1932

Abstract

Pluto and Charon are strikingly diverse in their range of geologies, surface compositions, and crater retention ages. This is despite the two having similar densities and presumed bulk compositions. Much of Pluto's surface reflects surface-atmosphere interactions and the mobilization of volatile ices by insolation. Abundant evidence, including past and present N ice glacial activity, implies that Pluto has undergone substantial climate evolution. An ancient impact basin contains a massive, convectively overturning N ice reservoir, whose position and surrounding tectonics suggest a subsurface ocean. Aligned blades of methane ice hundreds of meters tall, found only at high altitude, likely cover much of Pluto's low latitudes and may be a consequence of obliquity variation–driven volatile migration. Multikilometer-high possible cryovolcanic constructs and apparent fissure eruptions indicate relatively late endogenic activity on Pluto. Pluto's range of surface ages is extreme, whereas Charon's surface, while old, displays a large resurfaced plain and a globally engirdling extensional tectonic network attesting to earlier endogenic vigor.

  • ▪   The vast N ice sheet Sputnik Planitia controls Pluto's atmosphere and climate, comparable in importance with the role of Greenland and Antarctica on the climate of Earth.
  • ▪   Spectacular evidence for erosion such as now-unoccupied glacial valley networks implies a vigorous early climate, and more widespread N ice glaciation, on Pluto.
  • ▪   Geological activity on both bodies requires or required sustained internal heat release and suggests a past (Charon) or present (Pluto) ammoniated, subsurface ocean.
  • ▪   The varieties of geologic experience witnessed on Pluto and Charon should play out among the many and varied dwarf planets of the Kuiper belt.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071720-051448
2021-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-071720-051448.html?itemId=/content/journals/10.1146/annurev-earth-071720-051448&mimeType=html&fmt=ahah

Literature Cited

  1. Arakawa S, Hyodo R, Genda H 2019. Early formation of moons around large trans-Neptunian objects via giant impacts. Nat. Astron. 3:802–7
    [Google Scholar]
  2. Barr AC, Schwamb ME. 2016. Interpreting the densities of the Kuiper belt's dwarf planets. MNRAS 460:1542–48
    [Google Scholar]
  3. Barucci MA, Merlin F. 2020. Surface composition of Trans-Neptunian objects. The Trans-Neptunian Solar System D Prialnik, MA Barucci, LA Young 109–26 Amsterdam: Elsevier
    [Google Scholar]
  4. Beeman M, Durham WB, Kirby SH 1988. Friction of ice. J. Geophys. Res. 93:B77625–33
    [Google Scholar]
  5. Bertrand T, Forget F. 2016. Observed glacier and volatile distribution on Pluto from atmosphere-topography processes. Nature 540:86–89
    [Google Scholar]
  6. Bertrand T, Forget F, Umurhan OM, Grundy WM, Schmitt B et al. 2018. The nitrogen cycles on Pluto over seasonal and astronomical timescales. Icarus 309:277–96
    [Google Scholar]
  7. Bertrand T, Forget F, Umurhan OM, Moore JM, Young LA et al. 2019. The CH4 cycles on Pluto over seasonal and astronomical timescales. Icarus 329:148–65
    [Google Scholar]
  8. Bertrand T, Forget F, White O, Schmitt B, Stern SA et al. 2020. Pluto's beating heart regulates the atmospheric circulation: results from high-resolution and multiyear numerical climate simulations. J. Geophys. Res. Planets 125:e06120
    [Google Scholar]
  9. Beyer RA, Nimmo F, McKinnon WB, Moore JM, Binzel RP et al. 2017. Charon tectonics. Icarus 287:161–74
    [Google Scholar]
  10. Beyer RA, Spencer JR, McKinnon WB, Nimmo F, Beddingfield C et al. 2019. The nature and origin of Charon's smooth plains. Icarus 323:16–32
    [Google Scholar]
  11. Bierson CJ, Nimmo F, McKinnon WB 2018. Implications of the observed Pluto–Charon density contrast. Icarus 309:207–19
    [Google Scholar]
  12. Bierson CJ, Nimmo F, Stern SA 2020. Evidence for a hot start and early ocean on Pluto. Nat. Geosci. 13:468–72
    [Google Scholar]
  13. Binzel RP, Earle AM, Buie MW, Young LA, Stern SA et al. 2017. Climate zones on Pluto and Charon. Icarus 287:30–36
    [Google Scholar]
  14. Braga-Ribas F, Sicardy B, Ortiz JL, Lellouch E, Tancredi G et al. 2013. The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. Astrophys. J. 773:26
    [Google Scholar]
  15. Brown ME. 2013. On the size, shape, and density of dwarf planet Makemake. Astrophys. J. Lett. 767:L7
    [Google Scholar]
  16. Brown ME, Burgasser AJ, Fraser WC 2011. The surface composition of large Kuiper belt object 2007 OR10. Astrophys. J. 738:L26
    [Google Scholar]
  17. Brown ME, Butler BJ. 2018. Medium-sized satellites of large Kuiper Belt objects. Astron. J. 156:164
    [Google Scholar]
  18. Brown ME, Schaller EL. 2007. The mass of dwarf planet Eris. Science 316:1585
    [Google Scholar]
  19. Brozović M, Showalter M, Jacobson RA, Buie MW 2015. The orbits and masses of satellites of Pluto. Icarus 246:317–29
    [Google Scholar]
  20. Buhler PB, Ingersoll AP. 2018. Sublimation pit distribution indicates convection cell surface velocities of ∼10 cm per year in Sputnik Planitia, Pluto. Icarus 300:327–40
    [Google Scholar]
  21. Buie MW, Grundy WM, Young EF, Young LA, Stern SA 2010. Pluto and Charon with the Hubble Space Telescope. II. Resolving changes on Pluto's surface and a map for Charon. Astron. J. 139:1128–43
    [Google Scholar]
  22. Buratti BJ, Hofgartner JD, Hicks MD, Weaver HA, Stern SA et al. 2017. Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus 287:207–17
    [Google Scholar]
  23. Canup RM. 2005. A giant impact origin of Pluto-Charon. Science 307:546–50
    [Google Scholar]
  24. Canup RM. 2011. On a giant impact origin of Charon, Nix, and Hydra. Astron. J. 141:35–44
    [Google Scholar]
  25. Canup RM, Kratter KM, Neveu M 2021. On the origin of the Pluto system. See Stern et al. 2021, in press
  26. Chen HZ, Yin A. 2019. Tectonic history of the Oz Terra of Charon as revealed by systematic structural mapping Presented at Pluto System After New Horizons, Jul. 14–18 Laurel, MD: Abstr. 7007
  27. Cheng WH, Lee MH, Peale SJ 2014. Complete tidal evolution of Pluto–Charon. Icarus 233:242–58
    [Google Scholar]
  28. Cook JC, Dalle Ore CM, Protopapa S, Binzel RP, Cartwright R et al. 2018. Composition of Pluto's small satellites: analysis of New Horizons spectral images. Icarus 315:30–45
    [Google Scholar]
  29. Cook JC, Dalle Ore CM, Protopapa S, Binzel RP, Cruikshank DP et al. 2019. The distribution of H2O, CH3OH, and hydrocarbon-ices on Pluto: analysis of New Horizons spectral images. Icarus 331:148–69
    [Google Scholar]
  30. Croft SK, Kargel JS, Kirk RL, Moore JM, Schenk PM, Strom RG 1995. The geology of Triton. Neptune and Triton DP Cruikshank 879–947 Tucson: Univ. Ariz. Press
    [Google Scholar]
  31. Cruikshank DP, Dalle Ore CM, Scipioni F, Beyer RA, White OL et al. 2020. Cryovolcanic flooding in Viking Terra on Pluto. Icarus 356:113786
    [Google Scholar]
  32. Cruikshank DP, Grundy WM, DeMeo FE, Buie MW, Binzel RP et al. 2015. The surface compositions of Pluto and Charon. Icarus 246:82–92
    [Google Scholar]
  33. Cruikshank DP, Grundy WM, Protopapa S, Schmitt B, Linscott IR 2021. Surface composition of Pluto. See Stern et al. 2021, in press
  34. Cruikshank DP, Roush TL, Moore JM, Sykes MV, Owen TC et al. 1997. The surfaces of Pluto and Charon. Pluto and Charon SA Stern, DJ Tholen 221–67 Tucson: Univ. Ariz. Press
    [Google Scholar]
  35. Cruikshank DP, Umurhan OM, Beyer RA, Schmitt B, Keane JT et al. 2019. Recent cryovolcanism in Virgil Fossae on Pluto. Icarus 330:155–68
    [Google Scholar]
  36. Dalle Ore CM, Cruikshank DP, Protopapa S, Scipioni F, McKinnon WB et al. 2019. Detection of ammonia on Pluto's surface in a region of geologically recent tectonism. Sci. Adv. 5:eaav5731
    [Google Scholar]
  37. Dalle Ore CM, Protopapa S, Cook JA, Grundy WM, Cruikshank DP et al. 2018. Ices on Charon: distribution of H2O and NH3 from New Horizons LEISA observations. Icarus 300:21–32
    [Google Scholar]
  38. de Sousa Robeiro R, Morbidelli A, Raymond SN, Izidoro A, Gomes R, Neto EV 2020. Dynamical evidence for an early giant planet instability. Icarus 339:113605
    [Google Scholar]
  39. Dobrovolskis AR, Peale SJ, Harris AW 1997. Dynamics of the Pluto-Charon binary. Pluto and Charon SA Stern, DJ Tholen 159–90 Tucson: Univ. Ariz. Press
    [Google Scholar]
  40. Durham WB, Kirby SH, Stern LA, Zhang W 2003. The strength and rheology of methane clathrate hydrate. J. Geophys. Res. 108:B42182
    [Google Scholar]
  41. Fornasier E, Lellouch E, Müller T, Santos-Sanz P, Panuzzo P et al. 2013. “TNOs are cool”: a survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of 9 bright targets at 70–500 μm. Astron. Astrophys. 555:A15
    [Google Scholar]
  42. Fraser WC, Brown ME, Morbidelli A, Parker A, Batygin K 2014. The absolute magnitude distribution of Kuiper belt objects. Astrophys. J. 782:100
    [Google Scholar]
  43. Fray N, Schmitt B. 2009. Sublimation of ices of astrophysical interest: a bibliographic review. Planet. Space Sci. 57:2053–80
    [Google Scholar]
  44. Gladman B, Marsden BG, VanLaerhoven C 2008. Nomenclature in the outer Solar System. The Solar System Beyond Neptune MA Barucci, H Boehnhardt, D Cruikshank, A Morbidelli 43–57 Tucson: Univ. Ariz. Press
    [Google Scholar]
  45. Gladstone GR, Stern SA, Ennico K, Olkin CB, Weaver HA et al. 2016. The atmosphere of Pluto as observed by New Horizons. Science 351:aad8866
    [Google Scholar]
  46. Gladstone GR, Young LA. 2019. New Horizons observations of the atmosphere of Pluto. Annu. Rev. Earth Planet. Sci. 57:119–40
    [Google Scholar]
  47. Glein CR, Waite JH. 2018. Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto. Icarus 313:79–92
    [Google Scholar]
  48. Gomes R, Levison HF, Tsiganis K, Morbidelli A 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–69
    [Google Scholar]
  49. Greenstreet S, Gladman B, McKinnon WB 2015. Impact and cratering rates onto Pluto. Icarus 258:267–88 Corrigendum. 2016. Icarus 274:366–67
    [Google Scholar]
  50. Grundy WM, Bertrand T, Binzel RP, Buie MW, Buratti BJ et al. 2018. Pluto's haze as a surface material. Icarus 314:232–45
    [Google Scholar]
  51. Grundy WM, Binzel RP, Buratti BJ, Cook JC, Cruikshank DP et al. 2016a. Surface compositions across Pluto and Charon. Science 351:aad9189
    [Google Scholar]
  52. Grundy WM, Cruikshank DP, Gladstone GR, Howett CJA, Lauer TR et al. 2016b. The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature 539:65–68
    [Google Scholar]
  53. Grundy WM, McKinnon WB, Ammannito E, Aung M, Bellerose J et al. 2009. Exploration strategy for the ice dwarf planets 20132022 White Pap., Natl. Acad. Sci Washington, DC:
    [Google Scholar]
  54. Hansen C, Nimmo F, Mitchell C, Quick L 2018. Triton's plumes—insights into Triton's ocean world status Presented at 42nd COSPAR Scientific Assembly, Jul. 14–22 Pasadena, CA: Abstr. B5.3-6-18
  55. Head JW, Fassett CI, Kadish SJ, Smith DE, Zuber MT et al. 2010. Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science 329:1504–7
    [Google Scholar]
  56. Helfenstein P, Thomas PC, Veverka J 1989. Evidence from Voyager II photometry for early resurfacing of Umbriel. Nature 338:324–26
    [Google Scholar]
  57. Holler BJ, Young LA, Bus S, Protopapa S 2017. Methanol ice on Kuiper Belt objects 2007 OR10 and Salacia: implications for formation and dynamical evolution. Europ. Planet. Sci. Congr. 11:EPSC2017–330
    [Google Scholar]
  58. Howard AD, Moore JM, Umurhan OM, White OL, Anderson RS et al. 2017a. Present and past glaciation on Pluto. Icarus 287:287–300
    [Google Scholar]
  59. Howard AD, Moore JM, White OL, Umurhan OM, Schenk PM et al. 2017b. Pluto: pits and mantles on uplands north and east of Sputnik Planitia. Icarus 293:218–30
    [Google Scholar]
  60. Hussmann H, Choblet G, Lainey V, Matson DL, Sotin C et al. 2010. Implications of rotation, orbital states, energy sources, and heat transport for internal processes in icy satellites. Space Sci. Rev. 153:317–48
    [Google Scholar]
  61. Jakosky BM, Carr MH. 1985. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 315:559–61
    [Google Scholar]
  62. Jankowski DG, Chyba CF, Nicholson PD 1989. On the obliquity and tidal heating of Triton. Icarus 80:211–19
    [Google Scholar]
  63. Jankowski DG, Squyres SW. 1988. Solid-state ice volcanism on the satellites of Uranus. Science 241:1322–25
    [Google Scholar]
  64. Johnson BC, Bowling TJ, Trowbridge AJ, Freed AM 2016. Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean. Geophys. Res. Lett. 43:10068–77
    [Google Scholar]
  65. Kamata S, Nimmo F, Sekine Y, Kuramoto K, Noguchi N et al. 2019. Pluto's ocean is capped and insulated by gas hydrates. Nat. Geosci. 12:407–10
    [Google Scholar]
  66. Kargel JS. 1992. Ammonia-water volcanism on icy satellites: phase relations at 1 atmosphere. Icarus 100:556–74
    [Google Scholar]
  67. Kargel JS, Croft SK, Lunine JI, Lewis JS 1991. Rheological properties of ammonia-water liquids and crystal-liquid slurries: planetological applications. Icarus 89:93–112
    [Google Scholar]
  68. Keane JT, Matsuyama I, Kamata S, Steckloff JK 2016. Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 540:90–93
    [Google Scholar]
  69. Kirchoff MR, Bierhaus EB, Dones L, Robbins SJ, Singer KN et al. 2018. Cratering histories in the Saturnian system. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 267–84 Tucson: Univ. Ariz. Press
    [Google Scholar]
  70. Kiss C, Martona G, Parker AH, Grundy WM, Farkas-Takácsa A 2019. The mass and density of the dwarf planet (225088) 2007 OR10. Icarus 334:3–10
    [Google Scholar]
  71. Leinhardt Z, Kraus RA, Stewart ST 2010. The formation of the collisional family around the dwarf planet Haumea. Astrophys. J. 714:1789–99
    [Google Scholar]
  72. Levison HF, Morbidelli A, Vokrouhlický D, Bottke WF 2008. On a scattered-disk origin for the 2003 EL61 collisional family—an example of the importance of collisions on the dynamics of small bodies. Astron. J. 136:1079–88
    [Google Scholar]
  73. Lopes RMC, Kirk RL, Mitchell KL, LeGall A, Barnes JW et al. 2013. Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J. Geophys. Res. Planets 118:416–35
    [Google Scholar]
  74. Malhotra R, Williams JG. 1997. Pluto's heliocentric orbit. Pluto and Charon SA Stern, DJ Tholen 127–57 Tucson: Univ. Ariz. Press
    [Google Scholar]
  75. McKinnon WB. 1989. On the origin of the Pluto-Charon binary. Astrophys. J. 344:L41–44
    [Google Scholar]
  76. McKinnon WB. 2015. Introduction to ‘Pluto, Charon, and the Kuiper Belt objects’: Pluto on the eve of the New Horizons encounter. Treatise on Geophysics 10 G Schubert 637–51 Amsterdam: Elsevier. , 2nd. ed.
    [Google Scholar]
  77. McKinnon WB, Glein CR, Bertrand T, Rhoden AR 2021. Formation, composition, and history of the Pluto system: a post-New-Horizons synthesis. See Stern, et al. 2021, in press
  78. McKinnon WB, Lunine JI, Banfield D 1995. Origin and evolution of Triton. Neptune and Triton DP Cruikshank 807–77 Tucson: Univ. Ariz. Press
    [Google Scholar]
  79. McKinnon WB, Nimmo F, Wong T, Schenk PM, White OL et al. 2016. Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour. Nature 534:82–85
    [Google Scholar]
  80. McKinnon WB, Stern SA, Weaver HA, Nimmo F, Bierson CJ et al. 2017. Origin of the Pluto–Charon system: constraints from the New Horizons flyby. Icarus 287:2–11
    [Google Scholar]
  81. Melosh HJ. 2011. Planetary Surface Processes Cambridge, UK: Cambridge Univ. Press
  82. Melosh HJ, Freed AM, Johnson BC, Blair DM, Andrews-Hanna JC et al. 2013. The origin of lunar mascon basins. Science 340:1552–55
    [Google Scholar]
  83. Melosh HJ, Janes DM. 1989. Ice volcanism on Ariel. Science 245:195–96
    [Google Scholar]
  84. Moore JM, Howard AD. 2021. The landscapes of Pluto as witness to climate evolution. See Stern, et al. 2021, in press
  85. Moore JM, Howard AD, Schenk PM, McKinnon WB, Pappalardo RT et al. 2015. Geology before Pluto: pre-encounter considerations. Icarus 246:65–81
    [Google Scholar]
  86. Moore JM, Howard AD, Umurhan OM, White OL, Schenk PM et al. 2018. Bladed terrain on Pluto: possible origins and evolution. Icarus 300:129–44
    [Google Scholar]
  87. Moore JM, McKinnon WB, Spencer JR, Howard AD, Schenk PM et al. 2016. The geology of Pluto and Charon through the eyes of New Horizons. Science 351:1284–93
    [Google Scholar]
  88. Moores JE, Smith CL, Toigo AD, Guzewich SD 2017. Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature 541:188–90
    [Google Scholar]
  89. Morbidelli A, Nesvorný D. 2020. Kuiper belt: formation and evolution. The Trans-Neptunian Solar System D Prialnik, MA Barucci, LA Young 25–59 Amsterdam: Elsevier
    [Google Scholar]
  90. Nesvorný D. 2018. Dynamical evolution of the early Solar System. Annu. Rev. Astron. Astrophys. 56:137–74
    [Google Scholar]
  91. Nesvorný D, Vokrouhlický D. 2016. Neptune's orbital migration was grainy, not smooth. Astrophys. J. 825:94
    [Google Scholar]
  92. Nimmo F, Hamilton DP, McKinnon WB, Schenk PM, Binzel RP et al. 2016. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540:94–96
    [Google Scholar]
  93. Nimmo F, McKinnon WB. 2021. Geodynamics of Pluto. See Stern, et al. 2021, in press
  94. Nimmo F, Spencer JR. 2015. Powering Triton's recent geological activity by obliquity tides: implications for Pluto geology. Icarus 246:2–10
    [Google Scholar]
  95. Nimmo F, Umurhan O, Lisse CM, Bierson CJ, Lauer T et al. 2017. Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287:12–29
    [Google Scholar]
  96. Nogueira E, Brasser R, Gomes R 2011. Reassessing the origin of Triton. Icarus 214:113–30
    [Google Scholar]
  97. Olkin CB, Spencer JR, Grundy WM, Parker AH, Beyer RA et al. 2017. The global color of Pluto from New Horizons. Astron. J. 154:258
    [Google Scholar]
  98. Ortiz JL, Santos-Sanz P, Sicardy B, Benedetti-Rossi G, Bérard D et al. 2017. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature 550:219–23
    [Google Scholar]
  99. Ortiz JL, Sicardy B, Braga-Ribas F, Alvarez-Candal A, Lellouch E et al. 2012. Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature 49:566–69
    [Google Scholar]
  100. Pál E, Kiss C, Müller TG, Santos-Sanz P, Vilenius E et al. 2012. “TNOs are cool”: a survey of the trans-Neptunian region. VII. Size and surface characteristics of (90377) Sedna and 2010 EK139. Astron. Astrophys. 541:L6
    [Google Scholar]
  101. Petit J-M, Kavelaars JJ, Gladman BJ, Jones RL, Parker JW et al. 2011. The Canada-France Ecliptic Plane Survey—full data release: the orbital structure of the Kuiper Belt. Astron. J. 142:131–55
    [Google Scholar]
  102. Protopapa S, Grundy WM, Reuter DC, Hamilton DP, Dalle Ore CM et al. 2017. Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus 287:218–28
    [Google Scholar]
  103. Reuter DC, Stern SA, Scherrer J, Jennings DE, Baer JW et al. 2008. Ralph: a visible/infrared imager for the New Horizons Pluto/Kuiper Belt mission. Space Sci. Rev. 140:129–54
    [Google Scholar]
  104. Robbins SJ, Singer KN, Bray VJ, Schenk P, Lauer TR et al. 2017. Craters of the Pluto-Charon system. Icarus 287:187–206
    [Google Scholar]
  105. Rommel FL, Braga-Ribas F, Pereira CL, Desmars J, Santos-Sanz P et al. 2020. Results on stellar occultations by (307261) 2002 MS4. Europ. Planet. Sci. Congr. 14:EPSC2020–866
    [Google Scholar]
  106. Schaller EL, Brown ME. 2007. Volatile loss and retention on Kuiper belt objects. Astrophys. J. 659:L61–64
    [Google Scholar]
  107. Schenk PM. 1991. Fluid volcanism on Miranda and Ariel: flow morphology and composition. J. Geophys. Res. 96:B21887–906
    [Google Scholar]
  108. Schenk PM, Beyer RA, McKinnon WB, Moore JM, Spencer JR et al. 2018a. Basins, fractures and volcanoes: global cartography and topography of Pluto from New Horizons. Icarus 314:400–33
    [Google Scholar]
  109. Schenk PM, Beyer RA, McKinnon WB, Moore JM, Spencer JR et al. 2018b. Breaking up is hard to do: global cartography and topography of Pluto's mid-sized icy moon Charon from New Horizons. Icarus 315:124–45
    [Google Scholar]
  110. Schenk PM, Jackson MPA. 1993. Diapirism on Triton: a record of crustal layering and instability. Geology 21:299–302
    [Google Scholar]
  111. Schenk PM, White OL, Byrne PK, Moore JM 2018c. Saturn's other icy moons: geologically complex worlds in their own right. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 237–65 Tucson: Univ. Ariz. Press
    [Google Scholar]
  112. Schenk PM, Zahnle KJ 2007. On the negligible surface age of Triton. Icarus 192:135–49
    [Google Scholar]
  113. Schmitt B, Philippe S, Grundy WM, Reuter DC, Côte R et al. 2017. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287:229–60
    [Google Scholar]
  114. Sicardy B, Ortiz JL, Assafin M, Jehin E, Maury A et al. 2011. A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature 478:493–96
    [Google Scholar]
  115. Singer KN, Greenstreet S, Schenk PM, Robbins SJ, Bray VJ 2021. Impact craters on Pluto and Charon and terrain age estimates. See Stern, et al. 2021, in press
  116. Singer KN, McKinnon WB, Gladman B, Greenstreet S, Bierhaus EB et al. 2019. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science 363:955–59
    [Google Scholar]
  117. Skjetne HE, Singer KN, Hynek BM, Knight KI, Schenk PM et al. 2020. Morphological comparison of blocks in chaos terrains on Pluto, Europa, and Mars. Icarus 2020:113866
    [Google Scholar]
  118. Smith BA, Soderblom L, Banfield D, Barnet C, Basilevsky AT et al. 1989. Voyager 2 at Neptune: imaging science results. Science 246:1422–49
    [Google Scholar]
  119. Smith BA, Soderblom L, Batson R, Bridges P, Inge J et al. 1982. A new look at the Saturn system: the Voyager 2 images. Science 215:504–37
    [Google Scholar]
  120. Smith BA, Soderblom L, Beebe R, Boyce J, Briggs G et al. 1981. Encounter with Saturn: Voyager 1 imaging science results. Science 212:163–91
    [Google Scholar]
  121. Spencer J, Beyer R, Robbins S, Singer K, Nimmo F 2021. The geology and geophysics of Charon. See Stern, et al. 2021, in press
  122. Spencer JR, Nimmo F, Ingersoll AP, Hurford TA, Kite ES et al. 2018. Plume origins and plumbing: from ocean to surface. Enceladus and the Icy Moons of Saturn PM Schenk, RN Clark, CJA Howett, AJ Verbiscer, JH Waite 165–74 Tucson: Univ. Ariz. Press
    [Google Scholar]
  123. Spencer JR, Stansberry JA, Trafton LM, Young EF, Binzel RP et al. 1997. Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto. Pluto and Charon SA Stern, DJ Tholen 435–73 Tucson: Univ. Ariz. Press
    [Google Scholar]
  124. Stern SA. 1991. On the number of planets in the outer Solar System: evidence of a substantial population of 1000-km bodies. Icarus 90:271–81
    [Google Scholar]
  125. Stern SA, Bagenal F, Ennico K, Gladstone GR, Grundy WM et al. 2015. The Pluto system: initial results from its exploration by New Horizons. Science 350:aad1815
    [Google Scholar]
  126. Stern SA, Binzel RP, Earle AM, Singer KN, Young LA et al. 2017a. Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287:47–53
    [Google Scholar]
  127. Stern SA, Binzel RP, Grundy WM, Moore JM, Young LA 2021. The Pluto System After New Horizons Tucson: Univ. Ariz. Press
  128. Stern SA, Grundy WM, McKinnon WB, Weaver HA, Young LA 2018. The Pluto system after New Horizons. Annu. Rev. Astron. Astrophys 56:357–92
    [Google Scholar]
  129. Stern SA, Kammer JA, Gladstone GR, Steffl AJ, Cheng AF et al. 2017b. New Horizons constraints on Charon's present day atmosphere. Icarus 287:124–30
    [Google Scholar]
  130. Stern SA, McKinnon WB. 2000. Triton's surface image and impactor population revisited in light of Kuiper belt fluxes: evidence for small Kuiper belt objects and recent geological activity. Astron. J. 119:945–52
    [Google Scholar]
  131. Stern SA, White OL, McGovern PJ, Keane KT, Conrad JW et al. 2020. Pluto's far side. Icarus 356:113805
    [Google Scholar]
  132. Stevenson DJ. 1982. Volcanism and igneous processes in small icy satellites. Nature 298:142–44
    [Google Scholar]
  133. Telfer MW, Parteli EJR, Radebaugh J, Beyer RA, Bertrand T et al. 2018. Dunes and orthogonal wind streaks on Pluto. Science 360:992–97
    [Google Scholar]
  134. Vilella K, Deschamps F. 2017. Thermal convection as a possible mechanism for the origin of polygonal structure on Pluto's surface. J. Geophys. Res. Planets 122:1056–76
    [Google Scholar]
  135. Vilenius E, Kiss C, Mommert M, Müller T, Santos-Sanz P et al. 2012. “TNOs are cool”: a survey of the trans-Neptunian region. VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects. Astron. Astrophys. 541:A94
    [Google Scholar]
  136. Weaver HA, Buie MW, Buratti BJ, Grundy WM, Lauer TR et al. 2016. The small satellites of Pluto as observed by New Horizons. Science 351:aae0030
    [Google Scholar]
  137. Weaver HA, Gibson WC, Tapley MB, Young LA, Stern SA 2008. Overview of the New Horizons science payload. Space Sci. Rev. 140:75–91
    [Google Scholar]
  138. White OL, Moore JM, Howard AD, McKinnon WB, Keane JT et al. 2019. Washboard and fluted terrains on Pluto as evidence for ancient glaciation. Nat. Astron. 3:62–68
    [Google Scholar]
  139. White OL, Moore JM, Howard AD, Schenk PM, Singer KN et al. 2021. The geology of Pluto. See Stern, et al. 2021, in press
  140. White OL, Moore JM, McKinnon WB, Spencer JR, Howard AD et al. 2017. Geological mapping of Sputnik Planitia on Pluto. Icarus 287:261–86
    [Google Scholar]
  141. Young LA, Kammer JA, Steffl AJ, Gladstone GR, Summers ME et al. 2018. Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation. Icarus 300:174–99
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071720-051448
Loading
/content/journals/10.1146/annurev-earth-071720-051448
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error