Zwieniecki MA, Donoghue MJ, Holbrook NM. 1998. Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. PNAS 95:14256–59 [Google Scholar]
  58. Feulner G. 2012. The faint young Sun problem. Rev. Geophys. 50:RG2006 [Google Scholar]
  59. Findell KL, Gentine P, Lintner BR, Kerr C. 2011. Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci. 4:434–39 [Google Scholar]
  60. Findell KL, Knutson TR, Milly PCD. 2006. Weak simulated extratropical responses to complete tropical deforestation. J. Clim. 19:2835–50 [Google Scholar]
  61. Fitzjarrald DR, Acevedo OC, Moore KE. 2001. Climatic consequences of leaf presence in the eastern United States. J. Clim. 14:598–614 [Google Scholar]
  62. Foley JA, Kutzbach JE, Coe MT, Levis S. 1994. Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371:52–54 [Google Scholar]
  63. Franks PJ, Beerling DJ. 2009a. CO2-forced evolution of plant gas exchange capacity and water-use efficiency over the Phanerozoic. Geobiology 7:227–36 [Google Scholar]
  64. Franks PJ, Beerling DJ. 2009b. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS 106:10343–47 [Google Scholar]
  65. Friedlingstein P, Cox PM, Betts RA, Bopp L, von Bloh W. et al. 2006. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19:3337–53 [Google Scholar]
  66. Fu R, Zhu B, Dickinson RE. 1999. How do atmosphere and land surface influence seasonal changes of convection in the tropical Amazon?. J. Clim. 12:1306–21 [Google Scholar]
  67. Gensel PG, Kotyk ME, Basinger JF. 2001. Morphology of above- and below-ground structures in Early Devonian (Pragian–Emsian) plants. Plants Invade the Land: Evolutionary and Environmental Perspectives PG Gensel, D Edwards 83–102 New York: Columbia Univ. Press [Google Scholar]
  68. Gentine P, Holtslag AA, D'Andrea F, Ek M. 2013. Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeorol. 14:1443–62 [Google Scholar]
  69. Gerrienne P, Bergamaschi S, Pereira E, Rodrigues MAC, Steemans P. 2001. An Early Devonian flora, including Cooksonia, from the Paraná Basin (Brazil). Rev. Palaeobot. Palynol. 116:19–38 [Google Scholar]
  70. Gibling MR, Davies NS. 2012. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 5:99–105 [Google Scholar]
  71. Gutzmer J, Beukes NJ. 1998. Earliest laterites and possible evidence for terrestrial vegetation in the Early Proterozoic. Geology 26:263–66 [Google Scholar]
  72. Hébant C. 1977. The Conducting Tissue of Bryophytes Vaduz, Ger.: Cramer
  73. Hobbie EA, Boyce CK. 2010. Carbon sources for the Paleozoic giant fungus Prototaxites inferred from modern analogues. Proc. R. Soc. B 277:2149–56 [Google Scholar]
  74. Hoffmann WA, Jackson RB. 2000. Vegetation-climate feedbacks in the conversion of tropical savanna to grassland. J. Clim. 13:1593–602 [Google Scholar]
  75. Hotton CL, Hueber FM, Griffing DH, Bridge JS. 2001. Early terrestrial plant environments: an example from the Emsian of Gaspé,. Canada: Plants Invade the Land: Evolutionary and Environmental Perspectives PG Gensel, D Edwards 179–212 New York: Columbia Univ. Press [Google Scholar]
  76. Jaenicke R. 2005. Abundance of cellular material and proteins in the atmosphere. Science 308:73 [Google Scholar]
  77. Jud NA. 2015. Fossil evidence for a herbaceous diversification of early eudicot angiosperms during the Early Cretaceous. Proc. R. Soc. B 282:20151045 [Google Scholar]
  78. Kennedy M, Droser M, Mayer LM, Pevear D, Mrofka D. 2006. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311:1446–49 [Google Scholar]
  79. Kirschvink JL. 1992. Late Proterozoic low-latitude global glaciation: the snowball Earth. The Proterozoic Biosphere JW Schopf, C Klein 51–52 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  80. Kleidon A, Fraedrich K, Heimann M. 2000. A green planet versus a desert world: estimating the maximum effect of vegetation on the land surface climate. Clim. Change 44:471–93 [Google Scholar]
  81. Kramer PJ, Boyer JS. 1995. Water Relations of Plants and Soils San Diego, CA: Academic
  82. Lawrence D, Vandecar K. 2015. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5:27–36 [Google Scholar]
  83. Lawton RO, Nair US, Pielke RA Sr., Welch RM. 2001. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294:584–87 [Google Scholar]
  84. Lee JE, Boyce CK. 2010. Impact of the hydraulic capacity of plants on water and carbon fluxes in tropical South America. J. Geophys. Res. 115:D23123 [Google Scholar]
  85. Lee JE, Lintner BR, Neelin JD, Jiang X, Gentine P. et al. 2012. Reduction of tropical land region precipitation variability via transpiration. Geophys. Res. Lett. 39:L19704 [Google Scholar]
  86. Lee JE, Oliveira RS, Dawson TE, Fung I. 2005. Root functioning modifies seasonal climate. PNAS 102:17576–81 [Google Scholar]
  87. Lenton TM, Crouch M, Johnson M, Pires N, Dolan L. 2012. First plants cooled the Ordovician. Nat. Geosci. 5:86–89 [Google Scholar]
  88. Levis S, Bonan GB, Bonfils C. 2004. Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model. Clim. Dyn. 23:791–802 [Google Scholar]
  89. Lintner BR, Gentine P, Findell KL, D'Andrea F, Sobel AH, Salvucci GD. 2013. An idealized prototype for large-scale land-atmosphere coupling. J. Clim. 26:2379–89 [Google Scholar]
  90. Lintner BR, Neelin JD. 2009. Soil moisture impacts on convective margins. J. Hydrometeorol. 10:1026–39 [Google Scholar]
  91. Loranty MM, Goetz SJ, Beck PSA. 2011. Tundra vegetation effects on pan-Arctic albedo. Environ. Res. Lett. 6:024014 [Google Scholar]
  92. Lüttge U. 2004. Ecophysiology of crassulacean acid metabolism (CAM). Ann. Bot. 93:629–52 [Google Scholar]
  93. Martin ST, Andreae MO, Artaxo P, Baumgardner D, Chen Q. et al. 2010. Sources and properties of Amazonian aerosol particles. Rev. Geophys. 48:RG2002 [Google Scholar]
  94. McElwain JC, Chaloner WG. 1995. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic. Ann. Bot. 76:389–95 [Google Scholar]
  95. McElwain JC, Yiotis C, Lawson T. 2016. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution. New Phytol 209:94–103 [Google Scholar]
  96. McKenzie NR, Horton BK, Loomis SE, Stockli DF, Planavsky NJ, Lee CTA. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352:444–47 [Google Scholar]
  97. Meyer-Berthaud B, Soria A, Decombeix AL. 2010. The land plant cover in the Devonian: a reassessment of the evolution of the tree habit. Geol. Soc. Lond. Spec. Publ. 339:59–70 [Google Scholar]
  98. Miller IM, Hickey LJ. 2010. The fossil flora of the Winthrop Formation (Albian–Early Cretaceous) of Washington State, USA. Part II. Pinophytina. Bull. Peabody Mus. Nat. Hist. 51:3–96 [Google Scholar]
  99. Morley RJ. 2000. Origin and Evolution of Tropical Rain Forests Chichester, UK: Wiley
  100. Morris JL, Leake JR, Stein WE, Berry CM, Marshall JEA. et al. 2015. Investigating Devonian trees as geo-engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology. Palaentology 58:787–801 [Google Scholar]
  101. Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ. et al. 2013. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Clim. 26:5150–68 [Google Scholar]
  102. Negri AJ, Adler RF, Xu L, Surratt J. 2004. The impact of Amazonian deforestation on dry season rainfall. J. Clim. 17:1306–19 [Google Scholar]
  103. Nelsen MP, DiMichele WA, Peters SE, Boyce CK. 2016. Delayed fungal evolution did not cause the Paleozoic peak in coal production. PNAS 113:2442–47 [Google Scholar]
  104. Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA. et al. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–69 [Google Scholar]
  105. Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC. 2005. Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–63 [Google Scholar]
  106. Otto-Bliesner BL, Upchurch GR Jr. 1997. Vegetation-induced warming of high-latitude regions during the Late Cretaceous period. Nature 385:804–7 [Google Scholar]
  107. Pittermann J. 2010. The evolution of water transport in plants: an integrated approach. Geobiology 8:112–39 [Google Scholar]
  108. Plotnick RE, Kenig F, Scott AC, Glasspool IJ, Eble CF, Lang WJ. 2009. Pennsylvanian paleokarst and cave fills from northern Illinois, USA: a window into late Carboniferous environments and landscapes. Palaios 24:627–37 [Google Scholar]
  109. Pöhlker C, Wiedemann KT, Sinha B, Shiraiwa M, Gunthe SS. et al. 2012. Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon. Science 337:1075–78 [Google Scholar]
  110. Poulsen CJ, Pollard D, Montañez IP, Rowley DB. 2007. Late Paleozoic tropical climate response to Gondwanan deglaciation. Geology 35:771–74 [Google Scholar]
  111. Raymond A, Gensel PG, Stein WE. 2006. Phytogeography of Late Silurian macrofloras. Rev. Palaeobot. Palynol. 142:165–92 [Google Scholar]
  112. Rees PM, Ziegler AM, Gibbs MT, Kutzbach JE, Behling PJ, Rowley DB. 2002. Permian phytogeographic patterns and climate data/model comparisons. J. Geol. 110:1–31 [Google Scholar]
  113. Reijmer CH, Van Meijgaard E, Van Den Broeke MR. 2004. Numerical studies with a regional atmospheric climate model based on changes in the roughness length for momentum and heat over Antarctica. Bound.-Layer Meteorol. 111:313–37 [Google Scholar]
  114. Ren D. 2010. Effects of global warming on wind energy availability. J. Renew. Sustain. Energy 2:052301 [Google Scholar]
  115. Rößler R. 2000. The late Palaeozoic tree fern Psaronius—an ecosystem unto itself. Rev. Palaeobot. Palynol. 108:55–74 [Google Scholar]
  116. Sack L, Holbrook NM. 2006. Leaf hydraulics. Annu. Rev. Plant Biol. 57:361–81 [Google Scholar]
  117. Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:983–1000 [Google Scholar]
  118. Sage RF, Christin PA, Edwards EJ. 2011. The C4 plant lineages of planet Earth. J. Exp. Bot. 62:3155–69 [Google Scholar]
  119. Schneider T, Bischoff T, Haug GH. 2014. Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53 [Google Scholar]
  120. Sellers PJ, Mintz Y, Sud YC, Dalcher A. 1986. A Simple Biosphere model (SiB) for use within general circulation models. J. Atmos. Sci. 43:505–31 [Google Scholar]
  121. Shaw AJ, Devos N, Cox CJ, Boles SB, Shaw B. et al. 2010. Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling?. Mol. Phylogenet. Evol. 55:1139–45 [Google Scholar]
  122. Shukla J, Mintz Y. 1982. Influence of land-surface evapotranspiration on the Earth's climate. Science 215:1498–501 [Google Scholar]
  123. Skog JE, Dilcher DL. 1994. Lower vascular plants of the Dakota Formation in Kansas and Nebraska, USA. Rev. Palaeobot. Palynol. 80:1–18 [Google Scholar]
  124. Spracklen DV, Arnold SR, Taylor CM. 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489:282–85 [Google Scholar]
  125. Spracklen DV, Heald CL. 2014. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates. Atmos. Chem. Phys. 14:9051–59 [Google Scholar]
  126. Stein WE, Berry CM, Hernick LV, Mannolini F. 2012. Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483:78–81 [Google Scholar]
  127. Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK. et al. 2013. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
  128. Strömberg CAE. 2011. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39:517–44 [Google Scholar]
  129. Swann ALS, Fung IY, Chiang JCH. 2012. Mid-latitude afforestation shifts general circulation and tropical precipitation. PNAS 109:712–16 [Google Scholar]
  130. Swann ALS, Fung IY, Liu Y, Chiang JCH. 2014. Remote vegetation feedbacks and the mid-Holocene green Sahara. J. Clim. 27:4857–70 [Google Scholar]
  131. Taylor TN, Taylor EL, Krings M. 2009. Paleobotany: The Biology and Evolution of Fossil Plants Burlington, MA: Academic. , 2nd ed..
  132. Taylor WA, Wellman CH. 2009. Ultrastructure of enigmatic phytoclasts (banded tubes) from the Silurian–Lower Devonian: evidence for affinities and role in early terrestrial ecosystems. Palaios 24:167–80 [Google Scholar]
  133. Tosca NJ, Johnston DT, Mushegian A, Rothman DH, Summons RE, Knoll AH. 2010. Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceans. Geochim. Cosmochim. Acta 74:1579–92 [Google Scholar]
  134. Upchurch GRJ, Kiehl J, Shields C, Scherer J, Scotese CR. 2015. Latitudinal temperature gradients and high-latitude temperatures during the latest Cretaceous: congruence of geologic data and climate models. Geology 43:683–86 [Google Scholar]
  135. Upchurch GRJ, Otto-Bliesner BL, Scotese CR. 1999. Terrestrial vegetation and its effects on climate during the latest Cretaceous. Geol. Soc. Am. Spec. Pap. 332:407–26 [Google Scholar]
  136. Vajda V, Raine JI, Hollis CJ. 2001. Indication of global deforestation at the Cretaceous–Tertiary boundary by New Zealand fern spike. Science 294:1700–2 [Google Scholar]
  137. Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P. 2010. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 3:756–61 [Google Scholar]
  138. Waldbauer JR, Chamberlain CP. 2005. Influence of uplift, weathering, and base cation supply on past and future CO2 levels. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems JR Ehleringer, T Cerling, MD Dearing 166–84 New York: Springer [Google Scholar]
  139. Walker LR, Sharpe JM. 2010. Ferns, disturbance and succession. Fern Ecology K Mehltreter, LR Walker, JM Sharpe 177–219 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  140. Walls RL. 2011. Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set. Am. J. Bot. 98:244–53 [Google Scholar]
  141. Watkins JE Jr., Cardelús CL. 2012. Ferns in an angiosperm world: Cretaceous radiation in the epiphytic niche and diversification on the forest floor. Int. J. Plant Sci. 173:695–710 [Google Scholar]
  142. Wellman CH, Strother PK. 2015. The terrestrial biota prior to the origin of land plants (embryophytes): a review of the evidence. Palaentology 58:601–27 [Google Scholar]
  143. Westra D, Steeneveld GJ, Holtslag AAM. 2012. Some observational evidence for dry soils supporting enhanced relative humidity at the convective boundary layer top. J. Hydrometeorol. 13:1347–58 [Google Scholar]
  144. Wilson JP. 2016. Hydraulics of Psilophyton and evolutionary trends in plant water transport after terrestrialization. Rev. Palaeobot. Palynol. 227:65–76 [Google Scholar]
  145. Wilson JP, White JD, DiMichele WA, Hren MT, Poulsen CJ. et al. 2015. Reconstructing extinct plant water use for understanding vegetation-climate feedbacks: methods, synthesis, and a case study using the Paleozoic-era medullosan seed ferns. Paleontol. Soc. Pap. 21:167–95 [Google Scholar]
  146. Wing SL, Strömberg CAE, Hickey LJ, Tiver F, Willis B. et al. 2012. Floral and environmental gradients on a Late Cretaceous landscape. Ecol. Monogr. 82:23–47 [Google Scholar]
  147. Zeng N, Dickinson RE, Zeng X. 1996. Climatic impact of Amazon deforestation—a mechanistic model study. J. Clim. 9:859–83 [Google Scholar]
  148. Ziegler AM, Eshel G, Rees PM, Rothfus TA, Rowley DB, Sunderlin D. 2003. Tracing the tropics across land and sea: Permian to present. Lethaia 36:227–54 [Google Scholar]
  149. Zwieniecki MA, Boyce CK. 2014. Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology. Proc. R. Soc. B 281:20132829 [Google Scholar]
  150. Zwieniecki MA, Haaning KS, Boyce CK, Jensen KH. 2016. Stomatal design principles in synthetic and real leaves. J. R. Soc. Interface 13:20160535 [Google Scholar]
/content/journals/10.1146/annurev-earth-063016-015629
Loading
/content/journals/10.1146/annurev-earth-063016-015629
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error