1932

Abstract

The atmosphere is the synthesizer, transformer, and communicator of exchanges at its boundaries with the land and oceans. These exchanges depend on and, in turn, alter the states of the atmosphere, land, and oceans themselves. To a large extent, the interactions between the carbon cycle and climate have mapped, and will map, the trajectory of the Earth system. My quest to understand climate dynamics and the global carbon cycle has been propelled by new puzzles that emerge from each of the investigations and has led me to study subdisciplines of Earth science beyond my formal training. This article sketches my trek and the lessons I have learned.

  • ▪   About half the CO emitted from combustion of fossil fuels and from cement production has remained airborne. Where are the contemporary carbon sinks? To what degree will these sinks evolve with, and in turn accelerate, climate change itself?
  • ▪   The pursuit of these questions has been propelled by the integration of in situ and satellite observations of the atmosphere, land, and oceans, as well as by advances in theory and coupled climate–carbon cycle modeling.
  • ▪   The urgency of climate change demands new approaches to cross-check national emission statistics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-072519-055956
2020-05-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-072519-055956.html?itemId=/content/journals/10.1146/annurev-earth-072519-055956&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson J, Hoar T, Raeder K, Liu H, Collins N et al. 2009. The data assimilation research testbed: a community facility. Bull. Am. Meteorol. Soc. 90:91283–96
    [Google Scholar]
  2. Barichivich J, Briffa KR, Myneni RB, Osborn TJ, Melvin TM et al. 2013. Large‐scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19:103167–83
    [Google Scholar]
  3. Barnola JM, Raynaud D, Korotkevich YS, Lorius C 1987. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329:408–14
    [Google Scholar]
  4. Berry JA, Collatz GJ, Denning AS, Colello GD, Fu W et al. 1997. SiB2, a model for simulation of biological processes within a climate model. Scaling-Up: From Cell to Landscape PR van Gardingen, GM Foody, PJ Curran 347–69 Soc. Exp. Biol. Semin. Ser. 63 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  5. Bolin B, Keeling CD. 1963. Large‐scale atmospheric mixing as deduced from the seasonal and meridional variations of carbon dioxide. J. Geophys. Res. 68:133899–920
    [Google Scholar]
  6. Buermann W, Lintner BR, Koven CD, Angert A, Pinzon JE et al. 2007. The changing carbon cycle at Mauna Loa Observatory. PNAS 104:114249–54
    [Google Scholar]
  7. Chatterjee A, Gierach MM, Sutton AJ, Feely RA, Crisp D et al. 2017. Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: findings from NASA's OCO-2 mission. Science 358:6360 eaam5776
    [Google Scholar]
  8. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–87
    [Google Scholar]
  9. Crisp D, Atlas RM, Breon F-M, Brown LR, Burrows JP et al. 2004. The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res. 34:700–9
    [Google Scholar]
  10. DeFries RS, Field CB, Fung I, Justice CO, Los S et al. 1995. Mapping the land surface for global atmosphere‐biosphere models: toward continuous distributions of vegetation's functional properties. J. Geophys. Res. 100:D1020867–82
    [Google Scholar]
  11. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM et al. 2007. Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M Manning, Z Chen, M Marquis, et al 499–588 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  12. Denning AS, Holzer M, Gurney KR, Heimann M, Law RM et al. 1999. Three-dimensional transport and concentration of SF6 A model intercomparison study (TransCom 2). Tellus 51B:2266–97
    [Google Scholar]
  13. Doney SC, Lindsay K, Fung I, John J 2006. Natural variability in a stable, 1000-yr global coupled climate-carbon cycle simulation. J. Clim. 19:133033–54
    [Google Scholar]
  14. Eldering A, Wennberg PO, Crisp D, Schimel DS, Gunson MR et al. 2017. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science 358:6360 eaam5745
    [Google Scholar]
  15. Entekhabi D, Njoku EG, O'Neill PE, Kellogg KH, Crow WT et al. 2010. The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE 98:704–16
    [Google Scholar]
  16. Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J et al. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:5388442–46
    [Google Scholar]
  17. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W et al. 2006. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19:143337–53
    [Google Scholar]
  18. Fung I. 1977. The organization of spiral rainbands in a hurricane ScD Thesis, MIT Cambridge, MA:
  19. Fung I. 2013. A hyperventilating biosphere. Science 341:61501075–76
    [Google Scholar]
  20. Fung I, Doney SC, Lindsay K, John J 2005. Evolution of carbon sinks in a changing climate. PNAS 102:3211201–6
    [Google Scholar]
  21. Fung I, Field CB, Berry JA, Thompson MV, Randerson JT et al. 1997. Carbon-13 exchanges between the atmosphere and biosphere. Glob. Biogeochem. Cycles 11:507–33
    [Google Scholar]
  22. Fung I, Prentice K, Matthews E, Lerner J, Russell G 1983. Three-dimensional tracer model study of atmospheric CO2: response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res. 88:C21281–94
    [Google Scholar]
  23. Fung I, Rayner PJ, Friedlingstein P, Sahagian D 2000. Full-form earth system models: coupled carbon-climate interaction experiment (the flying leap). Glob. Change Newsl. 41:7–8
    [Google Scholar]
  24. Fung I, Tucker CJ, Prentice KC 1987. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. J. Geophys. Res. 92:D32999–3015
    [Google Scholar]
  25. Gaubert B, Stephens BB, Basu S, Chevallier F, Deng F et al. 2019. Global atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences 16:117–34
    [Google Scholar]
  26. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS et al. 2002. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 12:3891–99
    [Google Scholar]
  27. Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB et al. 2013. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341:61501085–89
    [Google Scholar]
  28. Gray AR, Johnson KS, Bushinsky SM, Riser SC, Russell JL et al. 2019. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett. 45:179049–57
    [Google Scholar]
  29. Gruber N, Landschützer P, Lovenduski NS 2019. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11:159–86
    [Google Scholar]
  30. Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D et al. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–30
    [Google Scholar]
  31. Hansen J, Lacis A, Rind D, Russel G, Stone P et al. 1984. Climate sensitivity: analysis of feedback mechanisms. Climate Processes and Climate Sensitivity JE Hansen, T Takahashi 130–63 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  32. Hansen J, Russell G, Lacis A, Fung I, Rind D, Stone P 1985. Climate response times: dependence on climate sensitivity and ocean mixing. Science 229:4716857–59
    [Google Scholar]
  33. Jiang X, Yung YL. 2019. Global patterns of carbon dioxide variability from satellite observations. Annu. Rev. Earth Planet. Sci. 47:225–45
    [Google Scholar]
  34. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77:3437–72
    [Google Scholar]
  35. Kang J-S, Kalnay E, Liu J, Fung I, Miyoshi T, Ide K 2011. “Variable localization” in an ensemble Kalman filter: application to the carbon cycle data assimilation. J. Geophys. Res. 116:D9D09110
    [Google Scholar]
  36. Kang J-S, Kalnay E, Miyoshi T, Liu J, Fung I 2012. Estimation of surface carbon fluxes with an advanced data assimilation methodology. J. Geophys. Res. 117:D24D24101
    [Google Scholar]
  37. Keeling CD. 1960. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12:2200–3
    [Google Scholar]
  38. Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Hauck J et al. 2018. Global carbon budget 2018. Earth Syst. Sci. Data 10:42141–94
    [Google Scholar]
  39. Levitus S. 1984. Annual cycle of temperature and heat storage in the world ocean. J. Phys. Oceanogr. 14:727–46
    [Google Scholar]
  40. Lighthill MJ, Whitham GB. 1955. On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. A 229:1178317–45
    [Google Scholar]
  41. Lin CC, Segel LA. 1988. 1974. Mathematics Applied to Deterministic Problems in the Natural Sciences Philadelphia, PA: Soc. Ind. Appl. Math.
  42. Lin CC, Shu FH. 1966. On the spiral structure of disk galaxies, II. Outline of a theory of density waves. PNAS 55:2229–34
    [Google Scholar]
  43. Link P, Simonin K, Maness H, Oshun J, Dawson T, Fung I 2014. Species differences in the seasonality of evergreen tree transpiration in a Mediterranean climate: analysis of multiyear, half-hourly sap flow observations. Water Resour. Res. 50:31869–94
    [Google Scholar]
  44. Liu J, Bowman KW, Schimel DS, Parazoo NC, Jiang Z et al. 2017. Contrasting carbon cycle responses of the tropical continents to the 2015–16 El Niño. Science 358:6360 eaam5690
    [Google Scholar]
  45. Liu J, Fung I, Kalnay E, Kang J-S 2011. CO2 transport uncertainties from the uncertainties in meteorological fields. Geophys. Res. Lett. 38:L12808
    [Google Scholar]
  46. Liu J, Fung I, Kalnay E, Kang J-S, Olsen ET, Chen L 2012. Simultaneous assimilation of AIRS Xco2 and meteorological observations in a carbon climate model with an ensemble Kalman filter. J. Geophys. Res. 117:D5D05309
    [Google Scholar]
  47. Lorenz EN. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20:130–41
    [Google Scholar]
  48. Lorenz EN. 1984. Irregularity: a fundamental property of the atmosphere. Tellus 36A:98–110
    [Google Scholar]
  49. Lorenz EN. 1991. The general circulation of the atmosphere: an evolving problem. Tellus 43AB:48–15
    [Google Scholar]
  50. Manabe S, Stouffer RJ. 1980. Sensitivity of a global climate model to an increase in CO2 concentration in the atmosphere. J. Geophys. Res. 85:C105529–54
    [Google Scholar]
  51. Montzka SA, Dutton GS, Yu P, Ray E, Portmann RW et al. 2018. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557:413–17
    [Google Scholar]
  52. Natl. Res. Counc 1979. Carbon Dioxide and Climate: A Scientific Assessment Washington, DC: Natl. Acad. Press
  53. Natl. Res. Counc 2010. Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements Washington, DC: Natl. Acad. Press
  54. Oeschger H, Siegenthaler U, Schotterer U, Gugelmann A 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:2168–92
    [Google Scholar]
  55. Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA et al. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science 292:55252316–20
    [Google Scholar]
  56. Pearman GI, Hyson P. 1981. The annual variation of atmospheric CO2 concentration observed in the northern hemisphere. J. Geophys. Res. 86:C109839–43
    [Google Scholar]
  57. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM et al. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob. Biogeochem. Cycles 7:811–41
    [Google Scholar]
  58. Randall DA, Dazlich DA, Zhang C, Denning AS, Sellers PJ et al. 1996. A revised land surface parameterization (SiB2) for GCMs. Part III: the greening of the Colorado State University general circulation model. J. Clim. 9:738–63
    [Google Scholar]
  59. Randerson JT, Collatz GJ, Fessenden JE, Munoz AD, Still CJ et al. 2002. A possible global covariance between terrestrial gross primary production and 13C discrimination: consequences for the atmospheric 13C budget and its response to ENSO. Glob. Biogeochem. Cycles 16:41136–51
    [Google Scholar]
  60. Revelle R, Suess HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27
    [Google Scholar]
  61. Rigby M, Park S, Saito T, Western LM, Redington AL et al. 2019. Increases in CFC-11 emissions from eastern China based on atmospheric observations. Nature 569:7757546–50
    [Google Scholar]
  62. Russell GL, Lerner JA. 1981. A new finite-differencing scheme for the tracer transport equation. J. Appl. Meteorol. 20:1483–98
    [Google Scholar]
  63. Salve R, Rempe DM, Dietrich WE 2012. Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope. Water Resour. Res. 48:W11528
    [Google Scholar]
  64. Sellers PJ. 1985. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sensing 6:81335–72
    [Google Scholar]
  65. Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA et al. 1996c. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–6
    [Google Scholar]
  66. Sellers PJ, Los SO, Tucker CJ, Justice CO, Dazlich DA et al. 1996b. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: the generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 9:706–37
    [Google Scholar]
  67. Sellers PJ, Mintz Y. 1986. A simple biosphere model (SIB) for use within general circulation models. J. Atmos. Sci. 43:505–31
    [Google Scholar]
  68. Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB et al. 1996a. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J. Clim. 9:676–705
    [Google Scholar]
  69. Seo K-W, Wilson CR, Famiglietti JS, Chen JL, Rodell M 2006. Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 42:5W05417
    [Google Scholar]
  70. Stephens BB, Gurney KR, Tans PP, Sweeney C, Peters W et al. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:58321732–35
    [Google Scholar]
  71. Stern ME. 1960. The “salt-fountain” and thermohaline convection. Tellus 12:172–75
    [Google Scholar]
  72. Tans PP. 1980. On calculating the transfer of carbon-13 in reservoir models of the carbon cycle. Tellus 32:5464–69
    [Google Scholar]
  73. Tans PP, Berry JA, Keeling RF 1993. Oceanic 13C/12C observations: a new window on ocean CO2 uptake. Glob. Biogeochem. Cycles 7:353–68
    [Google Scholar]
  74. Tans PP, Fung I, Takahashi T 1990. Observational constraints on the global atmospheric CO2 budget. Science 247:49491431–38
    [Google Scholar]
  75. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM 2004. GRACE measurements of mass variability in the Earth system. Science 305:5683503–5
    [Google Scholar]
  76. Tatro PR, Mollo-Christensen EL. 1967. Experiments on Ekman layer instability. J. Fluid Mech. 28:531–43
    [Google Scholar]
  77. Tucker CJ, Townshend JRG, Goff TE 1985. African land-cover classification using satellite data. Science 227:369–75
    [Google Scholar]
  78. Vrettas MD, Fung IY. 2015. Toward a new parameterization of hydraulic conductivity in climate models: simulation of rapid groundwater fluctuations in Northern California. J. Adv. Model. Earth Syst. 7:2105–35
    [Google Scholar]
  79. Vrettas MD, Fung IY. 2017. Sensitivity of transpiration to subsurface properties: exploration with a 1-D model. J. Adv. Model. Earth Syst. 9:1030–45
    [Google Scholar]
  80. Wahr J, Swenson S, Zlotnicki V, Velicogna I 2004. Time-variable gravity from GRACE: first results. Geophys. Res. Lett. 31:L11501
    [Google Scholar]
  81. Wofsy SC, Daube BC, Jimenez R, Kort E, Pittman JV et al. 2011. HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos. Trans. R. Soc. A 369:2073–86
    [Google Scholar]
  82. Wuerth SM. 2019. Development and applications of a carbon-weather data assimilation system PhD Thesis, Univ Calif., Berkeley:
/content/journals/10.1146/annurev-earth-072519-055956
Loading
/content/journals/10.1146/annurev-earth-072519-055956
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error