1932

Abstract

Volatile elements (water, carbon, nitrogen, sulfur, halogens, and noble gases) played an essential role in the secular evolution of the solid Earth and emergence of life. Here we provide an overview of Earth's volatile inventories and describe the mechanisms by which volatiles are conveyed between Earth's surface and mantle reservoirs, via subduction and volcanism. Using literature data, we compute volatile concentration and flux estimates for Earth's major volatile reservoirs and provide an internally balanced assessment of modern global volatile recycling. Using a nitrogen isotope box model, we show that recycling of N (and possibly C and S) likely began before 2 Ga and that ingassing fluxes have remained roughly constant since this time. In contrast, our model indicates recycling of HO(and most likely noble gases) was less efficient in the past. This suggests a decoupling of major volatile species during subduction through time, which we attribute to the evolving thermal regime of subduction zones and the different stabilities of the carrier phases hosting each volatile.

  • ▪   This review provides an overview of Earth's volatile inventory and the mechanisms by which volatiles are transferred between Earth reservoirs via subduction.
  • ▪   The review frames the current thinking regarding how Earth acquired its original volatile inventory and subsequently evolved through subduction processes and volcanism.


Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071620-055024
2021-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-071620-055024.html?itemId=/content/journals/10.1146/annurev-earth-071620-055024&mimeType=html&fmt=ahah

Literature Cited

  1. Ader M, Thomazo C, Sansjofre P, Busigny V, Papineau D et al. 2016. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: assumptions and perspectives. Chem. Geol. 429:93–110
    [Google Scholar]
  2. Ague JJ, Nicolescu S 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci. 7:5355–60
    [Google Scholar]
  3. Aiuppa A, Fischer TP, Plank T, Robidoux P, Di Napoli R 2017. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth-Sci. Rev. 168:24–47
    [Google Scholar]
  4. Alexander COD, Bowden R, Fogel ML, Howard KT, Herd CDK, Nittler LR 2012. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:6095721–23
    [Google Scholar]
  5. Allègre CJ. 1982. Chemical geodynamics. Tectonophysics 81:3–4109–32
    [Google Scholar]
  6. Allègre CJ, Hofmann A, O'Nions K 1996. The argon constraints on mantle structure. Geophys. Res. Lett. 23:243555–57
    [Google Scholar]
  7. Alt JC. 1995. Sulfur isotopic profile through the oceanic crust: sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology 23:7585–88
    [Google Scholar]
  8. Alt JC. 2003. Stable isotopic composition of upper oceanic crust formed at a fast spreading ridge, ODP Site 801. Geochem. Geophys. Geosyst. 4:8908
    [Google Scholar]
  9. Alt JC, Garrido CJ, Shanks WC III, Turchyn A, Padrón-Navarta JA et al. 2012. Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 327:50–60
    [Google Scholar]
  10. Alt JC, Shanks WC. 2011. Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific). Earth Planet. Sci. Lett. 310:1–273–83
    [Google Scholar]
  11. Arevalo R Jr, McDonough WF, Luong M. 2009. The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Earth Planet. Sci. Lett. 278:3–4361–69
    [Google Scholar]
  12. Avice G, Marty B, Burgess R, Hofmann A, Philippot P et al. 2018. Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochim. Cosmochim. Acta 232:82–100
    [Google Scholar]
  13. Barnes JD, Cisneros M. 2012. Mineralogical control on the chlorine isotope composition of altered oceanic crust. Chem. Geol. 326:51–60
    [Google Scholar]
  14. Barnes JD, Manning CE, Scambelluri M, Selverstone J 2018. The behavior of halogens during subduction-zone processes. The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes DE Harlov, L Aranovich 545–90 Cham, Switz: Springer
    [Google Scholar]
  15. Barnes JD, Sharp ZD. 2006. A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: insights into the serpentinization process. Chem. Geol. 228:4246–65
    [Google Scholar]
  16. Barnes JD, Sharp ZD, Fischer TP 2008. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology 36:11883–86
    [Google Scholar]
  17. Barnes JD, Sharp ZD, Fischer TP, Hilton DR, Carr MJ 2009. Chlorine isotope variations along the Central American volcanic front and back arc. Geochem. Geophys. Geosyst. 10:11Q11S17
    [Google Scholar]
  18. Barnes JD, Straub SM. 2010. Chorine stable isotope variations in Izu Bonin tephra: implications for serpentinite subduction. Chem. Geol. 272:1–462–74
    [Google Scholar]
  19. Barry PH, de Moor JM, Giovannelli D, Schrenk M, Hummer DR et al. 2019. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature 568:7753487–92Demonstrates the importance of forearc calcite precipitation and microbial uptake for the C recycling mass balance.
    [Google Scholar]
  20. Barry PH, Hilton DR. 2016. Release of subducted sedimentary nitrogen throughout Earth's mantle. Geochem. Perspect. Lett. 2:148–59Presents a N subduction model that explains the evolution of the mantle's N-isotope composition.
    [Google Scholar]
  21. Barry PH, Hilton DR, Füri E, Halldórsson SA, Grönvold K 2014. Carbon-isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes. Geochim. Cosmochim. Acta 134:74–99
    [Google Scholar]
  22. Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne HJ 2011. Diapirs as the source of the sediment signature in arc lavas. Nat. Geosci. 4:9641–46
    [Google Scholar]
  23. Bekaert DV, Broadley MW, Caracausi A, Marty B 2019. Novel insights into the degassing history of Earth's mantle from high precision noble gas analysis of magmatic gas. Earth Planet. Sci. Lett. 525:115766
    [Google Scholar]
  24. Bergin EA, Blake GA, Ciesla F, Hirschmann MM, Li J 2015. Tracing the ingredients for a habitable earth from interstellar space through planet formation. PNAS 112:298965–70
    [Google Scholar]
  25. Berner RA, Raiswell R. 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:6365–68
    [Google Scholar]
  26. Bernini D, Wiedenbeck M, Dolejš D, Keppler H 2013. Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones. Contrib. Mineral. Petrol. 165:1117–28
    [Google Scholar]
  27. Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C 2012. Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet. Sci. Lett. 337:1–9
    [Google Scholar]
  28. Bird P. 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4:31027Reports global MOR and arc lengths that prominently feed into the model presented here.
    [Google Scholar]
  29. Bouhifd MA, Jephcoat AP, Heber VS, Kelley SP 2013. Helium in Earth's early core. Nat. Geosci. 6:11982–86
    [Google Scholar]
  30. Broadley MW, Ballentine CJ, Chavrit D, Dallai L, Burgess R 2016. Sedimentary halogens and noble gases within Western Antarctic xenoliths: implications of extensive volatile recycling to the sub continental lithospheric mantle. Geochim. Cosmochim. Acta 176:139–56
    [Google Scholar]
  31. Broadley MW, Barry PH, Ballentine CJ, Taylor LA, Burgess R 2018. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11:9682–87
    [Google Scholar]
  32. Broadley MW, Barry PH, Bekaert DV, Byrne DJ, Caracausi A et al. 2020. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. PNAS 117:13997–14004
    [Google Scholar]
  33. Brown M. 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34:11961–64
    [Google Scholar]
  34. Busigny V, Bebout GE. 2013. Nitrogen in the silicate Earth: speciation and isotopic behavior during mineral–fluid interactions. Elements 9:5353–58
    [Google Scholar]
  35. Busigny V, Cartigny P, Laverne C, Teagle D, Bonifacie M, Agrinier P 2019. A re-assessment of the nitrogen geochemical behavior in upper oceanic crust from Hole 504B: implications for subduction budget in Central America. Earth Planet. Sci. Lett. 525:115735
    [Google Scholar]
  36. Busigny V, Cartigny P, Philippot P 2011. Nitrogen-isotopes in ophiolitic metagabbros: a re-evaluation of modern nitrogen fluxes in subduction zones and implication for the early Earth atmosphere. Geochim. Cosmochim. Acta 75:237502–21
    [Google Scholar]
  37. Busigny V, Cartigny P, Philippot P, Ader M, Javoy M 2003. Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe). Earth Planet. Sci. Lett. 215:1–227–42
    [Google Scholar]
  38. Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ et al. 2013. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496:7446490–93
    [Google Scholar]
  39. Cai C, Wiens DA, Shen W, Eimer M 2018. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. Nature 563:7731389–92
    [Google Scholar]
  40. Campbell KA, Farmer JD, Des Marais D 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2:263–94
    [Google Scholar]
  41. Carlson RL, Miller DJ. 2003. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites. Geophys. Res. Lett. 30:51250
    [Google Scholar]
  42. Carn SA, Fioletov VE, McLinden CA, Li C, Krotkov NA 2017. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 7:44095
    [Google Scholar]
  43. Cartigny P, Marty B. 2013. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere–crust–mantle connection. Elements 9:5359–66
    [Google Scholar]
  44. Cartigny P, Palot M, Thomassot E, Harris JW 2014. Diamond formation: a stable isotope perspective. Annu. Rev. Earth Planet. Sci. 42:699–732
    [Google Scholar]
  45. Cartigny P, Pineau F, Aubaud C, Javoy M 2008. Towards a consistent mantle carbon flux estimate: insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N). Earth Planet. Sci. Lett. 265:3–4672–85
    [Google Scholar]
  46. Chaussidon M, Albarède F, Sheppard SM 1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth Planet. Sci. Lett. 92:2144–56
    [Google Scholar]
  47. Chavrit D, Burgess R, Sumino H, Teagle DA, Droop G et al. 2016. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles. Geochim. Cosmochim. Acta 183:106–24
    [Google Scholar]
  48. Clay PL, Burgess R, Busemann H, Ruzié-Hamilton L, Joachim B et al. 2017. Halogens in chondritic meteorites and terrestrial accretion. Nature 551:7682614–18
    [Google Scholar]
  49. Clift PD. 2017. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55:197–125
    [Google Scholar]
  50. Clog M, Aubaud C, Cartigny P, Dosso L 2013. The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the D/H ratio of the depleted mantle reservoir. Earth Planet. Sci. Lett. 381:156–65
    [Google Scholar]
  51. Cottaar S, Lekic V. 2016. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207:21122–36
    [Google Scholar]
  52. Crisp JA. 1984. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20:177–211
    [Google Scholar]
  53. Dalou C, Füri E, Deligny C, Piani L, Caumon MC et al. 2019. Redox control on nitrogen isotope fractionation during planetary core formation. PNAS 116:2914485–94
    [Google Scholar]
  54. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL 2012. Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib. Mineral. Petrol. 163:4591–609
    [Google Scholar]
  55. Dasgupta R, Hirschmann MM. 2010. The deep carbon cycle and melting in Earth's interior. Earth Planet. Sci. Lett. 298:1–21–13
    [Google Scholar]
  56. Dauphas N. 2017. The isotopic nature of the Earth's accreting material through time. Nature 541:7638521–24
    [Google Scholar]
  57. Dixon JE, Clague DA. 2001. Volatiles in basaltic glasses from Loihi Seamount, Hawaii: evidence for a relatively dry plume component. J. Petrol. 42:3627–54
    [Google Scholar]
  58. Dixon JE, Leist L, Langmuir C, Schilling JG 2002. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420:6914385–89
    [Google Scholar]
  59. Dottin JW III, Labidi J, Jackson MG, Woodhead JD, Farquhar J 2020a. Isotopic evidence for multiple recycled sulfur reservoirs in the Mangaia mantle plume. Geochem. Geophys. Geosyst. 21:10e2020GC009081
    [Google Scholar]
  60. Dottin JW III, Labidi J, Lekic V, Jackson MG, Farquhar J 2020b. Sulfur isotope characterization of primordial and recycled sources feeding the Samoan mantle plume. Earth Planet. Sci. Lett 534:116073
    [Google Scholar]
  61. Ducea MN, Paterson SR, DeCelles PG 2015. High-volume magmatic events in subduction systems. Elements 11:299–104
    [Google Scholar]
  62. Duncan MS, Dasgupta R. 2017. Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon. Nat. Geosci. 10:5387–92
    [Google Scholar]
  63. Ernst WG. 2017. Earth's thermal evolution, mantle convection, and Hadean onset of plate tectonics. J. Asian Earth Sci. 145:334–48
    [Google Scholar]
  64. Fabbrizio A, Stalder R, Hametner K, Günther D, Marquardt K 2013. Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1,300°C. Contrib. Mineral. Petrol. 166:2639–53
    [Google Scholar]
  65. Faccenda M, Gerya TV, Mancktelow NS, Moresi L 2012. Fluid flow during slab unbending and dehydration: implications for intermediate‐depth seismicity, slab weakening and deep water recycling. Geochem. Geophys. Geosyst. 13:1Q01010
    [Google Scholar]
  66. Fischer TP. 2008. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc-volcanoes. Geochem. J. 42:121–38
    [Google Scholar]
  67. Fischer TP, Arellano S, Carn S, Aiuppa A, Galle B et al. 2019. The emissions of CO2 and other volatiles from the world's subaerial volcanoes. Sci. Rep. 9:118716Presents an updated assessment of CO2 and SO2 outflux estimates and their related caveats.
    [Google Scholar]
  68. Fischer TP, Aiuppa A. 2020. AGU centennial grand challenge: volcanoes and deep carbon global CO2 emissions from subaerial volcanism—recent progress and future challenges. Geochem. Geophys. Geosyst. 21:3e2019GC008690
    [Google Scholar]
  69. Fischer TP, Marty B. 2005. Volatile abundances in the sub-arc mantle: insights from volcanic and hydrothermal gas discharges. J. Volcanol. Geotherm. Res. 140:1–3205–16
    [Google Scholar]
  70. Foley SF, Fischer TP. 2017. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10:12897–902
    [Google Scholar]
  71. Fryer P. 2012. Serpentinite mud volcanism: observations, processes, and implications. Annu. Rev. Mar. Sci. 4:345–73
    [Google Scholar]
  72. Fukuyama K, Kagi H, Inoue T, Kakizawa S, Shinmei T et al. 2020. High nitrogen solubility in stishovite (SiO2) under lower mantle conditions. Sci. Rep. 10:110897
    [Google Scholar]
  73. Fumagalli P, Zanchetta S, Poli S 2009. Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib. Mineral. Petrol. 158:6723
    [Google Scholar]
  74. Galer SJG. 1991. Interrelationships between continental freeboard, tectonics and mantle temperature. Earth Planet. Sci. Lett. 105:1–3214–28
    [Google Scholar]
  75. Galle B, Oppenheimer CM, Geyer A, McGonigle A, Edmonds M 2003. A mini-DOAS spectrometer applied in remote sensing of volcanic SO2 emissions. J. Volcanol. Geotherm. Res. 119:1–4241–54
    [Google Scholar]
  76. Gavrilenko M, Krawczynski M, Ruprecht P, Li W, Catalano JG 2019. The quench control of water estimates in convergent margin magmas. Am. Mineral. 104:7936–48
    [Google Scholar]
  77. Goldschmidt VM. 1954. Geochemistry Oxford, UK: Clarendon
  78. Gonnermann HM, Mukhopadhyay S. 2007. Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. Nature 449:71651037–40
    [Google Scholar]
  79. Gonnermann HM, Mukhopadhyay S. 2009. Preserving noble gases in a convecting mantle. Nature 459:7246560–63
    [Google Scholar]
  80. Gorman PJ, Kerrick DM, Connolly JAD 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7:4Q04007
    [Google Scholar]
  81. Grevemeyer I, Ranero CR, Ivandic M 2018. Structure of oceanic crust and serpentinization at subduction trenches. Geosphere 14:2395–418
    [Google Scholar]
  82. Grove TL, Till CB. 2019. H2O-rich mantle melting near the slab–wedge interface. Contrib. Mineral. Petrol. 174:1080
    [Google Scholar]
  83. Hacker BR. 2008. H2O subduction beyond arcs. Geochem. Geophys. Geosyst. 9:3Q03001
    [Google Scholar]
  84. Halama R, Bebout GE, John T, Scambelluri M 2014. Nitrogen recycling in subducted mantle rocks and implications for the global nitrogen cycle. Int. J. Earth Sci. 103:72081–99
    [Google Scholar]
  85. Halama R, Bebout GE, John T, Schenk V 2010. Nitrogen recycling in subducted oceanic lithosphere: the record in high- and ultrahigh-pressure metabasaltic rocks. Geochim. Cosmochim. Acta 74:51636–52
    [Google Scholar]
  86. Hallis LJ, Huss GR, Nagashima K, Taylor GJ, Halldórsson SA et al. 2015. Evidence for primordial water in Earth's deep mantle. Science 350:6262795–97
    [Google Scholar]
  87. Hilton DR, Fischer TP, Marty B 2002. Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47:1319–70
    [Google Scholar]
  88. Hilton DR, Thirlwall MF, Taylor RN, Murton BJ, Nichols A 2000. Controls on magmatic degassing along the Reykjanes Ridge with implications for the helium paradox. Earth Planet. Sci. Lett. 183:1–243–50
    [Google Scholar]
  89. Hirschmann MM. 2018. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth Planet. Sci. Lett. 502:262–73
    [Google Scholar]
  90. Hirschmann MM, Aubaud C, Withers AC 2005. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett. 236:1–2167–81
    [Google Scholar]
  91. Hirschmann MM, Dasgupta R. 2009. The H/C ratios of Earth's near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262:1–24–16
    [Google Scholar]
  92. Holder RM, Viete DR, Brown M, Johnson TE 2019. Metamorphism and the evolution of plate tectonics. Nature 572:7769378–81
    [Google Scholar]
  93. Holland G, Ballentine CJ. 2006. Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441:7090186–91Presents evidence for the ubiquity of recycled volatiles in the mantle, using heavy noble gases.
    [Google Scholar]
  94. Holland G, Ballentine CJ, Cassidy M 2009. Primordial krypton in the terrestrial mantle is not solar. LPI 2009:1824
    [Google Scholar]
  95. Holloway JR, Jakobsson S. 1986. Volatile solubilities in magmas: transport of volatiles from mantles to planet surfaces. J. Geophys. Res. 91:B4505–8
    [Google Scholar]
  96. Holzer M, DeVries T, Bianchi D, Newton R, Schlosser P, Winckler G 2017. Objective estimates of mantle 3He in the ocean and implications for constraining the deep ocean circulation. Earth Planet. Sci. Lett. 458:305–14
    [Google Scholar]
  97. Hopkins M, Harrison TM, Manning CE 2008. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456:7221493–96
    [Google Scholar]
  98. Jackson MG, Jellinek AM. 2013. Major and trace element composition of the high 3He/4He mantle: implications for the composition of a nonchonditic Earth. Geochem. Geophys. Geosyst. 14:82954–76
    [Google Scholar]
  99. Jambon A. 1994. Earth degassing and large-scale geochemical cycling of volatile elements. Rev. Mineral. Geochem. 30:1479–517
    [Google Scholar]
  100. Jarrard RD. 2003. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4:58905
    [Google Scholar]
  101. Javaux EJ. 2019. Challenges in evidencing the earliest traces of life. Nature 572:7770451–60
    [Google Scholar]
  102. Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C et al. 2010. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293:3–4259–68
    [Google Scholar]
  103. Javoy M, Pineau F. 1991. The volatiles record of a “popping” rock from the Mid-Atlantic Ridge at 14°N: chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett. 107:3–4598–611
    [Google Scholar]
  104. Jicha BR, Jagoutz O. 2015. Magma-production rates for intraoceanic arcs. Elements 11:2105–11
    [Google Scholar]
  105. John T, Layne GD, Haase KM, Barnes JD 2010. Chlorine isotope evidence for crustal recycling into the Earth's mantle. Earth Planet. Sci. Lett. 298:1–2175–82
    [Google Scholar]
  106. John T, Scambelluri M, Frische M, Barnes JD, Bach W 2011. Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet. Sci. Lett. 308:1–265–76
    [Google Scholar]
  107. Johnson HP, Semyan SW. 1994. Age variation in the physical properties of oceanic basalts: implications for crustal formation and evolution. J. Geophys. Res. 99:B23123–34
    [Google Scholar]
  108. Kagoshima T, Sano Y, Takahata N, Maruoka T, Fischer TP, Hattori K 2015. Sulphur geodynamic cycle. Sci. Rep. 5:18330
    [Google Scholar]
  109. Kalacheva EG, Taran YA, Voloshina EV, Kotenko TA 2018. Geochemistry of thermal waters of Ketoi Island, Kuril Island arc. J. Volcanol. Seismol. 12:3172–86
    [Google Scholar]
  110. Kelemen PB, Manning CE. 2015. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. PNAS 112:30E3997–4006
    [Google Scholar]
  111. Keller B, Schoene B. 2018. Plate tectonics and continental basaltic geochemistry throughout Earth history. Earth Planet. Sci. Lett. 481:290–304
    [Google Scholar]
  112. Kendrick MA. 2019a. Halogens in altered ocean crust from the East Pacific Rise (ODP/IODP Hole 1256D). Geochim. Cosmochim. Acta 261:93–112
    [Google Scholar]
  113. Kendrick MA. 2019b. Halogens in Atlantis Bank gabbros, SW Indian Ridge: implications for styles of seafloor alteration. Earth Planet. Sci. Lett. 514:96–107
    [Google Scholar]
  114. Kendrick MA, Danyushevsky LV, Falloon TJ, Woodhead JD, Arculus RJ, Ireland T 2020. SW Pacific arc and backarc lavas and the role of slab-bend serpentinites in the global halogen cycle. Earth Planet. Sci. Lett. 530:115921
    [Google Scholar]
  115. Kendrick MA, Hémond C, Kamenetsky VS, Danyushevsky L, Devey CW et al. 2017. Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere. Nat. Geosci. 10:3222–28
    [Google Scholar]
  116. Kendrick MA, Honda M, Oliver NHS, Phillips D 2011. The noble gas systematics of late-orogenic H2O–CO2 fluids, Mt Isa, Australia. Geochim. Cosmochim. Acta 75:61428–50
    [Google Scholar]
  117. Kendrick MA, Honda M, Pettke T, Scambelluri M, Phillips D, Giuliani A 2013. Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet. Sci. Lett. 365:86–96
    [Google Scholar]
  118. Kendrick MA, Jackson MG, Hauri EH, Phillips D 2015. The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: assimilated-seawater, EM2 and high-3He/4He components. Earth Planet. Sci. Lett. 410:197–209
    [Google Scholar]
  119. Kendrick MA, Jackson MG, Kent AJ, Hauri EH, Wallace PJ, Woodhead J 2014. Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem. Geol. 370:69–81
    [Google Scholar]
  120. Kendrick MA, Scambelluri M, Hermann J, Padrón-Navarta JA 2018. Halogens and noble gases in serpentinites and secondary peridotites: implications for seawater subduction and the origin of mantle neon. Geochim. Cosmochim. Acta 235:285–304
    [Google Scholar]
  121. Kerrick DM, Connolly JAD. 2001. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature 411:6835293–96
    [Google Scholar]
  122. Kobayashi M, Sumino H, Nagao K, Ishimaru S, Arai S et al. 2017. Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge. Earth Planet. Sci. Lett. 457:106–16
    [Google Scholar]
  123. Korenaga J. 2013. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41:117–51
    [Google Scholar]
  124. Korenaga J, Planavsky NJ, Evans DA 2017. Global water cycle and the coevolution of the Earth's interior and surface environment. Philos. Trans. R. Soc. A 375:20150393
    [Google Scholar]
  125. Krawczynski M, Grove TL. 2019. The super-hydrous component of the Mt. Shasta plumbing system. AGUFM 2019.T23G–0512
    [Google Scholar]
  126. Labidi J, Barry PH, Bekaert DV, Broadley MW, Marty B et al. 2020. Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen. Nature 580:7803367–71Shows that non-atmospheric, isotopically heavy N occurs in plume-derived samples, using clumped N isotopes.
    [Google Scholar]
  127. Labidi J, Cartigny P. 2016. Negligible sulfur isotope fractionation during partial melting: evidence from Garrett transform fault basalts, implications for the late-veneer and the hadean matte. Earth Planet. Sci. Lett. 451:196–207
    [Google Scholar]
  128. Labidi J, Cartigny P, Jackson MG 2015. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope ‘mantle array’ in chemical geodynamics. Earth Planet. Sci. Lett. 417:28–39
    [Google Scholar]
  129. Labidi J, Cartigny P, Moreira M 2013. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501:7466208–11
    [Google Scholar]
  130. le Roux PJ, Shirey SB, Hauri EH, Perfit MR, Bender JF 2006. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet. Sci. Lett. 251:3–4209–31
    [Google Scholar]
  131. Le Voyer M, Hauri EH, Cottrell E, Kelley KA, Salters VJ et al. 2019. Carbon fluxes and primary magma CO2 contents along the global mid‐ocean ridge system. Geochem. Geophys. Geosyst. 20:31387–424
    [Google Scholar]
  132. Le Voyer M, Kelley KA, Cottrell E, Hauri EH 2017. Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat. Commun. 8:114062
    [Google Scholar]
  133. Lécuyer C, Gillet P, Robert F 1998. The hydrogen-isotope composition of seawater and the global water cycle. Chem. Geol. 145:3–4249–61
    [Google Scholar]
  134. Lee H, Muirhead JD, Fischer TP, Ebinger CJ, Kattenhorn SA et al. 2016. Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9:2145–49
    [Google Scholar]
  135. Li K, Li L, Pearson DG, Stachel T 2019. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516:190–201
    [Google Scholar]
  136. Li L, Bebout GE. 2005. Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J. Geophys. Res. 110:B11B11202
    [Google Scholar]
  137. Li L, Bebout GE, Idleman BD 2007. Nitrogen concentration and δ15N of altered oceanic crust obtained on ODP Legs 129 and 185: insights into alteration-related nitrogen enrichment and the nitrogen subduction budget. Geochim. Cosmochim. Acta 71:92344–60
    [Google Scholar]
  138. Li L, Zheng Y-F, Cartigny C, Li J 2014. Anomalous nitrogen isotopes in ultrahigh-pressure metamorphic rocks from the Sulu orogenic belt: effect of abiotic nitrogen reduction during fluid–rock interaction. Earth Planetary Sci. Lett. 403:67–78
    [Google Scholar]
  139. Li M, Black B, Zhong S, Manga M, Rudolph ML, Olson P 2016. Quantifying melt production and degassing rate at mid‐ocean ridges from global mantle convection models with plate motion history. Geochem. Geophys. Geosyst. 17:72884–904
    [Google Scholar]
  140. Loewen MW, Graham DW, Bindeman IN, Lupton JE, Garcia MO 2019. Hydrogen isotopes in high 3He/4He submarine basalts: primordial versus recycled water and the veil of mantle enrichment. Earth Planet. Sci. Lett. 508:62–73
    [Google Scholar]
  141. Lorand JP, Luguet A. 2016. Chalcophile and siderophile elements in mantle rocks: trace elements controlled by trace minerals. Rev. Mineral. Geochem. 81:1441–88
    [Google Scholar]
  142. Mao HK, Hu Q, Yang L, Liu J, Kim DY et al. 2017. When water meets iron at Earth's core–mantle boundary. Natl. Sci. Rev. 4:6870–78
    [Google Scholar]
  143. Marty B. 2012. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313:56–66
    [Google Scholar]
  144. Marty B, Avice G, Bekaert DV, Broadley MW 2018. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. C. R. Geosci. 350:4154–63
    [Google Scholar]
  145. Marty B, Dauphas N. 2003. The nitrogen record of crust–mantle interaction and mantle convection from Archean to present. Earth Planet. Sci. Lett. 206:3–4397–410Introduced the notion that Earth's mantle evolved due to subduction of isotopically heavy sedimentary N.
    [Google Scholar]
  146. Marty B, Tolstikhin IN. 1998. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145:3–4233–48
    [Google Scholar]
  147. Marty B, Zimmermann L. 1999. Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition. Geochim. Cosmochim. Acta 63:213619–33
    [Google Scholar]
  148. Marty B, Zimmermann L, Pujol M, Burgess R, Philippot P 2013. Nitrogen isotopic composition and density of the Archean atmosphere. Science 342:6154101–4
    [Google Scholar]
  149. Matsuda JI, Nagao K. 1986. Noble gas abundances in a deep-sea sediment core from eastern equatorial Pacific. Geochem. J. 20:271–80
    [Google Scholar]
  150. Matsumoto T, Pinti DL, Matsuda JI, Umino S 2002. Recycled noble gas and nitrogen in the subcontinental lithospheric mantle: implications from N-He-Ar in fluid inclusions of SE Australian xenoliths. Geochem. J. 36:3209–17
    [Google Scholar]
  151. Mattey DP, Carr RH, Wright IP, Pillinger CT 1984. Carbon isotopes in submarine basalts. Earth Planet. Sci. Lett. 70:2196–206
    [Google Scholar]
  152. McCaig AM, Titarenko SS, Savov IP, Cliff RA, Banks D et al. 2018. No significant boron in the hydrated mantle of most subducting slabs. Nat. Commun. 9:14602
    [Google Scholar]
  153. McGovern PJ, Schubert G. 1989. Thermal evolution of the Earth: effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett. 96:1–227–37
    [Google Scholar]
  154. Michael PJ, Graham DW. 2015. The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts. Lithos 236:338–51
    [Google Scholar]
  155. Mikhail S, Sverjensky DA. 2014. Nitrogen speciation in upper-mantle fluids and the origin of Earth's nitrogen-rich atmosphere. Nat. Geosci. 7:11816–19
    [Google Scholar]
  156. Miller WG, Maclennan J, Shorttle O, Gaetani GA, Le Roux V, Klein F 2019. Estimating the carbon content of the deep mantle with Icelandic melt inclusions. Earth Planet. Sci. Lett. 523:115699
    [Google Scholar]
  157. Mitchell EC, Fischer TP, Hilton DR, Hauri EH, Shaw AM et al. 2010. Nitrogen sources and recycling at subduction zones: insights from the Izu‐Bonin‐Mariana arc. Geochem. Geophys. Geosyst. 11:2Q02X11
    [Google Scholar]
  158. Molnar P. 2019. Lower mantle dynamics perceived with 50 years of hindsight from plate tectonics. Geochem. Geophys. Geosyst. 20:125619–49
    [Google Scholar]
  159. Moore LR, Gazel E, Tuohy R, Lloyd AS, Esposito R et al. 2015. Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am. Mineral. 100:4806–23
    [Google Scholar]
  160. Moreira M, Kunz J, Allègre C 1998. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279:53541178–81
    [Google Scholar]
  161. Mori T, Shinohara H, Kazahaya K, Hirabayashi JI, Matsushima T et al. 2013. Time‐averaged SO2 fluxes of subduction‐zone volcanoes: example of a 32‐year exhaustive survey for Japanese volcanoes. J. Geophys. Res. Atmos. 118:158662–74
    [Google Scholar]
  162. Mukhopadhyay S. 2012. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486:7401101–4
    [Google Scholar]
  163. Muramatsu Y, Doi T, Tomaru H, Fehn U, Takeuchi R, Matsumoto R 2007. Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: implications for the origin of gas hydrates. Appl. Geochem. 22:3534–56
    [Google Scholar]
  164. Muramatsu Y, Wedepohl KH. 1998. The distribution of iodine in the earth's crust. Chem. Geol. 147:3–4201–16
    [Google Scholar]
  165. Nestola F, Smyth JR. 2016. Diamonds and water in the deep Earth: a new scenario. Int. Geol. Rev. 58:3263–76
    [Google Scholar]
  166. Nichols ARL, Carroll MR, Höskuldsson A 2002. Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth Planet. Sci. Lett. 202:177–87
    [Google Scholar]
  167. Nielsen SG, Shimizu N, Lee CTA, Behn MD 2014. Chalcophile behavior of thallium during MORB melting and implications for the sulfur content of the mantle. Geochem. Geophys. Geosyst. 15:124905–19
    [Google Scholar]
  168. Ozima M, Podosek FA. 2002. Noble Gas Geochemistry Cambridge, UK: Cambridge Univ. Press
  169. Palot M, Cartigny P, Harris JW, Kaminsky FV, Stachel T 2012. Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. Earth Planet. Sci. Lett. 357:179–93
    [Google Scholar]
  170. Parai R, Mukhopadhyay S. 2012. How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet. Sci. Lett. 317:39–406
    [Google Scholar]
  171. Parai R, Mukhopadhyay S. 2015. The evolution of MORB and plume mantle volatile budgets: constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochem. Geophys. Geosyst. 16:3719–35
    [Google Scholar]
  172. Parai R, Mukhopadhyay S. 2018. Xenon isotopic constraints on the history of volatile recycling into the mantle. Nature 560:7717223–27Investigated the evolution of Xe and H2O subduction rates through time, using Xe isotope systematics.
    [Google Scholar]
  173. Parai R, Mukhopadhyay S, Tucker JM, Pető MK 2019. The emerging portrait of an ancient, heterogeneous and continuously evolving mantle plume source. Lithos 346:105153
    [Google Scholar]
  174. Parsons B, Sclater JG. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82:5803–27
    [Google Scholar]
  175. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L et al. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:7491221–24
    [Google Scholar]
  176. Plank T. 2014. The chemical composition of subducting sediments. Treatise on Geochemistry HD Holland 607–29 Amsterdam: Elsevier
    [Google Scholar]
  177. Plank T, Kelley KA, Zimmer MM, Hauri EH, Wallace PJ 2013. Why do mafic arc magmas contain ∼4 wt% water on average. ? Earth Planet. Sci. Lett. 364:168–79
    [Google Scholar]
  178. Plank T, Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145:3–4325–94
    [Google Scholar]
  179. Plank T, Manning CE. 2019. Subducting carbon. Nature 574:7778343–52Provides an updated and comprehensive overview of C influx and outflux pathways.
    [Google Scholar]
  180. Porcelli D, Ballentine CJ. 2002. Models for distribution of terrestrial noble gases and evolution of the atmosphere. Rev. Mineral. Geochem. 47:1411–80
    [Google Scholar]
  181. Pyle DM, Mather TA. 2009. Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: a review. Chem. Geol. 263:1–4110–21
    [Google Scholar]
  182. Ranero CR, Morgan JP, McIntosh K, Reichert C 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:6956367–73
    [Google Scholar]
  183. Ratschbacher BC, Paterson SR, Fischer TP 2019. Spatial and depth‐dependent variations in magma volume addition and addition rates to continental arcs: application to global CO2 fluxes since 750 Ma. Geochem. Geophys. Geosyst. 20:62997–3018
    [Google Scholar]
  184. Resing JA, Lupton JE, Feely RA, Lilley MD 2004. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth Planet. Sci. Lett. 226:3–4449–64
    [Google Scholar]
  185. Richardson SH, Shirey SB, Harris JW, Carlson RW 2001. Archean subduction recorded by Re–Os isotopes in eclogitic sulfide inclusions in Kimberley diamonds. Earth Planet. Sci. Lett. 191:3–4257–66
    [Google Scholar]
  186. Roberge M, Bureau H, Bolfan-Casanova N, Frost DJ, Raepsaet C et al. 2015. Is the transition zone a deep reservoir for fluorine. ? Earth Planet. Sci. Lett. 429:25–32
    [Google Scholar]
  187. Rubie DC, Jacobson SA, Morbidelli A, O'Brien DP, Young ED et al. 2015. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248:89–108
    [Google Scholar]
  188. Ruscitto DM, Wallace PJ, Cooper LB, Plank T 2012. Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochem. Geophys. Geosyst. 13:3Q03025
    [Google Scholar]
  189. Saal AE, Hauri EH, Langmuir CH, Perfit MR 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper-mantle. Nature 419:6906451–55
    [Google Scholar]
  190. Saffer DM, Tobin HJ. 2011. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39:157–86
    [Google Scholar]
  191. Salters VJ, Stracke A. 2004. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5:5Q05B07
    [Google Scholar]
  192. Sano Y, Williams SN. 1996. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys. Res. Lett. 23:202749–52
    [Google Scholar]
  193. Schaefer L, Lodders K, Fegley B 2012. Vaporization of the Earth: application to exoplanet atmospheres. Astrophys. J. 755:141
    [Google Scholar]
  194. Shaw AM, Hauri EH, Behn MD, Hilton DR, Macpherson CG, Sinton JM 2012. Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nat. Geosci. 5:322428
    [Google Scholar]
  195. Shinohara H. 2013. Composition of volcanic gases emitted during repeating Vulcanian eruption stage of Shinmoedake, Kirishima volcano, Japan. Earth Planets Space 65:6667–75
    [Google Scholar]
  196. Shirey SB, Richardson SH. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333:6041434–36
    [Google Scholar]
  197. Simons K, Dixon J, Schilling JG, Kingsley R, Poreda R 2002. Volatiles in basaltic glasses from the Easter-Salas y Gomez seamount chain and Easter microplate: implications for geochemical cycling of volatile elements. Geochem. Geophys. Geosyst. 3:1039
    [Google Scholar]
  198. Smart KA, Tappe S, Stern RA, Webb SJ, Ashwal LD 2016. Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds. Nat. Geosci. 9:3255–59
    [Google Scholar]
  199. Smithsonian Inst 2013. Global volcanism program. Smithsonian Institution https://volcano.si.edu/gvp_votw.cfm
    [Google Scholar]
  200. Sobolev AV, Asafov EV, Gurenko AA, Arndt NT, Batanova VG et al. 2019. Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago. Nature 571:7766555–59
    [Google Scholar]
  201. Staudacher T, Allègre CJ. 1988. Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet. Sci. Lett. 89:2173–83
    [Google Scholar]
  202. Straub SM, Layne GD. 2003. The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim. Cosmochim. Acta 67:214179–203
    [Google Scholar]
  203. Stroncik NA, Haase KM. 2004. Chlorine in oceanic intraplate basalts: constraints on mantle sources and recycling processes. Geology 32:11945–48
    [Google Scholar]
  204. Thomson AR, Walter MJ, Kohn SC, Brooker RA 2016. Slab melting as a barrier to deep carbon subduction. Nature 529:758476–79
    [Google Scholar]
  205. Tollstrup D, Gill J, Kent A, Prinkey D, Williams R et al. 2010. Across‐arc geochemical trends in the Izu‐Bonin arc: contributions from the subducting slab, revisited. Geochem. Geophys. Geosyst. 11:1Q01X10
    [Google Scholar]
  206. Trieloff M, Kunz J, Allègre CJ 2002. Noble gas systematics of the Réunion mantle plume source and the origin of primordial noble gases in Earth's mantle. Earth Planet. Sci. Lett. 200:3–4297–313
    [Google Scholar]
  207. Tucker JM, Hauri EH, Pietruszka AJ, Garcia MO, Marske JP, Trusdell FA 2019. A high carbon content of the Hawaiian mantle from olivine-hosted melt inclusions. Geochim. Cosmochim. Acta 254:156–72
    [Google Scholar]
  208. Turner SJ, Langmuir CH. 2015. What processes control the chemical compositions of arc front stratovolcanoes. ? Geochem. Geophys. Geosyst. 16:61865–93
    [Google Scholar]
  209. Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science 268:5212858–61
    [Google Scholar]
  210. Unni CK, Schilling JG. 1978. Cl and Br degassing by volcanism along the Reykjanes Ridge and Iceland. Nature 272:564819–23
    [Google Scholar]
  211. van Hunen J, Moyen JF 2012. Archean subduction: fact or fiction. ? Annu. Rev. Earth Planet. Sci. 40:195–219
    [Google Scholar]
  212. van Keken PE, Wada I, Abers GA, Hacker BR, Wang K 2018. Mafic high‐pressure rocks are preferentially exhumed from warm subduction settings. Geochem. Geophys. Geosyst. 19:92934–61
    [Google Scholar]
  213. von Huene R, Ranero CR, Vannucchi P 2004. Generic model of subduction erosion. Geology 32:10913–16
    [Google Scholar]
  214. Wallace PJ. 1998. Water and partial melting in mantle plumes: inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophys. Res. Lett. 25:193639–42
    [Google Scholar]
  215. Wallace PJ. 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140:1–3217–40
    [Google Scholar]
  216. Walter MJ, Bulanova GP, Armstrong LS, Keshav S, Blundy JD et al. 2008. Primary carbonatite melt from deeply subducted oceanic crust. Nature 454:7204622–25
    [Google Scholar]
  217. Wang H, Weiss BP, Bai XN, Downey BG, Wang J et al. 2017. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355:6325623–27
    [Google Scholar]
  218. Warren JK. 2010. Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci. Rev. 98:3–4217–68
    [Google Scholar]
  219. Watenphul A, Wunder B, Heinrich W 2009. High-pressure ammonium-bearing silicates: implications for nitrogen and hydrogen storage in the Earth's mantle. Am. Mineral. 94:2–3283–92
    [Google Scholar]
  220. Werner C, Fischer TP, Aiuppa A, Edmonds M, Cardellini C et al. 2019. Carbon dioxide emissions from subaerial volcanic regions. Deep Carbon: Past to Present BN Orcutt, I Daniel, R Dasgupta 188–236 New York: Cambridge Univ. Press
    [Google Scholar]
  221. White WM. 2010. Oceanic island basalts and mantle plumes: the geochemical perspective. Annu. Rev. Earth Planet. Sci. 38:133–60
    [Google Scholar]
  222. Williams CD, Mukhopadhyay S. 2019. Capture of nebular gases during Earth's accretion is preserved in deep-mantle neon. Nature 565:773778–81
    [Google Scholar]
  223. Wilson CR, Spiegelman M, van Keken PE, Hacker BR 2014. Fluid flow in subduction zones: the role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401:261–74
    [Google Scholar]
  224. Workman RK, Hart SR. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231:1–253–72
    [Google Scholar]
  225. Workman RK, Hauri E, Hart SR, Wang J, Blusztajn J 2006. Volatile and trace elements in basaltic glasses from Samoa: implications for water distribution in the mantle. Earth Planet. Sci. Lett. 241:3–4932–51
    [Google Scholar]
  226. Wu J, Desch SJ, Schaefer L, Elkins‐Tanton LT, Pahlevan K, Buseck PR 2018. Origin of Earth's water: chondritic inheritance plus nebular ingassing and storage of hydrogen in the core. J. Geophys. Res. Planets 123:102691–712
    [Google Scholar]
  227. Yokochi R, Marty B. 2004. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225:1–277–88
    [Google Scholar]
  228. Zhang C, Cai Y, Xu H, Dong Q, Liu J, Hao R 2017. Mechanism of mineralization in the Changjiang uranium ore field, South China: evidence from fluid inclusions, hydrothermal alteration, and H–O isotopes. Ore Geol. Rev. 86:225–53
    [Google Scholar]
  229. Zhang Z, Dorfman SM, Labidi J, Zhang S, Li M et al. 2016. Primordial metallic melt in the deep mantle. Geophys. Res. Lett. 43:83693–99
    [Google Scholar]
  230. Zindler A, Hart S. 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14:493–571
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071620-055024
Loading
/content/journals/10.1146/annurev-earth-071620-055024
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error