1932

Abstract

Continuously operating global positioning system sites in the North Island of New Zealand have revealed a diverse range of slow motion earthquakes on the Hikurangi subduction zone. These slow slip events (SSEs) exhibit diverse characteristics, from shallow (<15 km), short (<1 month), frequent (every 1–2 years) events in the northern part of the subduction zone to deep (>30 km), long (>1 year), less frequent (approximately every 5 years) SSEs in the southern part of the subduction zone. Hikurangi SSEs show intriguing relationships to interseismic coupling, seismicity, and tectonic tremor, and they exhibit a diversity of interactions with large, regional earthquakes. Due to the marked along-strike variations in Hikurangi SSE characteristics, which coincide with changes in physical characteristics of the subduction margin, the Hikurangi subduction zone presents a globally unique natural laboratory to resolve outstanding questions regarding the origin of episodic, slow fault slip behavior.

  • ▪   New Zealand's Hikurangi subduction zone hosts slow slip events with a diverse range of depth, size, duration, and recurrence characteristics.
  • ▪   Hikurangi slow slip events show intriguing relationships with seismicity ranging from small earthquakes and tremor to larger earthquakes.
  • ▪   Slow slip events play a major role in the accommodation of plate motion at the Hikurangi subduction zone.
  • ▪   Many aspects of the Hikurangi subduction zone make it an ideal natural laboratory to resolve the physical processes controlling slow slip.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071719-055104
2020-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-071719-055104.html?itemId=/content/journals/10.1146/annurev-earth-071719-055104&mimeType=html&fmt=ahah

Literature Cited

  1. Ando R, Takeda N, Yamashita T 2012. Propagation dynamics of seismic and aseismic slip governed by fault heterogeneity and Newtonian rheology. J. Geophys. Res. 117:B11B11308
    [Google Scholar]
  2. Araki E, Saffer DM, Kopf A, Wallace LM, Kimura T et al. 2017. Recurring and triggered slow slip events near the trench at the Nankai Trough subduction megathrust. Science 356:1157–60
    [Google Scholar]
  3. Audet P, Bostock MG, Christensen NI, Peacock SM 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457:76–78
    [Google Scholar]
  4. Barker DHN, Henrys S, Tontini FC, Barnes PM, Bassett D et al. 2018. Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor and the north Hikurangi subduction zone, New Zealand. Geophys. Res. Lett. 45:12804–13
    [Google Scholar]
  5. Barnes JD, Cullen J, Barker S, Agostini S, Penniston-Dorland S et al. 2019. The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand. Geosphere 15:642–58
    [Google Scholar]
  6. Barnes PM, Lamarche G, Bialas J, Pecher I, Henrys S et al. 2010. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Mar. Geol. 272:26–48
    [Google Scholar]
  7. Barnes PM, Mercier de Lépinay B, Collot J-Y, Delteil J, Audru J-C, GeodyNZ Team 1998. South Hikurangi GeodyNZ Swath Maps: Depths, Texture and Geological Interpretation, Scale 1:500,000 N. Z. Oceanogr. Inst. Chart, Misc. Ser. 75 Wellington, N. Z: Natl. Inst. Water Atmos. Res.
  8. Barnes PM et al. 2020. Slow slip source characterized by lithological and geometric heterogeneity. Sci. Adv. 6(13):eaay3314
    [Google Scholar]
  9. Bartlow NM, Wallace LM, Beavan RJ, Bannister S, Segall P 2014. Time-dependent modeling of slow slip events and associated seismicity and tremor at the Hikurangi subduction margin, New Zealand. J. Geophys. Res. Solid Earth 119:734–53
    [Google Scholar]
  10. Bassett D, Sutherland R, Henrys S 2014. Slow wavespeeds and fluid overpressure in a region of shallow geodetic locking and slow slip, Hikurangi subduction margin, New Zealand. Earth Planet. Sci. Lett. 389:1–13
    [Google Scholar]
  11. Beanland S, Haines J. 1998. The kinematics of active deformation in the North Island, New Zealand, determined from geological strain rates. N. Z. J. Geol. Geophys. 41:311–23
    [Google Scholar]
  12. Beavan J, Tregoning P, Bevis M, Kato T, Meertens C 2002. Motion and rigidity of the Pacific Plate and implications for plate boundary deformation. J. Geophys. Res. 107:B10ETG 19–115
    [Google Scholar]
  13. Beavan J, Wallace L, Douglas A, Fletcher H 2007. Slow slip events on the Hikurangi subduction interface, New Zealand. Dynamic Planet, Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools P Tregoning, C Rizos 438–44 Berlin: Springer
    [Google Scholar]
  14. Beavan J, Wallace L, Palmer N, Denys P, Ellis S et al. 2016. New Zealand GPS velocity field: 1995–2013. N. Z. J. Geol. Geophys. 59:5–14
    [Google Scholar]
  15. Bekaert DPS, Hooper A, Wright TJ 2015. Reassessing the 2006 Guerrero slow-slip event, Mexico: implications for large earthquakes in the Guerrero Gap. J. Geophys. Res. Solid Earth 120:1357–75
    [Google Scholar]
  16. Bell R, Sutherland R, Barker DHN, Henrys S, Bannister S et al. 2010. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys. J. Int. 180:134–48
    [Google Scholar]
  17. Brudzinski MR, Hinojosa‐Prieto HR, Schlanser KM, Cabral‐Cano E, Arciniega‐Ceballos A et al. 2010. Nonvolcanic tremor along the Oaxaca segment of the Middle America subduction zone. J. Geophys. Res. 115:B8B00A23
    [Google Scholar]
  18. Bürgmann R. 2018. The geophysics, geology, and mechanics of slow fault slip. Earth Planet. Sci. Lett. 495:112–34
    [Google Scholar]
  19. Bürgmann R, Chadwell D. 2014. Seafloor geodesy. Annu. Rev. Earth Planet. Sci. 42:509–34
    [Google Scholar]
  20. Chamberlain CJ, Shelly DR, Townend J, Stern TA 2014. Low-frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine Fault, New Zealand. Geochem. Geophys. Geosyst. 15:2984–99
    [Google Scholar]
  21. Chesley C, Naif S, Key K 2019. HT-RESIST: Hikurangi Trench regional electromagnetic survey to image the subduction thrust. GeoPRISMS Newsl 42:14–19
    [Google Scholar]
  22. Clark K, Howarth J, Litchfield N, Cochran U, Turnbull J et al. 2019. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin. N. Z. Mar. Geol. 412:139–72
    [Google Scholar]
  23. Davis EE, Villinger H, Sun T 2015. Slow and delayed deformation and uplift of the outermost subduction prism following ETS and seismogenic slip events beneath Nicoya Peninsula, Costa Rica. Earth Planet. Sci. Lett. 410:117–27
    [Google Scholar]
  24. Davy B, Hoernle K, Werner R 2008. Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history. Geochem. Geophys. Geosyst. 9:Q07004
    [Google Scholar]
  25. Delahaye EJ, Townend J, Reyners ME, Rodgers G 2009. Microseismicity but no tremor accompanying slow slip in the Hikurangi subduction zone, New Zealand. Earth Planet. Sci. Lett. 277:21–28
    [Google Scholar]
  26. Dimitrova L, Wallace L, Haines J, Williams C 2016. High-resolution view of active tectonic deformation along the Hikurangi subduction margin and the Taupo Volcanic Zone, New Zealand. N. Z. J. Geol. Geophys. 59:43–57
    [Google Scholar]
  27. Dixon TH, Jiang Y, Malservisi R, McCaffrey R, Voss N et al. 2014. Earthquake and tsunami forecasts: relation of slow slip events to subsequent earthquake rupture. PNAS 111:4817039–44
    [Google Scholar]
  28. Doser DI, Webb TH. 2003. Source parameters of large historical (1917–1961) earthquakes, North Island, New Zealand. Geophys. J. Int. 152:795–832
    [Google Scholar]
  29. Douglas A, Beavan J, Wallace L, Townend J 2005. Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophys. Res. Lett. 32:L16305
    [Google Scholar]
  30. Dragert H, Kelin W, James TS 2001. A silent slip event on the deeper Cascadia subduction interface. Science 292:1525–28
    [Google Scholar]
  31. Eberhart-Phillips D, Bannister S. 2015. 3-D imaging of the northern Hikurangi subduction zone, New Zealand: variations in subducted sediment, slab fluids and slow slip. Geophys. J. Int. 201:838–55
    [Google Scholar]
  32. Eberhart-Phillips E, Bannister S, Reyners M 2017. Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P- and S-wave attenuation. Geophys. J. Int. 211:1054–67
    [Google Scholar]
  33. Eberhart-Phillips D, Chadwick M, Bannister S 2008. Three-dimensional attenuation structure of central and southern South Island, New Zealand, from local earthquakes. J. Geophys. Res. 113:B5B05308
    [Google Scholar]
  34. Eberhart-Phillips D, Reyners M, Bannister S, Chadwick M, Ellis S 2010. Establishing a versatile 3-D seismic velocity model for New Zealand. Seismol. Res. Lett. 81:6992–1000
    [Google Scholar]
  35. Fagereng A, Ellis S. 2009. On factors controlling the depth of intersesimic coupling on the Hikurangi subduction interface, New Zealand. Earth Planet. Sci. Lett. 278:120–30
    [Google Scholar]
  36. Francois-Holden C, Bannister S, Beavan J, Cousins J, Field B et al. 2008. The MW 6.6 Gisborne earthquake of 2007: preliminary records and general source characterisation. Bull. N. Z. Soc. Earthq. Eng. 41:4266–77
    [Google Scholar]
  37. Fry B, Chao K, Bannister S, Peng Z, Wallace L 2011. Deep tremor in New Zealand triggered by the 2010 Mw8.8 Chile earthquake. Geophys. Res. Lett. 38:L15306
    [Google Scholar]
  38. Gale N, Gledhill K, Chadwick M, Wallace L 2015. The Hikurangi margin continuous GNSS and seismograph network of New Zealand. Seismol. Res. Lett. 86:1101–8
    [Google Scholar]
  39. Hamling IJ, D'Anastasio E, Wallace LM, Ellis S, Motagh M et al. 2014. Crustal deformation and stress transfer during a propagating earthquake sequence: the 2013 Cook Strait sequence, central New Zealand. J. Geophys. Res. Solid Earth 119:6080–92
    [Google Scholar]
  40. Hamling IJ, Hreinsdóttir S. 2016. Reactivated afterslip induced by a large regional earthquake, Fiordland, New Zealand. Geophys. Res. Lett. 43:2526–33
    [Google Scholar]
  41. Hamling IJ, Hreinsdóttir S, Clark K, Eliot J, Liang C et al. 2017. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science 356:eaam7194
    [Google Scholar]
  42. Hamling IJ, Wallace LM. 2015. Silent triggering: aseismic crustal faulting induced by a subduction slow slip event. Earth Planet. Sci. Lett. 421:13–19
    [Google Scholar]
  43. Hawthorne JC, Bartlow NM. 2018. Observing and modeling the spectrum of a slow slip event. J. Geophys. Res. Solid Earth 123:4243–65
    [Google Scholar]
  44. Heise W, Caldwell TG, Bannister S, Bertrand EA, Ogawa Y et al. 2017. Mapping subduction interface coupling using magnetotellurics: Hikurangi margin, New Zealand. Geophys. Res. Lett. 44:9261–66
    [Google Scholar]
  45. Heise W, Caldwell TG, Bertrand EA, Hill GJ, Bennie SL, Ogawa Y 2013. Changes in electrical resistivity track changes in tectonic plate coupling. Geophys. Res. Lett. 40:5029–33
    [Google Scholar]
  46. Hirose J, Hirahara K, Kimata F, Fjii N, Miyazaki S 1999. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bongo Channel, southwest Japan. Geophys. Res. Lett. 26:3237–40
    [Google Scholar]
  47. Ide S. 2012. Variety and spatial heterogeneity of tectonic tremor worldwide. J. Geophys. Res. 117:B3B03302
    [Google Scholar]
  48. Jacobs KM, Savage MK, Smith ECG 2016. Quantifying seismicity associated with slow slip events in the Hikurangi margin, New Zealand. N. Z. J. Geol. Geophys. 59:58–69
    [Google Scholar]
  49. Kamei R, Pratt RG, Tsuji T 2012. Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone. Earth Planet. Sci. Lett. 317:343–53
    [Google Scholar]
  50. Kanamori H, Kikuchi M. 1993. The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature 361:714–16
    [Google Scholar]
  51. Kaneko Y, Ito Y, Chow B, Wallace LM, Tape C et al. 2019. Ultralong duration of seismic ground motion arising from a thick, low-velocity sedimentary wedge. J. Geophys. Res. Solid Earth 124:10347–59
    [Google Scholar]
  52. Kim MJ, Schwartz SY, Bannister S 2011. Non‐volcanic tremor associated with the March 2010 Gisborne slow slip event at the Hikurangi subduction margin, New Zealand. Geophys. Res. Lett. 38:L14301
    [Google Scholar]
  53. Kodaira S, Iidaka T, Kato A, Park JO, Iwasaki T, Kaneda Y 2004. High pore fluid pressure may cause silent slip in the Nankai Trough. Science 304:1295–98
    [Google Scholar]
  54. Koulali A, McClusky S, Wallace L, Allgeyer S, Tregoning P et al. 2017. Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: northern Hikurangi subduction, New Zealand. Geophys. Res. Lett. 44:8336–44
    [Google Scholar]
  55. Lavier LL, Bennett RA, Duddu R 2013. Creep events at the brittle ductile transition. Geochem. Geophys. Geosyst. 14:3334–51
    [Google Scholar]
  56. Lay T, Schwartz SY. 2004. Comment on “Coupling semantics and science in earthquake research. .” Eos Trans. AGU 85:36339–40
    [Google Scholar]
  57. Lewis KB, Collot J-Y, Davy BW, Delteil J, Lallemand SE et al. 1997. North Hikurangi GeodyNZ Swath Maps: Depth, Texture and Geological Interpretation N. Z. Oceanogr. Inst. Chart, Misc. Ser. 72 Wellington, N. Z: Natl. Inst. Water Atmos. Res.
  58. Lewis KB, Collot J-Y, Lallemande SE 1998. The dammed Hikurangi Trough: a channel-fed trench blocked by subducting seamounts and their wake avalanches (New Zealand–France GeodyNZ Project). Basin Res 10:4441–68
    [Google Scholar]
  59. Litchfield N, Ellis S, Berryman K, Nicol A 2007. Insights into subduction-related uplift along the Hikurangi Margin, New Zealand, using numerical modeling. J. Geophys. Res. 112:F2F02021
    [Google Scholar]
  60. Liu Y, Rice JR. 2007. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. 112:B9B09404
    [Google Scholar]
  61. Matsuzawa T, Hirose H, Shibazaki B, Obara K 2010. Modeling short‐ and long‐term slow slip events in the seismic cycles of large subduction earthquakes. J. Geophys. Res. 115:B12B12301
    [Google Scholar]
  62. McCaffrey R, Wallace LM, Beavan J 2008. Slow slip and frictional transition at low temperature at the Hikurangi subduction zone. Nat. Geosci. 1:316–20
    [Google Scholar]
  63. MGL1801 Particip 2018. The NZ3D experiment—adding a new dimension for understanding slow slip events. GeoPRISMS Newsl 40:14–15
    [Google Scholar]
  64. Mochizuki K, Sutherland R, Henrys S, Bassett D, van Avendonk H et al. 2019. Recycling of depleted continental mantle by subduction and plumes at the Hikurangi Plateau large igneous province, southwestern Pacific Ocean. Geology 47:795–98
    [Google Scholar]
  65. Mortimer N, Parkinson D. 1996. Hikurangi Plateau: a Cretaceous large igneous province in the southwest Pacific Ocean. J. Geophys. Res. 101:B1687–96
    [Google Scholar]
  66. Nicol A, Mazengarb C, Chanier F, Rait G, Uruski C, Wallace L 2007. Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene. Tectonics 26:TC4002
    [Google Scholar]
  67. Obara K, Hirose H. 2006. Non-volcanic deep low-frequency tremors accompanying slow slips in the southwest Japan subduction zone. Tectonophysics 417:1–233–51
    [Google Scholar]
  68. Obara K, Hirose H, Yamamizu F, Kasahara K 2004. Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31:L23602
    [Google Scholar]
  69. Ohta Y, Freymueller J, Hreinsdóttir S, Suito H 2006. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth Planet. Sci. Lett. 247:108–16
    [Google Scholar]
  70. Oleskevich DA, Hyndman RD, Wang K 1999. The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, Chile. J. Geophys. Res. 104:B714965–91
    [Google Scholar]
  71. Ozawa S, Suito H, Tobita M 2007. Occurrence of quasi-periodic slow slip off the east coast of the Boso peninsula, central Japan. Earth Planets Space 59:1241–45
    [Google Scholar]
  72. Radiguet M, Cotton F, Vergnolle M, Campillo M, Walpersdorf A et al. 2012. Slow slip events and strain accumulation in the Guerrero gap, Mexico. J. Geophys. Res. 117:B4B04305
    [Google Scholar]
  73. Reyes AG, Christenson BW, Faure K 2010. Sources of solutes and heat in low-enthalpy mineral waters and their relation to tectonic setting, New Zealand. J. Volcanol. Geotherm. Res. 192:117–41
    [Google Scholar]
  74. Reyners M, Bannister S. 2007. Earthquakes triggered by slow slip at the plate interface in the Hikurangi subduction zone, New Zealand. Geophys. Res. Lett. 34:L14305
    [Google Scholar]
  75. Reyners M, Eberhart-Phillips D. 2009. Small earthquakes provide insight into plate coupling and fluid distribution in the Hikurangi subduction zone, New Zealand. Earth Planet. Sci. Lett. 282:1–4299–305
    [Google Scholar]
  76. Rogers G, Dragert H. 2003. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300:1942–43
    [Google Scholar]
  77. Romanet P, Ide S. 2019. Ambient tectonic tremors in Manawatu, Cape Turnagain, Marlborough, and Puysegur, New Zealand. Earth Planets Space 71:59
    [Google Scholar]
  78. Ruff LJ. 1989. Do trench sediments affect great earthquake occurrence in subduction zones. ? Pure Appl. Geophys. 129:1–2263–82
    [Google Scholar]
  79. Saffer DM, Wallace LM. 2015. The frictional, hydrologic, metamorphic, and thermal habitat of shallow slow earthquakes. Nat. Geosci. 8:594–600
    [Google Scholar]
  80. Saffer DM, Wallace LM, Petronotis K 2018. Expedition 375 Preliminary Report: Hikurangi Subduction Margin Coring and Observatories La Jolla, CA: Int. Ocean Discov. Program http://publications.iodp.org/preliminary_report/375/
  81. Scholz CH. 1990. The Mechanics of Earthquakes and Faulting New York: Cambridge Univ. Press
  82. Schwartz SY, Rokosky JM. 2007. Slow slip events and seismic tremor at circum‐Pacific subduction zones. Rev. Geophys. 45:RG3004
    [Google Scholar]
  83. Shaddox HR, Schwartz SY. 2019. Subducted seamount diverts shallow slow slip to the forearc of the northern Hikurangi subduction zone, New Zealand. Geology 47:415–18
    [Google Scholar]
  84. Shelly DR, Beroza GC, Ide S, Nakamula S 2006. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442:188–91
    [Google Scholar]
  85. Skarbek RM, Rempel AW, Schmidt DA 2012. Geologic heterogeneity can produce aseismic slip transients. Geophys. Res. Lett. 39:L21306
    [Google Scholar]
  86. Solomon E, Harris R, Torres M 2018. Probing the nature of the Hikurangi margin hydrogeologic system. GeoPRISMS Newsl 40:9–11
    [Google Scholar]
  87. Todd EK, Schwartz SY. 2016. Tectonic tremor along the northern Hikurangi Margin, New Zealand, between 2010 and 2015. J. Geophys. Res. Solid Earth 121:8706–19
    [Google Scholar]
  88. Todd EK, Schwartz SY, Mochizuki K, Wallace LM, Sheehan AF et al. 2018. Earthquakes and tremor linked to seamount subduction during shallow slow slip at the Hikurangi Margin, New Zealand. J. Geophys. Res. Solid Earth 123:6769–83
    [Google Scholar]
  89. Vallée M et al. 2013. Intense interface seismicity triggered by a shallow slow slip event in the Central Ecuador subduction zone. J. Geophys. Res. Solid Earth 118:2965–81
    [Google Scholar]
  90. Wallace LM, Barnes P, Beavan RJ, Van Dissen RJ, Litchfield NJ et al. 2012a. The kinematics of a transition from subduction to strike-slip: an example from the central New Zealand plate boundary. J. Geophys. Res. 117:B2B02405
    [Google Scholar]
  91. Wallace LM, Bartlow N, Hamling I, Fry B 2014. Quake clamps down on slow slip. Geophys. Res. Lett.418840–46
    [Google Scholar]
  92. Wallace LM, Beavan J. 2010. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J. Geophys. Res. 115:B12B12402
    [Google Scholar]
  93. Wallace LM, Beavan J, Bannister S, Williams CA 2012b. Simultaneous long- and short-term slow slip events at the Hikurangi subduction margin, New Zealand: implications for processes that control slow slip event occurrence, duration, and migration. J. Geophys. Res. 117:B11B11402
    [Google Scholar]
  94. Wallace LM, Beavan J, McCaffrey R, Darby D 2004. Subduction zone coupling and tectonic block rotation in the North Island, New Zealand. J. Geophys. Res. 109:B12B12406
    [Google Scholar]
  95. Wallace LM, Beavan RJ. 2006. A large slow slip event on the central Hikurangi subduction interface beneath the Manawatu region, North Island, New Zealand. Geophys. Res. Lett. 33:L11301
    [Google Scholar]
  96. Wallace LM, Eberhart-Phillips D. 2013. Newly observed, deep slow slip events at the central Hikurangi margin, New Zealand: implications for downdip variability of slow slip and tremor, and relationship to seismic structure. Geophys. Res. Lett.405393–98
    [Google Scholar]
  97. Wallace LM, Fagereng Å, Ellis S 2012c. Upper plate tectonic stress state may influence interseismic coupling on subduction megathrusts. Geology 40:895–98
    [Google Scholar]
  98. Wallace LM, Hreinsdóttir S, Ellis S, Hamling I, D'Anastasio E, Denys P 2018. Triggered slow slip and afterslip on the southern Hikurangi subduction zone following the Kaikōura earthquake. Geophys. Res. Lett. 45:4710–18
    [Google Scholar]
  99. Wallace LM, Kaneko Y, Hreinsdóttir S, Hamling I, Peng Z et al. 2017. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nat. Geosci. 10:765–70
    [Google Scholar]
  100. Wallace LM, Reyners M, Cochran U, Bannister S, Barnes PM et al. 2009. Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand. Geochem. Geophys. Geosyst. 10:Q10006
    [Google Scholar]
  101. Wallace LM, Webb SC, Ito Y, Mochizuki K, Hino R et al. 2016. Slow slip near the trench at the Hikurangi subduction zone. Science 352:6286701–4
    [Google Scholar]
  102. Walter JI, Schwartz SY, Protti M, Gonzalez V 2013. The synchronous occurrence of shallow tremor and very low frequency earthquakes offshore of the Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 40:1517–22
    [Google Scholar]
  103. Wang K, Bilek SL. 2014. Invited review paper: fault creep caused by subduction of rough seafloor relief. Tectonophysics 610:1–24
    [Google Scholar]
  104. Wannamaker PE, Jiracek GR, Stodt JA, Caldwell TG, Gonzalez VM et al. 2002. Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. J. Geophys. Res. 107:B6ETG 6–120
    [Google Scholar]
  105. Warren-Smith E, Fry B, Kaneko Y, Chamberlain CJ 2018. Foreshocks and delayed triggering of the 2016 Mw 7.1 Te Araroa earthquake and dynamic reinvigoration of its aftershock sequence by the Mw 7.8 Kaikoura earthquake, New Zealand. Earth Planet. Sci. Lett. 482:265–76
    [Google Scholar]
  106. Warren-Smith E, Fry B, Wallace L, Chon E, Henrys S et al. 2019. Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip. Nat. Geosci. 12:475–81
    [Google Scholar]
  107. Wech AG, Boese CM, Stern TA, Townend J 2012. Tectonic tremor and deep slow slip on the Alpine Fault. Geophys. Res. Lett. 39:L10303
    [Google Scholar]
  108. Wech AG, Creager K. 2011. A continuum of stress, strength and slip in the Cascadia subduction zone. Nat. Geosci. 4:624–28
    [Google Scholar]
  109. Wei M, Kaneko Y, Liu Y, McGuire J 2013. Episodic fault creep events in California controlled by shallow frictional heterogeneity. Nat. Geosci. 6:566–70
    [Google Scholar]
  110. Williams CA, Eberhart-Phillips D, Bannister S, Barker DHN, Henrys S et al. 2013. Revised interface geometry for the Hikurangi subduction zone, New Zealand. Seismol. Res. Lett. 84:1066–73
    [Google Scholar]
  111. Williams CA, Wallace LM. 2015. Effects of material property variations on slip estimates for subduction interface slow-slip events. Geophys. Res. Lett. 42:1113–21
    [Google Scholar]
  112. Williams CA, Wallace LM. 2018. The impact of realistic elastic properties on inversions of shallow subduction interface slow slip events using seafloor geodetic data. Geophys. Res. Lett. 45:7462–70
    [Google Scholar]
  113. Yabe S, Ide S, Yoshioka S 2014. Along-strike variations in temperature and tectonic tremor activity along the Hikurangi subduction zone, New Zealand. Earth Planets Space 66:142
    [Google Scholar]
  114. Yarce J, Sheehan AF, Nakai JS, Schwartz SY, Mochizuki K et al. 2019. Seismicity at the northern Hikurangi Margin, New Zealand, and investigation of the potential spatial and temporal relationships with a shallow slow slip event. J. Geophys. Res. Solid Earth 124:4751–66
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071719-055104
Loading
/content/journals/10.1146/annurev-earth-071719-055104
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error