1932

Abstract

The martian surface preserves a record of aqueous fluids throughout the planet's history, but when, where, and even whether such fluids exist at the contemporary surface remains an area of ongoing research. Large water volumes remain on the planet today, but mostly bound in minerals or frozen in the subsurface, with limited direct evidence for aquifers. A role for water has been suggested to explain active surface processes monitored by orbital and landed spacecraft, such as gullies and slope streaks across a range of latitudes; however, dry mechanisms appear at least equally plausible for many active slopes. The low modern atmospheric density and cold surface temperatures challenge models for producing sufficient volumes of water to do the observed geomorphic work. The seeming ubiquity of salts in martian soils facilitates liquid stability but also has implications for the habitability of any such liquids.

  • ▪   A thin modern atmosphere and low temperatures make pure liquid water unstable on the surface of modern Mars.
  • ▪   Widespread salts could enhance liquid durability by lowering the freezing point and slowing evaporation.
  • ▪   Dielectric measurements suggest active brines deep beneath the south pole and, in transient thin films, within shallow polar soils.
  • ▪   Some characteristics of gullies, recurring slope lineae, and other active features challenge both current wet and dry formation models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-072420-071823
2021-05-30
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-072420-071823.html?itemId=/content/journals/10.1146/annurev-earth-072420-071823&mimeType=html&fmt=ahah

Literature Cited

  1. Abotalib AZ, Heggy E. 2019. A deep groundwater origin for recurring slope lineae on Mars. Nat. Geosci. 12:235–41
    [Google Scholar]
  2. Adam Z. 2007. Actinides and life's origins. Astrobiology 7:852–72
    [Google Scholar]
  3. Anderson RB, Dundas CM, Gasnault O, Le Mouélic S, Wiens RC et al. 2019. Results from long distance Remote Micro Imager monitoring of lineae-forming slopes on Aeolis Mons, Mars. Lunar Planet. Sci. Conf. Abstr. 50:1119
    [Google Scholar]
  4. Arnold NS, Conway SJ, Butcher FEG, Balme MR 2019. Modeled subglacial water flow routing supports localized intrusive heating as a possible cause of basal melting of Mars’ south polar ice cap. J. Geophys. Res. Planets 124:2101–16
    [Google Scholar]
  5. Arvidson RE, Bell JF III, Bellutta P, Cabrol NA, Catalano JG et al. 2010. Spirit Mars Rover mission: overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater. J. Geophys. Res. 115:E7E00F03
    [Google Scholar]
  6. Arvidson RE, Bonitz RG, Robinson ML, Carsten JL, Volpe RA et al. 2009. Results from the Mars Phoenix lander robotic arm experiment. J. Geophys. Res. 114:E1E00E02
    [Google Scholar]
  7. Audouard J, Poulet F, Vincendon M, Milliken RE, Jouglet D et al. 2014. Water in the Martian regolith from OMEGA/Mars Express. J. Geophys. Res. Planets 119:1969–89
    [Google Scholar]
  8. Auld KS, Dixon JC. 2016. A classification of martian gullies from HiRISE imagery. Planet. Space Sci. 131:88–101
    [Google Scholar]
  9. Bains W. 2004. Many chemistries could be used to build living systems. Astrobiology 4:137–67
    [Google Scholar]
  10. Baker VR. 1982. The Channels of Mars Austin: Univ. Texas Press
  11. Baker VR, Komatsu G, Parker TJ, Gulick VC, Kargel JS et al. 1992. Channels and valleys on Venus: preliminary analysis of Magellan data. J. Geophys. Res. 97:E813421–44
    [Google Scholar]
  12. Bandfield JL, Feldman WC. 2008. Martian high latitude permafrost depth and surface cover thermal inertia distributions. J. Geophys. Res. 113:E8E08001
    [Google Scholar]
  13. Baratoux D, Mangold N, Forget F, Cord A, Pinet P et al. 2006. The role of wind-transported dust in slope streak activity: evidence from the HRSC data. Icarus 183:30–45
    [Google Scholar]
  14. Barlow NG, Bradley TL. 1990. Martian impact craters: correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus 87:156–79
    [Google Scholar]
  15. Bart GD. 2007. Comparison of small lunar landslides and martian gullies. Icarus 187:417–21
    [Google Scholar]
  16. Beaty D, Buxbaum K, Meyer M, Barlow N, Boynton W et al. 2006. Findings of the Mars Special Regions Science Analysis Group. Astrobiology 6:677–732
    [Google Scholar]
  17. Benner SA, Ricardo A, Carrigan MA 2004. Is there a common chemical model for life in the universe. ? Curr. Opin. Chem. Biol. 8:672–89
    [Google Scholar]
  18. Bhardwaj A, Sam L, Martín-Torres FJ, Zorzano M-P 2019. Are slope streaks indicative of global-scale aqueous processes on contemporary Mars. ? Rev. Geophys. 57:48–77
    [Google Scholar]
  19. Bhardwaj A, Sam L, Martín-Torres FJ, Zorzano M-P, Fonseca RM 2017. Martian slope streaks as plausible indicators of transient water activity. Sci. Rep. 7:7074
    [Google Scholar]
  20. Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R et al. 2006. Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312:400–4
    [Google Scholar]
  21. Boynton WV, Feldman WC, Squyres SW, Prettyman TH, Brückner J et al. 2002. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297:81–85
    [Google Scholar]
  22. Boynton WV, Ming DW, Kounaves SP, Young SMM, Arvidson RE et al. 2009. Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325:61–64
    [Google Scholar]
  23. Bramson AM, Byrne S, Putzig NE, Sutton S, Plaut JJ et al. 2015. Widespread excess ice in Arcadia Planitia, Mars. Geophys. Res. Lett. 42:6566–74
    [Google Scholar]
  24. Bridges JC, Catling DC, Saxton JM, Swindle TD, Lyon IC et al. 2001. Alteration assemblages in Martian meteorites: implications for near-surface processes. Space Sci. Rev. 96:365–92
    [Google Scholar]
  25. Brusnikin ES, Kreslavsky MA, Zubarev AE, Patratiy VD, Krasilnikov SS et al. 2016. Topographic measurements of slope streaks. Icarus 278:52–61
    [Google Scholar]
  26. Burleigh KJ, Melosh HJ, Tornabene LL, Ivanov B, McEwen AS et al. 2012. Impact airblast triggers dust avalanches on Mars. Icarus 217:194–201
    [Google Scholar]
  27. Byrne PK, Klimczak C, Williams DA, Hurwitz DM, Solomon SC et al. 2013. An assemblage of lava flow features on Mercury. J. Geophys. Res. Planets 118:1303–22
    [Google Scholar]
  28. Byrne S, Dundas CM, Kennedy MR, Mellon MT, McEwen AS et al. 2009. Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325:1674–76
    [Google Scholar]
  29. Cannon KM, Parman SW, Mustard JF 2017. Primordial clays on Mars formed beneath a steam or supercritical atmosphere. Nature 552:88–91
    [Google Scholar]
  30. Carr MH. 1974. The role of lava erosion in the formation of lunar rilles and Martian channels. Icarus 22:1–23
    [Google Scholar]
  31. Carr MH. 1995. The Martian drainage system and the origin of valley networks and fretted channels. J. Geophys. Res. 100:E47479–507
    [Google Scholar]
  32. Carr MH, Schaber GG. 1977. Martian permafrost features. J. Geophys. Res. 82:284039–54
    [Google Scholar]
  33. Carter J, Loizeau D, Mangold N, Poulet F, Bibring J-P 2015. Widespread surface weathering on early Mars: a case for a warmer and wetter climate. Icarus 248:373–82
    [Google Scholar]
  34. Carter J, Poulet F, Bibring J-P, Mangold N, Murchie S 2013. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. Planets 118:831–58
    [Google Scholar]
  35. Cedillo-Flores Y, Treiman AH, Lasue J, Clifford SM 2011. CO2 gas fluidization in the initiation and formation of martian polar gullies. Geophys. Res. Lett. 38:L21202
    [Google Scholar]
  36. Chassefière E, Langlais B, Quesnel Y, Leblanc F 2013. The fate of Mars’ early lost water: the role of serpentinization. J. Geophys. Res. Planets 118:1123–34
    [Google Scholar]
  37. Chevrier VC, Rivera-Valentin EG. 2012. Formation of recurring slope lineae by liquid brines on present-day Mars. Geophys. Res. Lett. 39:L21202
    [Google Scholar]
  38. Chojnacki M, McEwen A, Dundas C, Ojha L, Urso A et al. 2016. Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars. J. Geophys. Res. Planets 121:1204–31
    [Google Scholar]
  39. Christensen PR. 2003. Formation of recent martian gullies through melting of extensive water-rich snow deposits. Nature 422:45–48
    [Google Scholar]
  40. Christensen PR, Morris RV, Lane MD, Bandfield JL, Malin MC 2001. Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars. J. Geophys. Res. 106:E1023873–85
    [Google Scholar]
  41. Chuang FC, Beyer RA, Bridges NT 2010. Modification of martian slope streaks by eolian processes. Icarus 205:154–64
    [Google Scholar]
  42. Chuang FC, Beyer RA, McEwen AS, Thomson BJ 2007. HiRISE observations of slope streaks on Mars. Geophys. Res. Lett. 34:L20204
    [Google Scholar]
  43. Clancy RT, Smith MD, Lefèvre F, McConnochie TH, Sandor BJ et al. 2017. Vertical profiles of Mars 1.27 μm O2 dayglow from MRO CRISM limb spectra: seasonal/global behaviors, comparisons to LMDGCM simulations, and a global definition for Mars water vapor profiles. Icarus 293:132–56
    [Google Scholar]
  44. Clark BC, Van Hart DC 1981. The salts of Mars. Icarus 45:370–78
    [Google Scholar]
  45. Clifford SM, Lasue J, Heggy E, Boisson J, McGovern P et al. 2010. Depth of the martian cryosphere: revised estimates and implication for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115:E7E07001
    [Google Scholar]
  46. Conway SJ, Butcher FEG, de Haas T, Deijns AAJ, Grindrod PM et al. 2018. Glacial and gully erosion on Mars: a terrestrial perspective. Geomorphology 318:26–57
    [Google Scholar]
  47. Conway SJ, Carrivick JL, Carling PA, de Haas T, Harrison TN 2019. Martian Gullies and Their Earth Analogues London: Geol. Soc.
  48. Costard F, Forget F, Mangold N, Peulvast JP 2002. Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science 295:110–13
    [Google Scholar]
  49. Costard FM, Kargel JS. 1995. Outwash plains and thermokarst on Mars. Icarus 114:93–112
    [Google Scholar]
  50. Cull SC, Arvidson RE, Catalano JG, Ming DW, Morris RV et al. 2010. Concentrated perchlorate at the Mars Phoenix landing site: evidence for thin film liquid water on Mars. Geophys. Res. Lett. 37:L22203
    [Google Scholar]
  51. de Haas T, Ventra D, Hauber E, Conway SJ, Kleinhans MG 2015. Sedimentological analyses of martian gullies: the subsurface as the key to the surface. Icarus 258:92–108
    [Google Scholar]
  52. Dickson JL, Fassett CI, Head JW 2009. Amazonian-aged fluvial valley systems in a climatic microenvironment on Mars: melting of ice deposits on the interior of Lyot Crater. Geophys. Res. Lett. 36:L08201
    [Google Scholar]
  53. Dickson JL, Head JW. 2009. The formation and evolution of youthful gullies on Mars: gullies as the late-stage phase of Mars’ most recent ice age. Icarus 204:63–86
    [Google Scholar]
  54. Dickson JL, Head JW, Kulowski M 2016. Active flows at the Mars Science Laboratory landing site: results from a survey of Mastcam imagery through sol 971. Lunar Planet. Sci. Conf. Abstr. 47:1726
    [Google Scholar]
  55. Diniega S, Byrne S, Bridges NT, Dundas CM, McEwen AS 2010. Seasonality of present-day Martian dune-gully activity. Geology 38:1047–50
    [Google Scholar]
  56. Diniega S, Hansen CJ, McElwaine JN, Hugenholtz CH, Dundas CM et al. 2013. A new dry hypothesis for the formation of martian linear gullies. Icarus 225:526–37
    [Google Scholar]
  57. Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J et al. 2016. The astrobiology primer v2.0. Astrobiology 16:561–653
    [Google Scholar]
  58. Dundas CM. 2020. An aeolian grainflow model for Martian Recurring Slope Lineae. Icarus 343:113681
    [Google Scholar]
  59. Dundas CM, Bramson AM, Ojha L, Wray JJ, Mellon MT et al. 2018. Exposed subsurface ice sheets in the Martian mid-latitudes. Science 359:199–201
    [Google Scholar]
  60. Dundas CM, Byrne S, McEwen AS 2015a. Modeling the development of martian sublimation thermokarst landforms. Icarus 262:154–69
    [Google Scholar]
  61. Dundas CM, Byrne S, McEwen AS, Mellon MT, Kennedy MR et al. 2014. HiRISE observations of new impact craters exposing Martian ground ice. J. Geophys. Res. Planets 119:109–27
    [Google Scholar]
  62. Dundas CM, Diniega S, Hansen CJ, Byrne S, McEwen AS 2012. Seasonal activity and morphological changes in Martian gullies. Icarus 220:124–43
    [Google Scholar]
  63. Dundas CM, Diniega S, McEwen AS 2015b. Long-term monitoring of martian gully formation and evolution with MRO/HiRISE. Icarus 251:244–63
    [Google Scholar]
  64. Dundas CM, McEwen AS. 2015. Slope activity in Gale crater, Mars. Icarus 254:213–18
    [Google Scholar]
  65. Dundas CM, McEwen AS, Chojnacki M, Milazzo MP, Byrne S et al. 2017. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nat. Geosci. 10:903–7
    [Google Scholar]
  66. Dundas CM, McEwen AS, Diniega S, Byrne S, Martinez-Alonso S 2010. New and recent gully activity on Mars as seen by HiRISE. Geophys. Res. Lett. 37:L07202
    [Google Scholar]
  67. Eberl DD. 1984. Clay mineral formation and transformation in rocks and soils. Philos. Trans. R. Soc. A 311:241–57
    [Google Scholar]
  68. Edwards CS, Piqueux S. 2016. The water content of recurring slope lineae on Mars. Geophys. Res. Lett. 43:8912–19
    [Google Scholar]
  69. Elwood Madden ME, Madden AS, Rimstidt JD 2009. How long was Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration of aqueous diagenesis. Geology 37:635–38
    [Google Scholar]
  70. Fairén AG, Davila AF, Gago-Duport L, Amils R, McKay CP 2009. Stability against freezing of aqueous solutions on early Mars. Nature 459:401–4
    [Google Scholar]
  71. Farrell WM, Plaut JJ, Cummer SA, Gurnett DA, Picardi G et al. 2009. Is the Martian water table hidden from radar view?. Geophys. Res. Lett. 36:L15206
    [Google Scholar]
  72. Fassett CI, Dickson JL, Head JW, Levy JS, Marchant DR 2010. Supraglacial and proglacial valleys on Amazonian Mars. Icarus 208:86–100
    [Google Scholar]
  73. Fedorova AA, Korablev OI, Bertaux J-L, Rodin AV, Montmessin F et al. 2009. Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus 200:96–117
    [Google Scholar]
  74. Feldman WC, Prettyman TH, Maurice S, Plaut JJ, Bish DL et al. 2004. Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109:E9E09006
    [Google Scholar]
  75. Fischer E, Martínez GM, Elliott HM, Rennó NO 2014. Experimental evidence for the formation of liquid saline water on Mars. Geophys. Res. Lett. 41:4456–62
    [Google Scholar]
  76. Fischer E, Martínez GM, Rennó NO, Tamppari LK, Zent AP 2019. Relative humidity on Mars: new results from the Phoenix TECP sensor. J. Geophys. Res. Planets 124:2780–92
    [Google Scholar]
  77. Fishbaugh KE, Poulet F, Chevrier V, Langevin Y, Bibring J-P 2007. On the origin of gypsum in the Mars north polar region. J. Geophys. Res. 112:E7E07002
    [Google Scholar]
  78. Gánti T, Horváth A, Bérczi S, Gesztesi A, Szathmáry E 2003. Dark dune spots: possible biomarkers on Mars. ? Origins Life Evol. Biosph. 33:515–57
    [Google Scholar]
  79. Gardin E, Allemand P, Quantin C, Thollot P 2010. Defrosting, dark flow features, and dune activity on Mars: example in Russell crater. J. Geophys. Res. 115:E6E06016
    [Google Scholar]
  80. Gough RV, Chevrier VF, Baustian KJ, Wise ME, Tolbert MA 2011. Laboratory studies of perchlorate phase transitions: support for metastable aqueous perchlorate solutions on Mars. Earth Planet. Sci. Lett. 312:371–77
    [Google Scholar]
  81. Gough RV, Nuding DL, Archer PD Jr., Fernanders MS, Guzewich SD et al. 2020. Changes in soil cohesion due to water vapor exchange: a proposed dry-flow trigger mechanism for recurring slope lineae on Mars. Geophys. Res. Lett. 47:e2020GL087618
    [Google Scholar]
  82. Grant JA, Wilson SA. 2011. Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38:L08201
    [Google Scholar]
  83. Grant JA, Wilson SA. 2019. Evidence for late alluvial activity in Gale crater, Mars. Geophys. Res. Lett. 46:7287–94
    [Google Scholar]
  84. Grimm RE, Harrison KP, Stillman DE 2014. Water budgets of martian recurring slope lineae. Icarus 233:316–27
    [Google Scholar]
  85. Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J et al. 2015. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350:aac7575
    [Google Scholar]
  86. Guimpier A, Conway SJ, Mangeney A, Peruzzetto M, Mangold N 2019. A recent mudflow in the Nili Fossae region of Mars: morphology and numerical simulations. Lunar Planet. Sci. Conf. Abstr. 50:1900
    [Google Scholar]
  87. Gulick VC, Baker VR. 1990. Origin and evolution of valleys on Martian volcanoes. J. Geophys. Res. 95:B914325–44
    [Google Scholar]
  88. Haberle RM, McKay CP, Schaeffer J, Cabrol NA, Grin EA et al. 2001. On the possibility of liquid water on present-day Mars. J. Geophys. Res. 106:E1023317–26
    [Google Scholar]
  89. Hansen CJ, Bourke M, Bridges NT, Byrne S, Colon C et al. 2011. Seasonal erosion and restoration of Mars’ northern polar dunes. Science 331:575–78
    [Google Scholar]
  90. Harrison TN, Osinski GR, Tornabene LL, Jones E 2015. Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation. Icarus 252:236–54
    [Google Scholar]
  91. Hart MH. 1978. The evolution of the atmosphere of the Earth. Icarus 33:23–39
    [Google Scholar]
  92. Hartmann WK, Neukum G. 2001. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96:165–94
    [Google Scholar]
  93. Hartmann WK, Thorsteinsson T, Sigurdsson F 2003. Martian hillside gullies and Icelandic analogs. Icarus 162:259–77
    [Google Scholar]
  94. Haskin LA, Wang A, Jolliff BL, McSween HY, Clark BC et al. 2005. Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature 436:66–69
    [Google Scholar]
  95. Hecht MH. 2002. Metastability of liquid water on Mars. Icarus 156:373–86
    [Google Scholar]
  96. Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM et al. 2009. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325:64–67
    [Google Scholar]
  97. Heinz J, Schulze-Makuch D, Kounaves SP 2016. Deliquescence-induced wetting and RSL-like darkening of a Mars analogue soil containing various perchlorate and chloride salts. Geophys. Res. Lett. 43:4880–84
    [Google Scholar]
  98. Heldmann JL, Carlsson E, Johansson H, Mellon MT, Toon OB 2007. Observations of Martian gullies and constraints on potential formation mechanisms II. The northern hemisphere. Icarus 188:324–44
    [Google Scholar]
  99. Heldmann JL, Toon OB, Pollard WH, Mellon MT, Pitlick J et al. 2005. Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. J. Geophys. Res. 110:E5E05004
    [Google Scholar]
  100. Heyer T, Kreslavsky M, Hiesinger H, Reiss D, Bernhardt H et al. 2019. Seasonal formation rates of martian slope streaks. Icarus 323:76–86
    [Google Scholar]
  101. Hoffman N. 2000. White Mars: a new model for Mars’ surface and atmosphere based on CO2. Icarus 146:326–42
    [Google Scholar]
  102. Hoffman N. 2002. Active polar gullies on Mars and the role of carbon dioxide. Astrobiology 2:313–23
    [Google Scholar]
  103. Hooper DM, Dinwiddie CL. 2014. Debris flows on the Great Kobuk Sand Dunes, Alaska: implications for analogous processes on Mars. Icarus 230:15–28
    [Google Scholar]
  104. Horváth A, Kereszturi Á, Bérczi S, Sik A, Pócs T et al. 2009. Analysis of dark albedo features on a southern polar dune field of Mars. Astrobiology 9:90–103
    [Google Scholar]
  105. Huber C, Ojha L, Lark L, Head JW 2020. Physical models and predictions for recurring slope lineae formed by wet and dry processes. Icarus 335:113385
    [Google Scholar]
  106. Hugenholtz CH. 2008. Frosted granular flow: a new hypothesis for mass wasting in Martian gullies. Icarus 197:65–72
    [Google Scholar]
  107. Hulme G. 1973. Turbulent lava flow and the formation of lunar sinuous rilles. Mod. Geol. 4:107–17
    [Google Scholar]
  108. Ingersoll AP. 1970. Mars: occurrence of liquid water. Science 168:972–73
    [Google Scholar]
  109. Jaeger WL, Keszthelyi LP, Skinner JA Jr., Milazzo MP, McEwen AS et al. 2010. Emplacement of the youngest flood lava on Mars: a short, turbulent story. Icarus 205:230–43
    [Google Scholar]
  110. Jakosky BM, Farmer CB. 1982. The seasonal and global behavior of water vapor in the Mars atmosphere: complete global results of the Viking atmospheric water detector experiment. J. Geophys. Res. 87:B42999–3019
    [Google Scholar]
  111. Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT 2003. Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–50
    [Google Scholar]
  112. Jakosky BM, Phillips RJ. 2001. Mars’ volatile and climate history. Nature 412:237–44
    [Google Scholar]
  113. Jankowski DG, Squyres SW. 1993. “Softened” impact craters on Mars: implications for ground ice and the structure of the martian megaregolith. Icarus 106:365–79
    [Google Scholar]
  114. Johnsson A, Reiss D, Hauber E, Hiesinger H, Zanetti M 2014. Evidence for very recent melt-water and debris flow activity in gullies in a young mid-latitude crater on Mars. Icarus 235:37–54
    [Google Scholar]
  115. Kahn R. 1985. The evolution of CO2 on Mars. Icarus 62:175–90
    [Google Scholar]
  116. Kaplan LD, Münch G, Spinrad H 1964. An analysis of the spectrum of Mars. Astrophys. J. 137:1319–21
    [Google Scholar]
  117. Karlsson NB, Schmidt LS, Hvidberg CS 2015. Volume of Martian midlatitude glaciers from radar observations and ice flow modeling. Geophys. Res. Lett. 42:2627–33
    [Google Scholar]
  118. Karunatillake S, McLennan S, Herkenhoff KE 2010. Regional and grain size influences on the geochemistry of soil at Gusev crater, Mars. J. Geophys. Res. 115:E7E00F04
    [Google Scholar]
  119. Karunatillake S, Zhao Y-YS, McLennan SM, Skok JR, Button NE 2013. Does martian soil release reactive halogens to the atmosphere?. Icarus 226:1438–46
    [Google Scholar]
  120. Kasting JF, Whitmire DP, Reynolds RT 1993. Habitable zones around main sequence stars. Icarus 101:108–28
    [Google Scholar]
  121. Kereszturi A, Möhlmann D, Berczi SZ, Ganti T, Horvath A et al. 2010. Indications of brine related local seepage phenomena on the northern hemisphere of Mars. Icarus 207:149–64
    [Google Scholar]
  122. Kereszturi A, Möhlmann D, Berczi SZ, Ganti T, Kuti A et al. 2009. Recent rheologic processes on dark polar dunes of Mars: driven by interfacial water?. Icarus 201:492–503
    [Google Scholar]
  123. Kereszturi A, Vincendon M, Schmidt F 2011. Water ice in the dark dune spots of Richardson crater on Mars. Planet. Space Sci. 59:26–42
    [Google Scholar]
  124. Kieffer HH, Chase SC Jr, Martin TZ, Miner ED, Don Palluconi F 1976. Martian north pole summer temperatures: dirty water ice. Science 194:1341–44
    [Google Scholar]
  125. Kieffer HH, Christensen PR, Titus TN 2006. CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature 442:793–96
    [Google Scholar]
  126. Kite ES. 2019. Geologic constraints on early Mars climate. Space Sci. Rev. 215:10
    [Google Scholar]
  127. Kliore A, Cain DL, Levy GS, Eshleman VR, Fjeldbo G et al. 1965. Occultation experiment: results of the first direct measurement of Mars's atmosphere and ionosphere. Science 149:1243–48
    [Google Scholar]
  128. Kokelaar BP, Bahia RS, Joy KH, Viroulet S, Gray JMNT 2017. Granular avalanches on the Moon: mass-wasting conditions, processes, and features. J. Geophys. Res. Planets 122:1893–925
    [Google Scholar]
  129. Kolb KJ, McEwen AS, Pelletier JD 2010. Investigating gully flow emplacement mechanisms using apex slopes. Icarus 208:132–42
    [Google Scholar]
  130. Kopparapu RK, Ramirez R, Kasting JF, Eymet V, Robinson TD et al. 2013. Habitable zones around main-sequence stars: new estimates. Astrophys. J. 765:131
    [Google Scholar]
  131. Kopparapu RK, Ramirez RM, SchottelKotte J, Kasting JF, Domagal-Goldman S et al. 2014. Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys. J. Lett. 787:L29
    [Google Scholar]
  132. Kossacki KJ, Markiewicz WJ. 2014. Seasonal flows on dark martian slopes, thermal condition for liquescence of salts. Icarus 233:126–30
    [Google Scholar]
  133. Kreslavsky MA, Head JW. 2009. Slope streaks on Mars: a new “wet” mechanism. Icarus 301:517–27
    [Google Scholar]
  134. Kumar PS, Keerthi V, Kumar AS, Mustard J, Krishna BG et al. 2013. Gullies and landslides on the Moon: evidence for dry-granular flows. J. Geophys. Res. Planets 118:206–23
    [Google Scholar]
  135. Lambert RSTJ, Chamberlain VE. 1978. CO2 permafrost and Martian topography. Icarus 34:568–80
    [Google Scholar]
  136. Lasue J, Mangold N, Hauber E, Clifford S, Feldman W et al. 2013. Quantitative assessments of the martian hydrosphere. Space Sci. Rev. 174:155–212
    [Google Scholar]
  137. Leask EK, Ehlmann BL, Dundar MM, Murchie SL, Seelos FP 2018. Challenges in the search for perchlorate and other hydrated minerals with 2.1-μm absorptions on Mars. Geophys. Res. Lett. 45:12180–89
    [Google Scholar]
  138. Leighton RB, Murray BC, Sharp RP, Allen JD, Sloan RK 1965. Mariner IV photography of Mars: initial results. Science 149:627–30
    [Google Scholar]
  139. Leshin LA, Mahaffy PR, Webster CR, Cabane M, Coll P et al. 2013. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science 341:1238937
    [Google Scholar]
  140. Leverington DW. 2011. A volcanic origin for the outflow channels of Mars: key evidence and major implications. Geomorphology 132:51–75
    [Google Scholar]
  141. Levy JS, Fassett CI, Head JW, Schwartz C, Watters JL 2014. Sequestered glacial ice contribution to the global Martian water budget: geometric constraints on the volume of remnant, midlatitude debris-covered glaciers. J. Geophys. Res. Planets 119:2188–96
    [Google Scholar]
  142. Levy JS, Fountain AG, Gooseff MN, Welch KA, Lyons WB 2011. Water tracks and permafrost in Taylor Valley, Antarctica: extensive and shallow groundwater connectivity in a cold desert ecosystem. Geol. Soc. Am. Bull. 123:2295–311
    [Google Scholar]
  143. Lucchitta BK. 1982. Ice sculpture in the Martian outflow channels. J. Geophys. Res. 87:B129951–73
    [Google Scholar]
  144. Mahaffy PR, Webster CR, Stern JC, Brunner AE, Atreya SK et al. 2015. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347:412–14
    [Google Scholar]
  145. Malin MC, Carr MH, Danielson GE, Davies ME, Hartmann WK et al. 1998. Early views of the martian surface from the Mars Orbiter Camera of Mars Global Surveyor. Science 279:1681–85
    [Google Scholar]
  146. Malin MC, Edgett KS. 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–35
    [Google Scholar]
  147. Malin MC, Edgett KS. 2001. Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res. 106:E1023429–570
    [Google Scholar]
  148. Malin MC, Edgett KS, Posiolova LV, McColley SM, Noe Dobrea EZ 2006. Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573–77
    [Google Scholar]
  149. Manga M, Patel A, Dufek J, Kite ES 2012. Wet surface and dense atmosphere on early Mars suggested by the bomb sag at Home Plate, Mars. Geophys. Res. Lett. 39:L01202
    [Google Scholar]
  150. Manga M, Zhai G, Wang C-Y 2019. Squeezing Marsquakes out of groundwater. Geophys. Res. Lett. 46:6333–40
    [Google Scholar]
  151. Mangold N, Costard F, Forget F 2003. Debris flows over sand dunes on Mars: evidence for liquid water. J. Geophys. Res. 108:E45027
    [Google Scholar]
  152. Mangold N, Mangeney A, Migeon V, Ansan V, Lucas A et al. 2010a. Sinuous gullies on Mars: frequency, distribution, and implications for flow properties. J. Geophys. Res. 115:E11E11001
    [Google Scholar]
  153. Mangold N, Roach L, Milliken R, Le Mouélic S, Ansan V et al. 2010b. A late Amazonian alteration layer related to local volcanism on Mars. Icarus 207:265–76
    [Google Scholar]
  154. Martin PE, Farley KA, Baker MB, Malespin CA, Schwenzer SP et al. 2017. A two-step K-Ar experiment on Mars: dating the diagenetic formation of jarosite from Amazonian groundwaters. J. Geophys. Res. Planets 122:2803–18
    [Google Scholar]
  155. Martín-Torres FJ, Zorzano M-P, Soria-Salinas Á, Nazarious MI, Konatham S et al. 2020. The HABIT (HabitAbility: Brine Irradiation and Temperature) environmental instrument for the ExoMars 2022 Surface Platform. Planet. Space Sci. 190:104968
    [Google Scholar]
  156. Martín-Torres FJ, Zorzano M-P, Valentín-Serrano P, Harri A-M, Genzer M et al. 2015. Transient liquid water and water activity at Gale crater on Mars. Nat. Geosci. 8:357–61
    [Google Scholar]
  157. Martínez GM, Newman CN, De Vicente-Retortillo A, Fischer E, Renno NO et al. 2017. The modern near-surface Martian climate: a review of in-situ meteorological data from Viking to Curiosity. Space Sci. Rev. 212:295–338
    [Google Scholar]
  158. Martínez GM, Renno NO, Elliott HM 2012. The evolution of the albedo of dark spots observed on Mars polar region. Icarus 221:816–30
    [Google Scholar]
  159. Massé M, Beck P, Schmitt B, Pommerol A, McEwen A et al. 2014. Spectroscopy and detectability of liquid brines on Mars. Planet. Space Sci. 92:136–49
    [Google Scholar]
  160. Massé M, Conway SJ, Gargani J, Patel MR, Pasquon K et al. 2016. Transport processes induced by metastable boiling water under Martian surface conditions. Nat. Geosci. 9:425–28
    [Google Scholar]
  161. McCauley JF, Carr MH, Cutts JA, Hartmann WK, Masursky H et al. 1972. Preliminary Mariner 9 report on the geology of Mars. Icarus 17:289–327
    [Google Scholar]
  162. McEwen AS, Dundas CM, Mattson SS, Toigo AD, Ojha L et al. 2014. Recurring slope lineae in equatorial regions of Mars. Nat. Geosci. 7:53–58
    [Google Scholar]
  163. McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S et al. 2011. Seasonal flows on warm Martian slopes. Science 333:740–43
    [Google Scholar]
  164. McEwen AS, Schafer E, Sutton S, Chojnacki M 2019. Abundant recurring slope lineae (RSL) following the 2018 planet-encircling dust event (PEDE). Lunar Planet. Sci. Conf. Abstr. 50:1376
    [Google Scholar]
  165. McGlynn IO, Fedo CM, McSween HY Jr 2012. Soil mineralogy at the Mars Exploration Rover landing sites: an assessment of the competing roles of physical sorting and chemical weathering. J. Geophys. Res. 117:E1E01006
    [Google Scholar]
  166. Mellon MT, Arvidson RE, Marlow JJ, Phillips RJ, Asphaug A 2008. Periglacial landforms at the Phoenix landing site and the northern plains of Mars. J. Geophys. Res. 113:E3E00A23
    [Google Scholar]
  167. Mellon MT, Jakosky BM. 1995. The distribution and behavior of Martian ground ice during past and present epochs. J. Geophys. Res. 100:E611781–99
    [Google Scholar]
  168. Mellon MT, Phillips RJ. 2001. Recent gullies on Mars and the source of liquid water. J. Geophys. Res. 106:1023165–80
    [Google Scholar]
  169. Milliken RE, Swayze GA, Arvidson RE, Bishop JL, Clark RN et al. 2008. Opaline silica in young deposits on Mars. Geology 36:847–50
    [Google Scholar]
  170. Mitchell JL, Christensen PR. 2016. Recurring slope lineae and chlorides on the surface of Mars. J. Geophys. Res. Planets 121:1411–28
    [Google Scholar]
  171. Möhlmann DTF. 2008. The influence of van der Waals forces on the state of water in the shallow subsurface of Mars. Icarus 195:131–39
    [Google Scholar]
  172. Möhlmann DTF, Kereszturi A. 2010. Viscous liquid film flow on dune slopes of Mars. Icarus 207:654–58
    [Google Scholar]
  173. Montmessin F, Ferron S. 2019. A spectral synergy method to retrieve martian water vapor column-abundance and vertical distribution applied to Mars Express SPICAM and PFS nadir measurements. Icarus 317:549–69
    [Google Scholar]
  174. Moore JM, Howard AD, Dietrich WE, Schenk PM 2003. Martian layered fluvial deposits: implications for Noachian climate scenarios. Geophys. Res. Lett. 30:2292
    [Google Scholar]
  175. Moore JM, McKinnon WB, Spencer JR, Howard AD, Schenk PM et al. 2016. The geology of Pluto and Charon through the eyes of New Horizons. Science 351:1284–93
    [Google Scholar]
  176. Morris EC. 1982. Aureole deposits of the Martian volcano Olympus Mons. J. Geophys. Res. 87:B21164–78
    [Google Scholar]
  177. Mouginot J, Pommerol A, Kofman W, Beck P, Schmitt B et al. 2010. The 3–5 MHz global reflectivity map of Mars by MARSIS/Mars Express: implications for the current inventory of subsurface H2O. Icarus 210:612–25
    [Google Scholar]
  178. Muller AWJ, Schulze-Makuch D. 2006. Thermal energy and the origin of life. Origins Life Evol. Biosph. 36:177–89
    [Google Scholar]
  179. Munaretto G, Pajola M, Cremonese G, Re C, Lucchetti A et al. 2020. Implications for the origin and evolution of Martian Recurring Slope Lineae at Hale crater from CaSSIS observations. Planet. Space Sci. 187:104947
    [Google Scholar]
  180. Murray BC, Soderblom LA, Sharp RP, Cutts JA 1971. The surface of Mars: 1. Cratered terrains. J. Geophys. Res. 76:2313–30
    [Google Scholar]
  181. Mushkin A, Gillespie AR, Montgomery DR, Schreiber BC, Arvidson RE 2010. Spectral constraints on the composition of low-albedo slope streaks in the Olympus Mons aureole. Geophys. Res. Lett. 37:L22201
    [Google Scholar]
  182. Musselwhite DS, Swindle TD, Lunine JI 2001. Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophys. Res. Lett. 28:1283–85
    [Google Scholar]
  183. Mustard JF, Cooper CD, Rifkin MK 2001. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412:411–14
    [Google Scholar]
  184. Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE et al. 2008. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454:305–9
    [Google Scholar]
  185. Mustard JF, Poulet F, Ehlmann B, Milliken R, Fraeman A 2012. Sequestration of volatiles in the Martian crust through hydrated minerals: a significant planetary reservoir of water. Lunar Planet. Sci. Conf. Abstr. 43:1539
    [Google Scholar]
  186. Navarro-González R, Vargas E, de la Rosa J, Raga AC, McKay CP 2010. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115:E12E12010
    [Google Scholar]
  187. Newsom HE, Brittelle GE, Hibbitts CA, Crossey LJ, Kudo AM 1996. Impact crater lakes on Mars. J. Geophys. Res. 101:E614951–55
    [Google Scholar]
  188. Nikolakakos G, Whiteway JA. 2015. Laboratory investigation of perchlorate deliquescence at the surface of Mars with a Raman scattering lidar. Geophys. Res. Lett. 42:7899–906
    [Google Scholar]
  189. Nuding DL, Rivera-Valentin EG, Davis RD, Gough RV, Chevrier VF et al. 2014. Deliquescence and efflorescence of calcium perchlorate: an investigation of stable aqueous solutions relevant to Mars. Icarus 243:420–28
    [Google Scholar]
  190. Nunes DC, Smrekar SE, Safaeinili A, Holt J, Phillips RJ et al. 2010. Examination of gully sites on Mars with the shallow radar. J. Geophys. Res. 115:E10E10004
    [Google Scholar]
  191. Núñez JI, Barnouin OS, Murchie SL, Seelos FP, McGovern JA et al. 2016. New insights into gully formation on Mars: constraints from composition as seen by MRO/CRISM. Geophys. Res. Lett. 43:8893–902
    [Google Scholar]
  192. Ojha L, Chojnacki M, McDonald GD, Shumway A, Wolff MJ et al. 2017. Seasonal slumps in Juventae Chasma, Mars. J. Geophys. Res. Planets 122:2193–214
    [Google Scholar]
  193. Ojha L, McEwen A, Dundas C, Byrne S, Mattson S et al. 2014. HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars. Icarus 231:365–76
    [Google Scholar]
  194. Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ et al. 2015. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8:829–32
    [Google Scholar]
  195. Ojha L, Wray JJ, Murchie SL, McEwen AS, Wolff MJ et al. 2013. Spectral constraints on the formation mechanism of recurring slope lineae. Geophys. Res. Lett. 40:5621–26
    [Google Scholar]
  196. Okubo CH, Tornabene LL, Lanza NL 2011. Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes. Icarus 211:207–21
    [Google Scholar]
  197. Orosei R, Jordan RL, Morgan DD, Cartacci M, Cicchetti A et al. 2015. Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) after nine years of operation: a summary. Planet. Space Sci. 112:98–114
    [Google Scholar]
  198. Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M et al. 2018. Radar evidence of subglacial liquid water on Mars. Science 361:490–93
    [Google Scholar]
  199. Osterloo MM, Anderson FS, Hamilton VE, Hynek BM 2010. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115:E10E10012
    [Google Scholar]
  200. Pelletier JD, Kolb KJ, McEwen AS, Kirk RL 2008. Recent bright gully deposits on Mars: wet or dry flow. ? Geology 36:211–14
    [Google Scholar]
  201. Phillips RJ, Davis BJ, Tanaka KL, Byrne S, Mellon MT et al. 2011. Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332:838–41
    [Google Scholar]
  202. Pike WT, Staufer U, Hecht MH, Goetz W, Parrat D et al. 2011. Quantification of the dry history of the Martian soil inferred from in situ microscopy. Geophys. Res. Lett. 38:L24201
    [Google Scholar]
  203. Pilorget C, Forget F. 2016. Formation of gullies on Mars by debris flows triggered by CO2 sublimation. Nat. Geosci. 9:65–69
    [Google Scholar]
  204. Piqueux S, Byrne S, Richardson MI 2003. Sublimation of Mars’ southern seasonal CO2 ice cap and the formation of spiders. J. Geophys. Res. 108:E85084
    [Google Scholar]
  205. Piqueux S, Kleinböhl A, Hayne PO, Heavens NG, Kass DM et al. 2016. Discovery of a widespread low-latitude diurnal CO2 frost cycle on Mars. J. Geophys. Res. Planets 121:1174–89
    [Google Scholar]
  206. Planet. Habitability Lab 2020. Habitable exoplanets catalog. Planetary Habitability Laboratory http://phl.upr.edu/projects/habitable-exoplanets-catalog
    [Google Scholar]
  207. Plaut JJ, Picardi G, Safaeinili A, Ivanov AB, Milkovich SM et al. 2007. Subsurface radar sounding of the south polar layered deposits of Mars. Science 316:92–95
    [Google Scholar]
  208. Pommerol A, Appéré T, Portyankina G, Aye K-M, Thomas N et al. 2013. Observations of the northern seasonal polar cap on Mars III: CRISM/HiRISE observations of spring sublimation. Icarus 225:911–22
    [Google Scholar]
  209. Pommerol A, Portyankina G, Thomas N, Aye K-M, Hansen CJ et al. 2011. Evolution of south seasonal cap during Martian spring: insights from high-resolution observation by HiRISE and CRISM on Mars Reconnaissance Orbiter. J. Geophys. Res. 116:E8E08007
    [Google Scholar]
  210. Poulet F, Bibring J-P, Mustard JF, Gendrin A, Mangold N et al. 2005. Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–27
    [Google Scholar]
  211. Price JR, Velbel MA, Patino LC 2005. Rates and time scales of clay-mineral formation by weathering in saprolitic regoliths of the southern Appalachians from geochemical mass balance. Geol. Soc. Am. Bull. 117:783–94
    [Google Scholar]
  212. Raack J, Conway SJ, Herny C, Balme MR, Carpy S et al. 2017. Water induced sediment levitation enhances downslope transport on Mars. Nat. Commun. 8:1151
    [Google Scholar]
  213. Rasool SI, De Bergh C 1970. The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature 226:1037–39
    [Google Scholar]
  214. Reiss D, Jaumann R. 2003. Recent debris flows on Mars: seasonal observations of the Russell Crater dune field. Geophys. Res. Lett. 30:61321
    [Google Scholar]
  215. Rennó NO, Bos BJ, Catling D, Clark BC, Drube L et al. 2009. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophy. Res. 114:E1E00E03
    [Google Scholar]
  216. Reynolds RT, Squyres SW, Colburn DS, McKay CP 1983. On the habitability of Europa. Icarus 56:246–54
    [Google Scholar]
  217. Rivera-Valentín EG, Chevrier VF, Soto A, Martínez G 2020. Distribution and habitability of (meta)stable brines on present-day Mars. Nat. Astron. 4:756–61
    [Google Scholar]
  218. Rivera-Valentín EG, Gough RV, Chevrier VF, Primm KM, Martínez GM et al. 2018. Constraining the potential liquid water environment at Gale crater, Mars. J. Geophys. Res. Planets 123:1156–67
    [Google Scholar]
  219. Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG et al. 2014. A new analysis of Mars “special regions”: findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14:887–968
    [Google Scholar]
  220. Sagan C, Mullen G. 1972. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56
    [Google Scholar]
  221. Schaefer EI, McEwen AS, Sutton SS 2019. A case study of recurring slope lineae (RSL) at Tivat crater: implications for RSL origins. Icarus 317:621–48
    [Google Scholar]
  222. Schenk PM, Williams DA. 2004. A potential thermal erosion lava channel on Io. Geophys. Res. Lett. 31:L23702
    [Google Scholar]
  223. Schmidt F, Andrieu F, Costard F, Kocifaj M, Meresescu AG 2017. Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows. Nat. Geosci. 10:270–73
    [Google Scholar]
  224. Schon SC, Head JW, Fassett CI 2009. Unique chronostratigraphic marker in depositional fan stratigraphy on Mars: evidence for ca. 1.25 Ma gully activity and surficial meltwater origin. Geology 37:207–10
    [Google Scholar]
  225. Schon SC, Head JW, Fassett CI 2012. An overfilled lacustrine system and progradational delta in Jezero crater, Mars: implications for Noachian climate. Planet. Space Sci. 67:28–45
    [Google Scholar]
  226. Schorghofer N. 2020. Mars: quantitative evaluation of crocus melting behind boulders. Astrophys. J. 890:49
    [Google Scholar]
  227. Schorghofer N, Aharonson O, Khatiwala S 2002. Slope streaks on Mars: correlations with surface properties and the potential role of water. Geophys. Res. Lett. 29:2126
    [Google Scholar]
  228. Schorghofer N, King CM. 2011. Sporadic formation of slope streaks on Mars. Icarus 216:159–68
    [Google Scholar]
  229. Schorghofer N, Levy JS, Goudge TA 2019. High-resolution thermal environment of recurring slope lineae in Palikir crater, Mars, and its implications for volatiles. J. Geophys. Res. Planets 124:2852–62
    [Google Scholar]
  230. Schumm SA. 1974. Structural origin of large Martian channels. Icarus 22:371–84
    [Google Scholar]
  231. Sharp RP, Soderblom LA, Murray BC, Cutts JA 1971. The surface of Mars: 2. Uncratered terrains. J. Geophys. Res. 76:2331–42
    [Google Scholar]
  232. Shinbrot T, Duong N-H, Kwan L, Alvarez MM 2004. Dry granular flows can generate surface features resembling those seen in Martian gullies. PNAS 101:8542–46
    [Google Scholar]
  233. Slipher EC. 1962. The Photographic Story of Mars Flagstaff, AZ: Northland
  234. Smith MD. 2002. The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. J. Geophys. Res. 107:E115115
    [Google Scholar]
  235. Smith PH, Tamppari LK, Arvidson RE, Bass D, Blaney D et al. 2009. H2O at the Phoenix landing site. Science 325:58–61
    [Google Scholar]
  236. Sori MM, Bramson AM. 2019. Water on Mars, with a grain of salt: Local heat anomalies are required for basal melting of ice at the south pole today. Geophys. Res. Lett. 46:1222–31
    [Google Scholar]
  237. Squyres SW. 1979. The distribution of lobate debris aprons and similar flows on Mars. J. Geophys. Res. 84:B148087–96
    [Google Scholar]
  238. Squyres SW, Arvidson RE, Ruff S, Gellert R, Morris RV et al. 2008. Detection of silica-rich deposits on Mars. Science 320:1063–67
    [Google Scholar]
  239. Squyres SW, Grotzinger JP, Arvidson RE, Bell JF III, Calvin W et al. 2004. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–14
    [Google Scholar]
  240. Squyres SW, Wilhelms DE, Moosman AC 1987. Large-scale volcano-ground ice interactions on Mars. Icarus 70:385–408
    [Google Scholar]
  241. Stewart ST, Nimmo F. 2002. Surface runoff features on Mars: testing the carbon dioxide formation hypothesis. J. Geophys. Res. 107:E95069
    [Google Scholar]
  242. Stillman DE, Bue BD, Wagstaff KL, Primm KM, Michaels TI et al. 2020. Evaluation of wet and dry recurring slope lineae (RSL) formation mechanisms based on quantitative mapping of RSL in Garni crater, Valles Marineris, Mars. Icarus 335:113420
    [Google Scholar]
  243. Stillman DE, Grimm RE. 2011. Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site, Mars. J. Geophys. Res. 116:E9E09005
    [Google Scholar]
  244. Stillman DE, Michaels TI, Grimm RE 2017. Characteristics of the numerous and widespread recurring slope lineae (RSL) in Valles Marineris, Mars. Icarus 285:195–210
    [Google Scholar]
  245. Stillman DE, Michaels TI, Grimm RE, Hanley J 2016. Observations and modeling of northern mid-latitude recurring slope lineae (RSL) suggest recharge by a present-day martian briny aquifer. Icarus 265:125–38
    [Google Scholar]
  246. Stillman DE, Michaels TI, Grimm RE, Harrison KP 2014. New observations of martian southern mid-latitude recurring slope lineae (RSL) imply formation by freshwater subsurface flows. Icarus 233:328–41
    [Google Scholar]
  247. Stuurman CM, Osinski GR, Holt JW, Levy JS, Brothers TC et al. 2016. SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophys. Res. Lett. 43:9484–91
    [Google Scholar]
  248. Suárez Mascareño A, Faria JP, Figueira P, Lovis C, Damasso M et al. 2020. Revisiting Proxima with ESPRESSO. Astron. Astrophys. 639:A77
    [Google Scholar]
  249. Sullivan R, Thomas P, Veverka J, Malin M, Edgett K 2001. Mass movement slope streaks imaged by the Mars Orbiter Camera. J. Geophys. Res. 106:E1023607–33
    [Google Scholar]
  250. Tamppari LK, Bass D, Cantor B, Daubar I, Dickinson C et al. 2010. Phoenix and MRO coordinated atmospheric measurements. J. Geophys. Res. 115:E5E00E17
    [Google Scholar]
  251. Tebolt M, Levy J, Goudge T, Schorghofer N 2020. Slope, elevation, and thermal inertia trends of martian recurring slope lineae initiation and termination points: multiple possible processes occurring on coarse, sandy slopes. Icarus 338:113536
    [Google Scholar]
  252. Tornabene LL, Osinski GR, McEwen AS, Wray JJ, Craig MA et al. 2013. An impact origin for hydrated silicates on Mars: a synthesis. J. Geophys. Res. Planets 118:994–1012
    [Google Scholar]
  253. Tomasko MG, Archinal B, Becker T, Bézard B, Bushroe M et al. 2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438:765–78
    [Google Scholar]
  254. Toner JD, Catling DC, Light B 2014. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars. Icarus 233:36–47
    [Google Scholar]
  255. Tosca NJ, Knoll AH. 2009. Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet. Sci. Lett. 286:379–86
    [Google Scholar]
  256. Treiman AH. 2003. Geologic setting of Martian gullies: implications for their origins. J. Geophys. Res. 108:E48031
    [Google Scholar]
  257. Trokhimovskiy A, Fedorova A, Korablev O, Montmessin F, Bertaux J-L et al. 2015. Mars’ water vapor mapping by the SPICAM IR spectrometer: five martian years of observations. Icarus 251:50–64
    [Google Scholar]
  258. Vandaele AC, Korablev O, Daerden F, Aoki S, Thomas IR et al. 2019. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature 568:521–25
    [Google Scholar]
  259. Vincendon M. 2015. Identification of Mars gully activity types associated with ice composition. J. Geophys. Res. Planets 120:1859–79
    [Google Scholar]
  260. Vincendon M, Mustard J, Forget F, Kreslavsky M, Spiga A et al. 2010. Near-tropical subsurface ice on Mars. Geophys. Res. Lett. 37:L01202
    [Google Scholar]
  261. Vincendon M, Pilorget C, Carter J, Stcherbinine A 2019. Observational evidence for a dry dust-wind origin of Mars seasonal dark flows. Icarus 325:115–27
    [Google Scholar]
  262. Viola D, McEwen AS, Dundas CM, Byrne S 2015. Expanded secondary craters in the Arcadia Planitia region, Mars: evidence for tens of Myr-old shallow subsurface ice. Icarus 248:190–204
    [Google Scholar]
  263. Wang A, Bell JF III, Li R, Johnson JR, Farrand WH et al. 2008. Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills. J. Geophys. Res. 113:E12E12S40
    [Google Scholar]
  264. Wang A, Ling Z, Yan Y, McEwen AS, Mellon MT et al. 2019. Subsurface Cl-bearing salts as potential contributors to recurring slope lineae (RSL) on Mars. Icarus 333:464–80
    [Google Scholar]
  265. Wänke H, Brückner J, Dreibus G, Rieder R, Ryabchikov I 2001. Chemical composition of rocks and soils at the Pathfinder site. Space Sci. Rev. 96:317–30
    [Google Scholar]
  266. Williams KE, Toon OB, Heldmann JL, McKay C, Mellon MT 2008. Stability of mid-latitude snowpacks on Mars. Icarus 196:565–77
    [Google Scholar]
  267. Williams KE, Toon OB, Heldmann JL, Mellon MT 2009. Ancient melting of mid-latitude snowpacks on Mars as a water source for gullies. Icarus 200:418–25
    [Google Scholar]
  268. Williams RME, Malin MC. 2008. Sub-kilometer fans in Mojave crater, Mars. Icarus 198:365–83
    [Google Scholar]
  269. Wolfe-Simon F, Davies PCW, Anbar AD 2009. Did nature also choose arsenic?. Int. J. Astrobiol. 8:69–74
    [Google Scholar]
  270. Wordsworth RD. 2016. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44:381–408
    [Google Scholar]
  271. Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC et al. 2011. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. 116:E1E01001
    [Google Scholar]
  272. Wray JJ, Murchie SL, Bishop JL, Ehlmann BL, Milliken RE et al. 2016. Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res. Planets 121:652–77
    [Google Scholar]
  273. Yen AS, Gellert R, Schröder C, Morris RV, Bell JF III et al. 2005. An integrated view of the chemistry and mineralogy of Martian soils. Nature 436:49–54
    [Google Scholar]
  274. Yung YL, Pinto JP. 1978. Primitive atmosphere and implications for the formation of channels on Mars. Nature 273:730–32
    [Google Scholar]
  275. Zuber MT, Phillips RJ, Andrews-Hanna JC, Asmar SW, Konopliv AS et al. 2007. Density of Mars’ south polar layered deposits. Science 317:1718–19
    [Google Scholar]
/content/journals/10.1146/annurev-earth-072420-071823
Loading
/content/journals/10.1146/annurev-earth-072420-071823
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error