1932

Abstract

The rise of molecular oxygen (O) in the atmosphere and oceans was one of the most consequential changes in Earth's history. While most research focuses on the Great Oxidation Event (GOE) near the start of the Proterozoic Eon—after which O became irreversibly greater than 0.1% of the atmosphere—many lines of evidence indicate a smaller oxygenation event before this time, at the end of the Archean Eon (2.5 billion years ago). Additional evidence of mild environmental oxidation—probably by O—is found throughout the Archean. This emerging evidence suggests that the GOE might be best regarded as the climax of a broader First Redox Revolution (FRR) of the Earth system characterized by two or more earlier Archean Oxidation Events (AOEs). Understanding the timing and tempo of this revolution is key to unraveling the drivers of Earth's evolution as an inhabited world—and has implications for the search for life on worlds beyond our own.

  • ▪   Many inorganic geochemical proxies suggest that biological O production preceded Earth's GOE by perhaps more than 1 billion years.
  • ▪   Early O accumulation may have been dynamic, with at least two AOEs predating the GOE. If so, the GOE was the climax of an extended period of environmental redox instability.
  • ▪   We should broaden our focus to examine and understand the entirety of Earth's FRR.

Keyword(s): ArcheanGOEoxygenRedox Revolutionwhiff
Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-072020-055249
2021-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-072020-055249.html?itemId=/content/journals/10.1146/annurev-earth-072020-055249&mimeType=html&fmt=ahah

Literature Cited

  1. Albut G, Babechuk MG, Kleinhanns IC, Benger M, Beukes NJ et al. 2018. Modern rather than Mesoarchean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa). Geochim. Cosmochim. Acta 228:157–89
    [Google Scholar]
  2. Algeo TJ, Lyons TW. 2006. Mo–total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21:1PA1016
    [Google Scholar]
  3. Alibert C, McCulloch MT. 1993. Rare earth element and neodymium isotopic compositions of the banded iron-formations and associated shales from Hamersley, Western Australia. Geochim. Cosmochim. Acta 57:187–204
    [Google Scholar]
  4. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B et al. 2007. A whiff of oxygen before the Great Oxidation Event?. Science 317:1903–6
    [Google Scholar]
  5. Anbar AD, Holland HD. 1992. The photochemistry of manganese and the origin of banded iron formations. Geochim. Cosmochim. Acta 56:2595–603
    [Google Scholar]
  6. Archer C, Vance D. 2008. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat. Geosci. 1:597–600
    [Google Scholar]
  7. Aulbach S, Stagno V. 2016. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44:751–54
    [Google Scholar]
  8. Barling J, Arnold GL, Anbar AD. 2001. Natural mass-dependent variations in isotopic composition of molybdenum. Earth Planet. Sci. Lett. 193:447–57
    [Google Scholar]
  9. Beard BL, Johnson CM. 1999. High precision iron isotope measurements of terrestrial and lunar materials. Geochim. Cosmochim. Acta 63:1653–60
    [Google Scholar]
  10. Bekker A, Holland HD, Wang P, Rumble D, Stein HJ et al. 2004. Dating the rise of atmospheric oxygen. Nature 427:117–20
    [Google Scholar]
  11. Bennett WW, Canfield DE. 2020. Redox-sensitive trace metals as paleoredox proxies: a review and analysis of data from modern sediments. Earth Sci. Rev. 204:103175
    [Google Scholar]
  12. Beukes NJ, Dorland H, Gutzmer J, Nedachi M, Ohmoto H. 2002. Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30:491–94
    [Google Scholar]
  13. Bosak T, Knoll AH, Petroff AP. 2013. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 41:21–44
    [Google Scholar]
  14. Bosak T, Liang B, Sim MS, Petroff AP 2009. Morphological record of oxygenic photosynthesis in conical stromatolites. PNAS 106:10939–43
    [Google Scholar]
  15. Braterman PS, Cairns-Smith AG, Sloper SW. 1983. Photooxidation of hydrated Fe2+—significance for banded iron formations. Nature 303:163–64
    [Google Scholar]
  16. Brocks JJ, Logan GA, Buick R, Summons RE. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–36
    [Google Scholar]
  17. Brüske A, Martin AN, Rammensee P, Eroglu S, Lazarov M et al. 2020. The onset of oxidative weathering traced by uranium isotopes. Precambrian Res 338:105583
    [Google Scholar]
  18. Buick R. 1992. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77
    [Google Scholar]
  19. Cabral AR, Creaser RA, Nägler T, Lehmann B, Voegelin AR et al. 2013. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil. Chem. Geol. 362:91–104
    [Google Scholar]
  20. Calvert SE, Pedersen TF. 1996. Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ. Geol. 91:36–47
    [Google Scholar]
  21. Catling DC. 2014. The Great Oxidation Event transition. Treatise on Geochemistry HD Holland, KK Turekian 177–95 Oxford, UK: Elsevier. , 2nd ed..
    [Google Scholar]
  22. Catling DC, Zahnle KJ. 2020. The Archean atmosphere. Sci. Adv. 6:eaax1420
    [Google Scholar]
  23. Catling DC, Zahnle KJ, McKay CP. 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293:839–43
    [Google Scholar]
  24. Cloud PE. 1968. Atmospheric and hydrospheric evolution on the primitive Earth. Science 160:729–36
    [Google Scholar]
  25. Crowe SA, Døssing LN, Beukes NJ, Bau M, Kruger SJ et al. 2013. Atmospheric oxygenation three billion years ago. Nature 501:535–38
    [Google Scholar]
  26. Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR et al. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron–molybdenum isotope fractionation. Geochim. Cosmochim. Acta 86:118–37
    [Google Scholar]
  27. Daye M, Klepac-Ceraj V, Pajusalu M, Rowland S, Farrell-Sherman A et al. 2019. Light-driven anaerobic microbial oxidation of manganese. Nature 576:311–14
    [Google Scholar]
  28. de Kock MO, Evans DAD, Beukes NJ. 2009. Validating the existence of Vaalbara in the Neoarchean. Precambrian Res 174:145–54
    [Google Scholar]
  29. Duan Y, Anbar AD, Arnold GL, Lyons TW, Gordon GW, Kendall B 2010. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim. Cosmochim. Acta 74:6656–68
    [Google Scholar]
  30. Eickmann B, Hofmann A, Wille M, Bui T, Wing BA, Schoenberg R. 2018. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat. Geosci. 11:133–38
    [Google Scholar]
  31. Eigenbrode JL, Freeman KH 2006. Late Archean rise of aerobic microbial ecosystems. PNAS 103:15759–64
    [Google Scholar]
  32. Ellis AS, Johnson TM, Bullen TD. 2002. Chromium isotopes and the fate of hexavalent chromium in the environment. Science 295:2060–62
    [Google Scholar]
  33. Eroglu S, Schoenberg R, Wille M, Beukes N, Taubald H. 2015. Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58–2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa. Precambrian Res 266:27–46
    [Google Scholar]
  34. Eroglu S, van Zuilen MA, Taubald H, Drost K, Wille M et al. 2017. Depth-dependent δ13C trends in platform and slope settings of the Campbellrand-Malmani carbonate platform and possible implications for Early Earth oxygenation. Precambrian Res 302:122–39
    [Google Scholar]
  35. Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–58
    [Google Scholar]
  36. Fennel K, Follows M, Falkowski PG. 2005. The co-evolution of the nitrogen, carbon, and oxygen cycles in the Proterozoic ocean. Am. J. Sci. 305:526–45
    [Google Scholar]
  37. Fike DA, Bradley AS, Rose CV. 2015. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet. Sci. 43:593–622
    [Google Scholar]
  38. Fischer WW, Hemp J, Johnson JE. 2016. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44:647–83
    [Google Scholar]
  39. Fischer WW, Schroeder S, Lacassie JP, Beukes NJ, Goldberg T et al. 2009. Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. Precambrian Res 169:15–27
    [Google Scholar]
  40. Flannery DT, Walter MR. 2011. Archean tufted microbial mats and the Great Oxidation Event: new insights into an ancient problem. Aust. J. Earth Sci. 59:1–11
    [Google Scholar]
  41. Frei R, Crowe SA, Bau M, Polat A, Fowle DA, Døssing LN. 2016. Oxidative elemental cycling under the low O2 Eoarchean atmosphere. Sci. Rep. 6:21058
    [Google Scholar]
  42. Frei R, Gaucher C, Poulton SW, Canfield DE. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–53
    [Google Scholar]
  43. French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA et al. 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. PNAS 112:5915–20
    [Google Scholar]
  44. Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR et al. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43:1075–90
    [Google Scholar]
  45. Gaillard F, Scaillet B, Arndt NT. 2011. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–32
    [Google Scholar]
  46. Garvin J, Buick R, Anbar AD, Arnold GL, Kaufman AJ. 2009. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323:1045–48
    [Google Scholar]
  47. Gaschnig RM, Rudnick RL, McDonough WF, Kaufman AJ, Hu Z, Gao S. 2014. Onset of oxidative weathering of continents recorded in the geochemistry of ancient glacial diamictites. Earth Planet. Sci. Lett. 408:87–99
    [Google Scholar]
  48. Godfrey LV, Falkowski PG. 2009. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2:725–29
    [Google Scholar]
  49. Goldberg T, Archer C, Vance D, Poulton SW. 2009. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochim. Cosmochim. Acta 73:6502–16
    [Google Scholar]
  50. Goldblatt C, Lenton TM, Watson AJ. 2006. Bistability of atmospheric oxygen and the Great Oxidation. Nature 443:683–86
    [Google Scholar]
  51. Greaney AT, Rudnick RL, Romaniello SJ, Johnson AC, Gaschnig RM, Anbar AD. 2020. Molybdenum isotope fractionation in glacial diamictites tracks the onset of oxidative weathering of the continental crust. Earth Planet. Sci. Lett. 534:116083
    [Google Scholar]
  52. Greber ND, Puchtel IS, Nägler TF, Mezger K. 2015. Komatiites constrain molybdenum isotope composition of the Earth's mantle. Earth Planet. Sci. Lett. 421:129–38
    [Google Scholar]
  53. Gregory DD, Large RR, Halpin JA, Steadman JA, Hickman AH et al. 2015. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analysis. Geochim. Cosmochim. Acta 149:223–50
    [Google Scholar]
  54. Gumsley AP, Chamberlain KR, Bleeker W, Söderlund U, de Kock MO et al. 2017. Timing and tempo of the Great Oxidation Event. PNAS 114:1811–16
    [Google Scholar]
  55. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE. 2002. Calibration of sulfate levels in the Archean ocean. Science 298:2372–74
    [Google Scholar]
  56. Hao J, Knoll AH, Huang F, Schieber J, Hazen RM, Daniel I 2020. Cycling phosphorus on the Archean Earth: Part II. Phosphorous limitation on primary production in Archean ecosystems. Geochim. Cosmochim. Acta 280:360–77
    [Google Scholar]
  57. Hoashi M, Bevacqua DC, Otake T, Watanabe Y, Hickman AH et al. 2009. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nat. Geosci. 2:301–6
    [Google Scholar]
  58. Holland HD. 1962. Model for the evolution of the Earth's atmosphere. Petrologic Studies: A Volume in Honor of A.F. Buddington AEJ Engel, HI James, BF Leonard 447–77 Boulder, CO: Geol. Soc. Am.
    [Google Scholar]
  59. Holland HD. 1984. The Chemical Evolution of the Atmosphere and Oceans Princeton, NJ: Princeton Univ. Press
  60. Holland HD. 2009. Why the atmosphere became oxygenated: a proposal. Geochim. Cosmochim. Acta 73:5241–55
    [Google Scholar]
  61. Homann M, Heubeck C, Airo A, Tice MM. 2015. Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Goup, Barberton Greenstone Belt, South Africa). Precambrian Res 266:47–64
    [Google Scholar]
  62. Johnson AC, Romaniello SJ, Reinhard CT, Gregory DD, Garcia-Robledo E et al. 2019. Experimental determination of pyrite and molybdenite oxidation kinetics at nanomolar oxygen concentrations. Geochim. Cosmochim. Acta 249:160–72
    [Google Scholar]
  63. Johnson JE, Gerpheide A, Lamb MP, Fischer WW. 2014. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126:813–30
    [Google Scholar]
  64. Johnson JE, Webb SM, Ma C, Fischer WW. 2016. Manganese mineralogy and diagenesis in the sedimentary rock record. Geochim. Cosmochim. Acta 173:210–31
    [Google Scholar]
  65. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW 2013. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. PNAS 110:1123843
    [Google Scholar]
  66. Johnson TM, Herbel MJ, Bullen TD, Zawislanski PT. 1999. Selenium isotope ratios as indicators of selenium sources and oxyanion reduction. Geochim. Cosmochim. Acta 63:2775–83
    [Google Scholar]
  67. Johnston DT, Poulton SW, Dehler C, Porter S, Husson J et al. 2010. An emerging picture of Neoproterozoic ocean chemistry: insights from the Chuar Group, Grand Canyon, USA. Earth Planet. Sci. Lett. 290:64–73
    [Google Scholar]
  68. Jung H, Chadha TS, Kim D, Biswas P, Jun YS. 2017. Photochemically assisted fast abiotic oxidation of manganese and formation of δ-MnO2 nanosheets in nitrate solution. Chem. Commun. 53:4445–48
    [Google Scholar]
  69. Kadoya S, Catling DC, Nicklas RW, Puchtel IS, Anbar AD. 2020. Mantle data imply a decline of oxidizable volcanic gases could have triggered the Great Oxidation. Nat. Commun. 11:2774
    [Google Scholar]
  70. Kamber BS, Whitehouse MJ. 2006. Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology 5:5–17
    [Google Scholar]
  71. Kanzaki Y, Murakami T. 2016. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 174:263–90
    [Google Scholar]
  72. Kappler A, Pasquero C, Konhauser KO, Newman DK. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865–68
    [Google Scholar]
  73. Kasting JF. 1992. Models relating to Proterozoic atmospheric and ocean chemistry. The Proterozoic Biosphere: A Multidisciplinary Study J Schopf, C Klein 1185–87 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  74. Kasting JF. 2013. What caused the rise of atmospheric O2?. Chem. Geol. 362:13–25
    [Google Scholar]
  75. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW et al. 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–3
    [Google Scholar]
  76. Keller CB, Schoene B. 2012. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485:490–93
    [Google Scholar]
  77. Kendall B, Brennecka GA, Weyer S, Anbar AD. 2013. Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chem. Geol. 362:105–14
    [Google Scholar]
  78. Kendall B, Creaser RA, Reinhard CT, Lyons TW, Anbar AD. 2015. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci. Adv. 1:e1500777
    [Google Scholar]
  79. Kendall B, Dahl TW, Anbar AD. 2017. The stable isotope geochemistry of molybdenum. Rev. Mineral. Geochem. 82:683–732
    [Google Scholar]
  80. Kendall B, Reinhard CT, Lyons TW, Kaufman AJ, Poulton SW, Anbar AD. 2010. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3:647–52
    [Google Scholar]
  81. King EK, Pett-Ridge JC. 2018. Reassessing the dissolved molybdenum isotopic composition of ocean inputs: the effect of chemical weathering and groundwater. Geology 46:955–58
    [Google Scholar]
  82. Kirschvink JL, Kopp RE. 2008. Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Philos. Trans. R. Soc. B 363:2755–65
    [Google Scholar]
  83. Kirschvink JL, Raub TD, Fischer W. 2012. Archean “whiffs of oxygen” go poof! Mineral. Mag 76:1943
    [Google Scholar]
  84. Koehler MC, Buick R, Kipp MA, Stüeken EE, Zaloumis J. 2018. Transient surface ocean oxygenation recorded in the ∼2.66-Ga Jeerinah Formation, Australia. PNAS 115:7711–16
    [Google Scholar]
  85. Konhauser KO, Amskold L, Lalonde SV, Posth NR, Kappler A, Anbar A. 2007. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett. 258:87–100
    [Google Scholar]
  86. Konhauser KO, Lalonde SV, Planavsky NJ, Pecoits E, Lyons TW et al. 2011. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478:369–73
    [Google Scholar]
  87. Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG et al. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458:750–53
    [Google Scholar]
  88. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ 2005. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. PNAS 102:11131–36
    [Google Scholar]
  89. Krissansen-Totton J, Buick R, Catling DC. 2015. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315:275–316
    [Google Scholar]
  90. Kump LR, Barley ME. 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448:1033–36
    [Google Scholar]
  91. Kurzweil F, Claire M, Thomazo C, Peters M, Hannington M, Strauss H 2013. Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis. Earth Planet. Sci. Lett. 366:17–26
    [Google Scholar]
  92. Kurzweil F, Wille M, Schoenberg R, Taubald H, Van Kranendonk MJ. 2015. Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin. Geochim. Cosmochim. Acta 164:523–42
    [Google Scholar]
  93. Laakso TA, Schrag DP. 2017. A theory of atmospheric oxygen. Geobiology 15:366–84
    [Google Scholar]
  94. Lalonde SV, Konhauser KO. 2015. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis. PNAS 112:995–1000
    [Google Scholar]
  95. Lee CA, Yeung LY, McKenzie NR, Yokoyama Y, Ozaki K, Lenardic A. 2016. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9:417–24
    [Google Scholar]
  96. Liu P, Harman CE, Kasting JF, Hu Y, Wang J. 2019. Can organic haze and O2 plumes explain patterns of sulfur mass-independent fractionation during the Archean?. Earth Planet. Sci. Lett. 526:115767
    [Google Scholar]
  97. Liu W, Hao J, Elzinga EJ, Piotrowiak P, Nanda V et al. 2020. Anoxic photogeochemical oxidation of manganese carbonate yields manganese oxide. PNAS 117:22698–704
    [Google Scholar]
  98. Luo G, Ono S, Beukes NJ, Wang DT, Xie S, Summons RE. 2016. Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. Sci. Adv. 2:e1600134
    [Google Scholar]
  99. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15
    [Google Scholar]
  100. MacGregor AM. 1927. The problem of the Precambrian atmosphere. S. Afr. J. Sci. 24:155–72
    [Google Scholar]
  101. Manikyamba C, Kerrich R. 2006. Geochemistry of black shales from the Neoarchaean Sandur Superterrane, India: first cycle volcanogenic sedimentary rocks in an intraoceanic arc–trench complex. Geochim. Cosmochim. Acta 70:4663–79
    [Google Scholar]
  102. McLennan SM, Taylor SR, Eriksson KA. 1983a. Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. Geochim. Cosmochim. Acta 47:1211–22
    [Google Scholar]
  103. McLennan SM, Taylor SR, Kröner TA. 1983b. Geochemical evolution of Archean shales from South Africa. I. The Swaziland and Pongola Supergroups. Precambrian Res 22:91–124
    [Google Scholar]
  104. McLennan SM, Taylor SR, McGregor VR. 1984. Geochemistry of Archean metasedimentary rocks from West Greenland. Geochim. Cosmochim. Acta 48:1–13
    [Google Scholar]
  105. Meyer KM, Kump LR. 2008. Oceanic euxinia in Earth's history: causes and consequences. Annu. Rev. Earth Planet. Sci. 36:251–88
    [Google Scholar]
  106. Miller CA, Peucker-Ehrenbrink B, Walker BD, Marcantonio F. 2011. Re-assessing the surface cycling of molybdenum and rhenium. Geochim. Cosmochim. Acta 75:7146–79
    [Google Scholar]
  107. Morford JL, Emerson SR. 1999. The geochemistry of redox-sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63:1735–50
    [Google Scholar]
  108. Morford JL, Emerson SR, Breckel EJ, Kim SH. 2005. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim. Cosmochim. Acta 69:5021–32
    [Google Scholar]
  109. Mukhopadhyay J, Crowley QG, Ghosh S, Gosh G, Chakrabarti K et al. 2014. Oxygenation of the Archean atmosphere: new paleosol constraints from eastern India. Geology 42:923–26
    [Google Scholar]
  110. Murakami T, Sreenivas B, Sharma SD, Sugimori H. 2011. Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics. Geochim. Cosmochim. Acta 75:3982–4004
    [Google Scholar]
  111. Neubert N, Nägler TF, Böttcher ME. 2008. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36:775–78
    [Google Scholar]
  112. Nicklas RW, Puchtel IS, Ash RD, Piccoli PM, Hanski E et al. 2019. Secular mantle oxidation across the Archean-Proterozoic boundary: evidence from V partitioning in komatiites and picrites. Geochim. Cosmochim. Acta 250:49–75
    [Google Scholar]
  113. Nielsen SG, Rehkämper M, Porcelli D, Andersson P, Halliday AN et al. 2005. Thallium isotope composition of the upper continental crust and rivers—an investigation of the continental sources of dissolved marine thallium. Geochim. Cosmochim. Acta 69:2007–19
    [Google Scholar]
  114. Nielsen SG, Wasylenki LE, Rehkämper M, Peacock CL, Xue Z, Moon EM. 2013. Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim. Cosmochim. Acta 117:252–65
    [Google Scholar]
  115. Oduro H, Harms B, Sintim HO, Kaufman AJ, Cody G, Farquhar J 2011. Evidence of magnetic isotope effects during thermochemical sulfate reduction. PNAS 108:17635–38
    [Google Scholar]
  116. Ohmoto H. 1996. Evidence in pre–2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology 24:1135–38
    [Google Scholar]
  117. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE. 2006. Sulphur isotope evidence for an anoxic Archaean atmosphere. Nature 442:908–11
    [Google Scholar]
  118. Ohta A, Kawabe I. 2001. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2. Geochim. Cosmochim. Acta 65:695–703
    [Google Scholar]
  119. Olson SL, Kump LR, Kasting JF. 2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362:35–43
    [Google Scholar]
  120. Olson SL, Ostrander CM, Gregory DD, Roy M, Anbar AD, Lyons TW. 2019. Volcanically modulated pyrite burial and ocean-atmosphere oxidation. Earth Planet. Sci. Lett. 506:417–27
    [Google Scholar]
  121. Ono S, Beukes NJ, Rumble D, Fogel ML. 2006. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records from the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. S. Afr. J. Geol. 109:97–108
    [Google Scholar]
  122. Ono S, Eigenbrode JL, Pavlov AA, Kharecha P, Rumble D et al. 2003. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213:15–30
    [Google Scholar]
  123. Ono S, Kaufman AJ, Farquhar J, Sumner DY, Beukes NJ. 2009. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambrian Res 169:58–67
    [Google Scholar]
  124. Ossa Ossa F, Hofmann A, Wille M, Spangenberg JE, Bekker A et al. 2018. Aerobic iron and manganese cycling in a redox-stratified Mesoarchean epicontinental sea. Earth Planet. Sci. Lett. 500:28–40
    [Google Scholar]
  125. Ostrander CM, Kendall B, Olson SL, Lyons TW, Gordon GW et al. 2020. An expanded shale δ98Mo record permits recurrent shallow marine oxygenation during the Neoarchean. Chem. Geol. 532:119391
    [Google Scholar]
  126. Ostrander CM, Nielsen SG, Owens JD, Kendall B, Gordon GW et al. 2019. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat. Geosci. 12:186–91
    [Google Scholar]
  127. Oze C, Bird DK, Fendorf S 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. PNAS 104:6544–49
    [Google Scholar]
  128. Pavlov AA, Kasting JF. 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2:27–41
    [Google Scholar]
  129. Peacock CL, Moon EM. 2012. Oxidative scavenging of thallium by birnessite: explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochim. Cosmochim. Acta 84:297–313
    [Google Scholar]
  130. Philippot P, Ávila JN, Killingsworth BA, Tessalina S, Baton F et al. 2018. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat. Commun. 9:2245
    [Google Scholar]
  131. Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV et al. 2014a. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7:283–86
    [Google Scholar]
  132. Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P et al. 2014b. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–38
    [Google Scholar]
  133. Poulton SW, Canfield DE. 2011. Ferruginous conditions: a dominant feature of the ocean through Earth's history. Elements 7:107–12
    [Google Scholar]
  134. Raiswell R, Hardisty DS, Lyons TW, Canfield DE, Owens JD et al. 2018. The iron paleoredox proxies: a guide to the pitfalls, problems and proper practice. Am. J. Sci. 318:491–526
    [Google Scholar]
  135. Raiswell R, Reinhard CT, Derkowski A, Owens J, Bottrell SH et al. 2011. Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale, Hamersley Basin, Australia: new insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formation.. Geochim. Cosmochim. Acta 75:1072–87
    [Google Scholar]
  136. Ramdohr P. 1958. New observations on the ores of the Witwatersrand in South Africa and their genetic significance. Geol. Soc. S. Afr. Trans. 61:1–50
    [Google Scholar]
  137. Rasmussen B, Buick R. 1999. Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27:115–18
    [Google Scholar]
  138. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–4
    [Google Scholar]
  139. Rasmussen B, Krapež B, Muhling JR. 2014. Hematite replacement of iron-bearing precursor sediments in the 3.46-b.y.-old Marble Bar Chert, Pilbara craton, Australia. Geol. Soc. Am. Bull. 126:1245–58
    [Google Scholar]
  140. Rehkämper M, Frank M, Hein JR, Porcelli D, Halliday A et al. 2002. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197:65–81
    [Google Scholar]
  141. Reinhard CT, Planavsky NJ, Lyons TW. 2013. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497:100–3
    [Google Scholar]
  142. Reinhard CT, Raiswell R, Scott C, Anbar AD, Lyons TW. 2009. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326:713–16
    [Google Scholar]
  143. Riding R, Fralick P, Liang L. 2014. Identification of an Archean marine oxygen oasis. Precambrian Res 251:232–37
    [Google Scholar]
  144. Roscoe SM. 1969. Huronian Rocks and Uriniferous Conglomerates in the Canadian Shield Ottawa, Can: Geol. Surv. Can.
  145. Rosing MT, Frei R. 2004. U-rich Archaean sea-floor sediments from Greenland—indications of >3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217:237–44
    [Google Scholar]
  146. Rouxel OJ, Bekker A, Edwards KJ. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088–91
    [Google Scholar]
  147. Rouxel OJ, Ludden J, Carignan J, Marin L, Fouquet Y. 2002. Natural variations of Se isotopic composition determined by hydride generation multiple collector inductively coupled plasma mass spectrometry. Geochim. Cosmochim. Acta 66:3191–99
    [Google Scholar]
  148. Rudnick RL, Gao S 2003. Composition of the continental crust. The Crust, ed. RL Rudnick 1–64 Amsterdam: Elsevier
    [Google Scholar]
  149. Rye R, Holland HD. 1998. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298:621–72
    [Google Scholar]
  150. Sahoo SK, Planavsky NJ, Kendall B, Wang X, Shi X et al. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature 489:546–49
    [Google Scholar]
  151. Satkoski AM, Beukes NJ, Li W, Beard BL, Johnson CM. 2015. A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 430:43–53
    [Google Scholar]
  152. Schröder S, Lacassie JP, Beukes NJ. 2006. Stratigraphic and geochemical framework of the Agouron drill cores, Transvaal Supergroup (Neoarchean–Paleoproterozoic, South Arica). S. Afr. J. Geol 109:23–54
    [Google Scholar]
  153. Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S. 2018. Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18:663–708
    [Google Scholar]
  154. Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–59
    [Google Scholar]
  155. Scott CT, Bekker A, Reinhard CT, Schnetger B, Krapež B et al. 2011. Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39:119–22
    [Google Scholar]
  156. Seager S, Deming D. 2010. Exoplanet atmospheres. Annu. Rev. Astron. Astrophys. 48:631–72
    [Google Scholar]
  157. Sheen AI, Kendall B, Reinhard CT, Creaser RA, Lyons TW et al. 2018. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 227:75–95
    [Google Scholar]
  158. Siebert C, Kramers JD, Meisel T, Morel P, Nägler TF. 2005. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim. Cosmochim. Acta 69:1787–801
    [Google Scholar]
  159. Siebert C, Nägler TF, Kramers JD. 2001. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem. Geophys. Geosyst. 2:71032
    [Google Scholar]
  160. Sim MS, Liang B, Petroff AP, Evans A, Klepac-Ceraj V et al. 2012. Oxygen-dependent morphogenesis of modern clumped photosynthetic mats and implications for the Archean stromatolite record. Geosciences 2:235–59
    [Google Scholar]
  161. Strogatz SH. 1994. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Reading, MA: Addison-Wesley
  162. Stüeken EE, Buick R, Anbar AD. 2015a. Selenium isotopes support free O2 in the latest Archean. Geology 43:259–62
    [Google Scholar]
  163. Stüeken EE, Buick R, Bekker A, Catling D, Foriel J et al. 2015b. The evolution of the global selenium cycle: secular trends in Se isotopes and abundances. Geochim. Cosmochim. Acta 162:109–25
    [Google Scholar]
  164. Stüeken EE, Buick R, Schauer AJ. 2015c. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411:1–10
    [Google Scholar]
  165. Stüeken EE, Catling DC, Buick R. 2012. Contributions to late Archaean sulphur cycling by life on land. Nat. Geosci. 5:722–25
    [Google Scholar]
  166. Stüeken EE, Kipp MA, Koehler MC, Buick R. 2016. The evolution of Earth's biogeochemical cycle. Earth-Sci. Rev. 160:220–39
    [Google Scholar]
  167. Thoby M, Konhauser KO, Fralick PW, Altermann W, Visscher PT, Lalonde SV. 2019. Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by the Mo isotope composition of Precambrian carbonates. Geology 47:559–62
    [Google Scholar]
  168. Thomazo C, Ader M, Philippot P. 2011. Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9:107–20
    [Google Scholar]
  169. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232:12–32
    [Google Scholar]
  170. Voegelin AR, Nägler TF, Beukes NJ, Lacassie JP. 2010. Molybdenum isotopes in late Archean carbonate rocks: implications for early Earth oxygenation. Precambrian Res 182:70–82
    [Google Scholar]
  171. Waldbauer JR, Sherman LS, Sumner DY, Summons RE. 2009. Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis. Precambrian Res 169:28–47
    [Google Scholar]
  172. Wang X, Ossa Ossa F, Hofmann A, Agangi A, Paprika D, Planavsky NJ 2020. Uranium isotope evidence for Mesoarchean biological O2 production in shallow marine and continental settings. Earth Planet. Sci. Lett. 551:116583
    [Google Scholar]
  173. Wang X, Planavsky NJ, Hofmann A, Saupe EE, De Corte BP et al. 2018. A Mesoarchean shift in uranium isotope systematics. Geochim. Cosmochim. Acta 238:438–52
    [Google Scholar]
  174. Warke MR, Di Rocco T, Zerkle AL, Lepland A, Prave AR et al. 2020. The Great Oxidation Event preceded a Paleoproterozoic “snowball Earth. .” PNAS 117:13314–20
    [Google Scholar]
  175. Watanabe Y, Farquhar J, Ohmoto H. 2009. Anomalous fractionations of sulfur isotopes during thermochemical sulfate reduction. Science 324:370–73
    [Google Scholar]
  176. Welch SA, Beard BL, Johnson CM, Braterman PS. 2003. Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim. Cosmochim. Acta 67:4231–50
    [Google Scholar]
  177. Weyer S, Anbar AD, Gerdes A, Gordon GW, Algeo TJ, Boyle EA. 2008. Natural fractionation of 238U/235U. Geochim. Cosmochim. Acta 72:345–59
    [Google Scholar]
  178. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–36
    [Google Scholar]
  179. Willbold M, Elliot T. 2017. Molybdenum isotope variations in magmatic rocks. Chem. Geol. 449:253–68
    [Google Scholar]
  180. Wille M, Kramers JD, Nägler TF, Beukes NJ, Schröder S et al. 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71:2417–35
    [Google Scholar]
  181. Wille M, Nebel O, Van Kranendonk MJ, Schoenberg R, Kleinhanns IC, Ellwood MJ 2013. Mo–Cr isotope evidence for a reducing Archean atmosphere in 3.46–2.76 Ga black shales from the Pilbara, Western Australia. Chem. Geol. 340:68–76
    [Google Scholar]
  182. Wilmeth DT, Corsetti FA, Beukes NJ, Awramik SM, Petryshyn V et al. 2019. Neoarchean (2.7 Ga) lacustrine stromatolite deposits in the Hartbeesfontein Basin, Ventersdorp Supergroup, South Africa: implications for oxygen oases. Precambrian Res 320:291–302
    [Google Scholar]
  183. Yamaguchi KE. 2002. Geochemistry of Archean–Paleoproterozoic black shales: the early evolution of the atmosphere, oceans, and biosphere PhD Diss., Penn. State Univ. State College:
  184. Yang W, Holland HD. 2003. The Hekpoort paleosol profile in Strata 1 at Gaborone, Botswana: soil formation during the Great Oxidation Event. Am. J. Sci. 303:187–220
    [Google Scholar]
  185. Zahnle K, Claire M, Catling D 2006. The loss of mass-independent fractionation of sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4:271–83
    [Google Scholar]
  186. Zerkle AL, Claire MW, Domagal-Goldman SD, Farquhar J, Poulton SW. 2012. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat. Geosci. 5:359–63
    [Google Scholar]
/content/journals/10.1146/annurev-earth-072020-055249
Loading
/content/journals/10.1146/annurev-earth-072020-055249
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error