1932

Abstract

Melanin and other pigments are now well known to be important in exceptional preservation of soft tissues in vertebrates and other animals. Because pigments confer coloration and even structural colors, they have opened a new field of paleocolor reconstruction. Since its inception about a decade ago, reconstruction of color patterns has been performed on several vertebrates, including feathered and scale-clad dinosaurs. Iridescence and other types of structural color can also be identified through melanosome shape and arrangement. How pigments and melanosomes fossilize and are altered has become an important research subject. Ancient color patterns that may range from crypsis to brilliant displays have revealed insights into the evolution and escalation of visual systems, the nature of ancient animal interactions, and how several unique characteristics of birds already arose among dinosaurs.

  • ▪   Melanin and other pigments preserve in exceptional fossils; this opens paths for reconstructing coloration of extinct organisms, such as dinosaurs.
  • ▪   The most abundant pigment is melanin, which can be identified chemically and through preserved melanosome microbodies.
  • ▪   Melanosome shape reveals clues to original hue ranging from reddish brown and black to gray and structural coloration.
  • ▪   Other pigments may preserve, such as porphyrin pigments in theropod dinosaur eggshells.
  • ▪   Fossil color patterns contribute new insights into the evolution of visual systems, predator-prey interactions, and key innovations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-073019-045641
2020-05-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/earth/48/1/annurev-earth-073019-045641.html?itemId=/content/journals/10.1146/annurev-earth-073019-045641&mimeType=html&fmt=ahah

Literature Cited

  1. Abelson PH. 1954. Amino acids in fossils. Science 119:576
    [Google Scholar]
  2. Allen WL, Baddeley R, Cuthill IC, Scott-Samuel NE 2012. A quantitative test of the predicted relationship between countershading and lighting environment. Am. Nat. 180:762–76
    [Google Scholar]
  3. Allen WL, Cuthill IC, Scott-Samuel NE, Baddeley R 2011. Why the leopard got its spots: relating pattern development to ecology in felids. Proc. R. Soc. B 278:1373–80
    [Google Scholar]
  4. Babarović F, Puttick MN, Zaher M, Learmonth E, Gallimore E-J et al. 2019. Characterization of melanosomes involved in the production of non-iridescent structural feather colours and their detection in the fossil record. J. R. Soc. Interface 16:20180921
    [Google Scholar]
  5. Barden HE, Wogelius RA, Li D, Manning PL, Edwards NP, Van Dongen BE 2011. Morphological and geochemical evidence of eumelanin preservation in the feathers of the Early Cretaceous bird. Gansus yumenensis. PLOS ONE 6:e25494
    [Google Scholar]
  6. Bates KT, Manning PL, Hodgetts D, Sellers WI 2009. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling. PLOS ONE 4:e4532
    [Google Scholar]
  7. Brandt E, Wiechmann I, Grupe G 2002. How reliable are immunological tools for the detection of ancient proteins in fossil bones?. Int. J. Osteoarchaeol. 12:307–16
    [Google Scholar]
  8. Briggs DE, McMahon S. 2016. The role of experiments in investigating the taphonomy of exceptional preservation. Palaeontology 59:1–11
    [Google Scholar]
  9. Briggs DE, Summons RE. 2014. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36:482–90
    [Google Scholar]
  10. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–70
    [Google Scholar]
  11. Brown CM, Henderson DM, Vinther J, Fletcher I, Sistiaga A et al. 2017. An exceptionally preserved three-dimensional armored dinosaur reveals insights into coloration and Cretaceous predator-prey dynamics. Curr. Biol. 27:2514–21
    [Google Scholar]
  12. Carney RM, Vinther J, Shawkey MD, D'Alba L, Ackermann J 2012. New evidence on the colour and nature of the isolated Archaeopteryx feather. Nat. Commun. 3:637
    [Google Scholar]
  13. Caro TM. 2005. The adaptive significance of coloration in mammals. BioScience 55:125–36
    [Google Scholar]
  14. Caro TM, Argueta Y, Briolat ES, Bruggink J, Kasprowsky M et al. 2019. Benefits of zebra stripes: behaviour of tabanid flies around zebras and horses. PLOS ONE 14:e0210831
    [Google Scholar]
  15. Carr J. 1957. Internal structure of avian melanin granules: an electron microscope study. J. Cell Sci. 3:159–62
    [Google Scholar]
  16. Clarke JA, Ksepka DT, Salas-Gismondi R, Altamirano AJ, Shawkey MD et al. 2010. Fossil evidence for evolution of the shape and color of penguin feathers. Science 330:954–57
    [Google Scholar]
  17. Clements T, Dolocan A, Martin P, Purnell MA, Vinther J, Gabbott SE 2016. The eyes of Tullimonstrum reveal a vertebrate affinity. Nature 532:7600500–3
    [Google Scholar]
  18. Colleary C, Dolocan A, Gardner J, Singh S, Wuttke M et al. 2015. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. PNAS 112:12592–97
    [Google Scholar]
  19. Collins MJ, Gernaey A, Nielsen-Marsh C, Vermeer C, Westbroek P 2000. Slow rates of degradation of osteocalcin: green light for fossil bone protein?. Geology 28:1139–42
    [Google Scholar]
  20. Collins MJ, Walton D, Curry GB, Riley MS, Von Wallmenich TN et al. 2003. Long-term trends in the survival of immunological epitopes entombed in fossil brachiopod skeletons. Org. Geochem. 34:89–96
    [Google Scholar]
  21. Cott HB. 1940. Adaptive Coloration in Animals London: Methuen & Co. Ltd.
  22. Cuthill IC. 2019. Camouflage. J. Zool. 308:75–92
    [Google Scholar]
  23. Cuthill IC, Troscianko TS. 2011. Animal camouflage: biology meets psychology, computer science and art. Colour in Art, Design & Nature CA Brebbia, C Greated, MW Collins 5–24 Boston: Wit Press
    [Google Scholar]
  24. D'Alba L, Saranathan V, Clarke JA, Vinther JA, Prum RO, Shawkey MD 2011. Colour-producing β-keratin nanofibres in blue penguin (Eudyptula minor) feathers. Biol. Lett. 7:543–46
    [Google Scholar]
  25. D'Alba L, Shawkey MD. 2018. Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99:1–19
    [Google Scholar]
  26. Darwin CR. 1859. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life London: John Murray
  27. Darwin CR. 1871. The Descent of Man and Selection in Relation to Sex London: John Murray
    [Google Scholar]
  28. Davis PG, Briggs DEG. 1995. Fossilization of feathers. Geology 23:783–86
    [Google Scholar]
  29. De Leeuw J, Largeau C 1993. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation. Organic Geochemistry MH Engel, SA Macko 23–72 Boston: Springer
    [Google Scholar]
  30. Demarchi B, Hall S, Roncal-Herrero T, Freeman CL, Woolley J et al. 2016. Protein sequences bound to mineral surfaces persist into deep time. eLife 5:e17092
    [Google Scholar]
  31. Doguzhaeva LA, Mapes RH, Mutvei H 2004. Occurrence of ink in Paleozoic and Mesozoic coleoids (Cephalopoda). Mitt. Geol.-Paläont. Inst. Univ. Hamburg 88:145–56
    [Google Scholar]
  32. Durrer H. 1977. Schillerfarben der Vogelfeder als Evolutionsproblem: elektronenmikroskopische Untersuchung der Schillerstrukturen, ihrer Morphogenese und Analyse von Selektionsmechanismen (speziell dargelegt am Beispiel der Hühnervögel). Denkschr. Schweiz. Nat. Ges. 91:911–1127
    [Google Scholar]
  33. Dzierżęga-Lęcznar A, Kurkiewicz S, Stępień K 2012. Detection and quantitation of a pheomelanin component in melanin pigments using pyrolysis–gas chromatography/tandem mass spectrometry system with multiple reaction monitoring mode. J. Mass Spectrom. 47:242–45
    [Google Scholar]
  34. Edwards NP, Barden H, Van Dongen B, Manning P, Larson P et al. 2011. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin. Proc. R. Soc. B 278:3209–18
    [Google Scholar]
  35. Edwards NP, Manning PL, Bergmann U, Larson PL, Van Dongen BE et al. 2014. Leaf metallome preserved over 50 million years. Metallomics 6:774–82
    [Google Scholar]
  36. Edwards NP, Van Veelen A, Anné J, Manning PL, Bergmann U et al. 2016. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy. Sci. Rep. 6:34002
    [Google Scholar]
  37. Eglinton G, Logan GA, Ambler R, Boon J, Perizonius W 1991. Molecular preservation. Philos. Trans. R. Soc. B 333:315–28
    [Google Scholar]
  38. Eliason CM, Maia R, Shawkey MD 2015. Modular color evolution facilitated by a complex nanostructure in birds. Evolution 69:357–67
    [Google Scholar]
  39. Endler JA. 1978. A predator's view of animal color patterns. Evol. Biol. 11:319–64
    [Google Scholar]
  40. Endler JA. 1993. The color of light in forests and its implications. Ecol. Monogr. 63:1–27
    [Google Scholar]
  41. Falk H, Wolkenstein K. 2017. Natural product molecular fossils. Progress in the Chemistry of Organic Natural Products AD Kinghorn, H Falk, S Gibbons, J Kobayashi 1–126 Cham, Switz: Springer
    [Google Scholar]
  42. Fanti F, Minelli D, Conte GL, Miyashita T 2016. An exceptionally preserved Eocene shark and the rise of modern predator–prey interactions in the coral reef food web. Zool. Lett. 2:9
    [Google Scholar]
  43. Field DJ, D'Alba L, Vinther J, Webb SM, Gearty W, Shawkey MD 2013. Melanin concentration gradients in modern and fossil feathers. PLOS ONE 8:e59451
    [Google Scholar]
  44. Gabbott SE, Donoghue PC, Sansom RS, Vinther J, Dolocan A, Purnell MA 2016. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye. Proc. R. Soc. B 283:20161151
    [Google Scholar]
  45. Gaines SM, Eglinton G, Rullkotter J 2008. Echoes of Life: What Fossil Molecules Reveal About Earth History New York: Oxford Univ. Press
  46. Galván I, Ghanem G, Møller AP 2012. Has removal of excess cysteine led to the evolution of pheomelanin?. BioEssays 34:565–68
    [Google Scholar]
  47. Galván I, Jorge A. 2015. Dispersive Raman spectroscopy allows the identification and quantification of melanin types. Ecol. Evol. 5:1425–31
    [Google Scholar]
  48. Galván I, Jorge A, Edelaar P, Wakamatsu K 2015. Insects synthesize pheomelanin. Pigment Cell Melanoma Res 28:599–602
    [Google Scholar]
  49. Galván I, Wakamatsu K. 2016. Color measurement of the animal integument predicts the content of specific melanin forms. RSC Adv 6:79135–42
    [Google Scholar]
  50. Glass K, Ito S, Wilby PR, Sota T, Nakamura A et al. 2012. Direct chemical evidence for eumelanin pigment from the Jurassic period. PNAS 109:10218–23
    [Google Scholar]
  51. Glass K, Ito S, Wilby PR, Sota T, Nakamura A et al. 2013. Impact of diagenesis and maturation on the survival of eumelanin in the fossil record. Org. Geochem. 64:29–37
    [Google Scholar]
  52. Gluckman TL, Cardoso G. 2010. The dual function of barred plumage in birds: camouflage and communication. J. Evol. Biol. 23:2501–6
    [Google Scholar]
  53. Gottfried MD. 1989. Earliest fossil evidence for protective pigmentation in an actinopterygian fish. Hist. Biol. 3:79–83
    [Google Scholar]
  54. Greenwalt DE, Goreva YS, Siljeström SM, Rose T, Harbach RE 2013. Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. PNAS 110:18496–500
    [Google Scholar]
  55. Grogan ED, Lund R. 1997. Soft tissue pigments of the Upper Mississippian chondrenchelyid, Harpagofututor volsellorhinus (Chondrichthyes, Holocephali) from the Bear Gulch Limestone, Montana, USA. J. Paleontol. 71:337–42
    [Google Scholar]
  56. Gueneli N, McKenna A, Ohkouchi N, Boreham C, Beghin J et al. 2018. 1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. PNAS 115:E6978–86
    [Google Scholar]
  57. Hollingworth NT, Barker MJ. 1991. Colour pattern preservation in the fossil record: taphonomy and diagenetic significance. The Processes of Fossilization SK Donovan 105–19 London: Belhaven
    [Google Scholar]
  58. Hone DWE, Naish D, Cuthill IC 2012. Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs?. Lethaia 45:139–56
    [Google Scholar]
  59. Hone DWE, Wood D, Knell RJ 2016. Positive allometry for exaggerated structures in the ceratopsian dinosaur Protoceratops andrewsi supports socio-sexual signaling. Palaeontol. Electron. 19:1–13
    [Google Scholar]
  60. Hu D, Clarke JA, Eliason CM, Qiu R, Li Q et al. 2018. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat. Commun. 9:217
    [Google Scholar]
  61. Ito S, Wakamatsu K, Glass K, Simon JD 2013. High-performance liquid chromatography estimation of cross-linking of dihydroxyindole moiety in eumelanin. Anal. Biochem. 434:221–25
    [Google Scholar]
  62. Ji Q, Currie PJ, Norell MA, Ji S-A 1998. Two feathered dinosaurs from northeastern China. Nature 393:753–61
    [Google Scholar]
  63. Kamilar JM, Bradley BJ. 2011. Countershading is related to positional behavior in primates. J. Zool. 283:227–33
    [Google Scholar]
  64. Karpestam E, Merilaita S, Forsman A 2014. Natural levels of colour polymorphism reduce performance of visual predators searching for camouflaged prey. Biol. J. Linn. Soc. 112:546–55
    [Google Scholar]
  65. Knell RJ, Naish D, Tomkins JL, Hone DW 2013. Sexual selection in prehistoric animals: detection and implications. Trends Ecol. Evol. 28:38–47
    [Google Scholar]
  66. Knight CR. 1935. Before the Dawn of History New York: Whittlesey House, McGraw-Hill
  67. Kobluk DR, Mapes RH. 1989. The fossil record, function, and possible origins of shell color patterns in Paleozoic marine invertebrates. Palaios 4:63–85
    [Google Scholar]
  68. Kottler VA, Künstner A, Schartl M 2015. Pheomelanin in fish?. Pigment Cell Melanoma Res 28:355–56
    [Google Scholar]
  69. Li Q, Clarke JA, Gao K-Q, Peteya JA, Shawkey MD 2018. Elaborate plumage patterning in a Cretaceous bird. PeerJ 6:e5831
    [Google Scholar]
  70. Li Q, Clarke JA, Gao K-Q, Zhou C-F, Meng Q et al. 2014. Melanosome evolution indicates a key physiological shift within feathered dinosaurs. Nature 507:350–53
    [Google Scholar]
  71. Li Q, Gao K-Q, Meng Q, Clarke JA, Shawkey MD et al. 2012. Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335:1215–19
    [Google Scholar]
  72. Li Q, Gao K-Q, Vinther J, Shawkey MD, Clarke JA et al. 2010. Plumage color patterns of an extinct dinosaur. Science 327:1369–72
    [Google Scholar]
  73. Lindgren J, Kuriyama T, Madsen H, Sjövall P, Zheng W et al. 2017. Biochemistry and adaptive colouration of an exceptionally preserved juvenile fossil sea turtle. Sci. Rep. 7:13324
    [Google Scholar]
  74. Lindgren J, Moyer A, Schweitzer MH, Sjövall P, Uvdal P et al. 2015a. Interpreting melanin-based coloration through deep time: a critical review. Proc. R. Soc. B 282:20150614
    [Google Scholar]
  75. Lindgren J, Sjövall P, Carney RM, Cincotta A, Uvdal P et al. 2015b. Molecular composition and ultrastructure of Jurassic paravian feathers. Sci. Rep. 5:13520
    [Google Scholar]
  76. Lindgren J, Sjövall P, Carney RM, Uvdal P, Gren JA et al. 2014. Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506:484–88
    [Google Scholar]
  77. Lindgren J, Sjövall P, Thiel V, Zheng W, Ito S et al. 2018. Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature 564:359–65
    [Google Scholar]
  78. Lindgren J, Uvdal P, Sjövall P, Nilsson DE, Engdahl A et al. 2012. Molecular preservation of the pigment melanin in fossil melanosomes. Nat. Commun. 3:824
    [Google Scholar]
  79. Liu SY, Shawkey MD, Parkinson D, Troy TP, Ahmed M 2014. Elucidation of the chemical composition of avian melanin. RSC Adv 4:40396–99
    [Google Scholar]
  80. Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B et al. 2005. Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem. Photobiol. 81:135–44
    [Google Scholar]
  81. Liu Y, Kempf VR, Nofsinger JB, Weinert EE, Rudnicki M et al. 2003. Comparison of the structural and physical properties of human hair eumelanin following enzymatic or acid/base extraction. Pigment Cell Res 16:355–65
    [Google Scholar]
  82. Liu Y, Simon JD. 2005. Metal–ion interactions and the structural organization of Sepia eumelanin. Pigment Cell Res 18:42–48
    [Google Scholar]
  83. Logan G. 1992. Molecular taphonomy of plant tissue at the Miocene Clarkia site, northern Idaho. Paleontol. Soc. Spec. Publ. 6:187
    [Google Scholar]
  84. Maia R, Macedo RHF, Shawkey MD 2012. Nanostructural self-assembly of iridescent feather barbules through depletion attraction of melanosomes during keratinization. J. R. Soc. Interface 9:734–43
    [Google Scholar]
  85. Manning PL, Edwards NP, Bergmann U, Anné J, Sellers WI et al. 2019. Pheomelanin pigment remnants mapped in fossils of an extinct mammal. Nat. Commun. 10:2250
    [Google Scholar]
  86. Manning PL, Edwards NP, Wogelius RA, Bergmann U, Barden HE et al. 2013. Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird. J. Anal. At. Spectrom. 28:1024–30
    [Google Scholar]
  87. Martill DM, Frey E. 1995. Colour patterning preserved in Lower Cretaceous birds and insects: the Crato Formation of N.E. Brazil. Neues Jahrb. Geol. Paläont. Mh. 2:118–28
    [Google Scholar]
  88. Mayr G. 1998. Ein Archaeotrogon (Aves: Archaeotrogonidae) aus dem Mittel-Eozän der Grube Messel (Hessen, Deutschland)?. J. Ornithol. 139:121–29
    [Google Scholar]
  89. Mayr G. 2004. New specimens of Hassiavis laticauda (Aves: Cypselomorphae) and Quasisyndactylus longibrachis (Aves: Alcediniformes) from the Middle Eocene of Messel, Germany. Courier Forschungsinst. Senckenberg 252:23–28
    [Google Scholar]
  90. McCoy VE, Gabbott SE, Penkman K, Collins MJ, Presslee S et al. 2019. Ancient amino acids from fossil feathers in amber. Sci. Rep. 9:6420
    [Google Scholar]
  91. McGraw KJ. 2006. Mechanics of uncommon colors: pterins, porphyrins, and psittacofulvins. Bird Coloration GE Hill, KJ McGraw 354–98 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  92. McGraw KJ, Hill G. 2006. Mechanics of carotenoid-based coloration. Bird Coloration GE Hill, KJ McGraw 177–242 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  93. McGraw KJ, Safran R, Wakamatsu K 2005. How feather colour reflects its melanin content. Funct. Ecol. 19:816–21
    [Google Scholar]
  94. McNamara ME, Briggs DE, Orr PJ, Field DJ, Wang Z 2013. Experimental maturation of feathers: implications for reconstructions of fossil feather colour. Biol. Lett. 9:20130184
    [Google Scholar]
  95. McNamara ME, Briggs DE, Orr PJ, Field DJ, Wang Z 2017. Correction to ‘Experimental maturation of feathers: implications for reconstructions of fossil feather colour. .’ Biol. Lett. 13:20170128
    [Google Scholar]
  96. McNamara ME, Kaye JS, Benton MJ, Orr PJ, Rossi V et al. 2018. Non-integumentary melanosomes can bias reconstructions of the colours of fossil vertebrates. Nat. Commun. 9:2878
    [Google Scholar]
  97. McNamara ME, Orr PJ. 2008. Experimental degradation of vertebrates: taphonomy of keratinous tissues and implications for the fossil record. Palaeontol. Assoc. Newsl. 69:141
    [Google Scholar]
  98. McNamara ME, Van Dongen BE, Lockyer NP, Bull ID, Orr PJ 2016. Fossilization of melanosomes via sulfurization. Palaeontology 59:337–50
    [Google Scholar]
  99. Moyer AE, Zheng W, Johnson EA, Lamanna MC, Li D-q et al. 2014. Melanosomes or microbes: testing an alternative hypothesis for the origin of microbodies in fossil feathers. Sci. Rep. 4:4233
    [Google Scholar]
  100. Negro J, Finlayson C, Galván I 2018. Melanins in fossil animals: Is it possible to infer life history traits from the coloration of extinct species?. Int. J. Mol. Sci. 19:230
    [Google Scholar]
  101. Newman C, Buesching C, Wolff J 2005. The function of facial masks in “midguild” carnivores. Oikos 108:623–33
    [Google Scholar]
  102. Niklas KJ. 1981. The chemistry of fossil plants. BioScience 31:820–25
    [Google Scholar]
  103. Nordén KK, Faber JW, Babarović F, Stubbs TL, Selly T et al. 2019. Melanosome diversity and convergence in the evolution of iridescent avian feathers—implications for paleocolor reconstruction. Evolution 73:15–27
    [Google Scholar]
  104. Norell MA, Xu X. 2005. Feathered dinosaurs. Annu. Rev. Earth Planet. Sci. 33:277–99
    [Google Scholar]
  105. Oliphant LW, Hudon J, Bagnara JT 1992. Pigment cell refugia in homeotherms—the unique evolutionary position of the iris. Pigment Cell Res 5:367–71
    [Google Scholar]
  106. Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78
    [Google Scholar]
  107. Padian K, Horner JR. 2011. The evolution of ‘bizarre structures’ in dinosaurs: biomechanics, sexual selection, social selection or species recognition?. J. Zool. 283:3–17
    [Google Scholar]
  108. Pan Y, Zheng W, Moyer AE, O'Connor JK, Wang M et al. 2016. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis. . PNAS 113:E7900–7
    [Google Scholar]
  109. Pan Y, Zheng W, Sawyer RH, Pennington MW, Zheng X et al. 2019. The molecular evolution of feathers with direct evidence from fossils. PNAS 116:3018–23
    [Google Scholar]
  110. Parker A. 2003. In the Blink of an Eye: How Vision Kick-Started the Big Bang of Evolution Cambridge, MA: Perseus Pub.
  111. Parry LA, Smithwick F, Nordén KK, Saitta ET, Lozano-Fernandez J et al. 2017. Soft-bodied fossils are not simply rotten carcasses—toward a holistic understanding of exceptional fossil preservation. BioEssays 40:1700167
    [Google Scholar]
  112. Paul GS. 1987. The science and art of restoring the life appearance of dinosaurs and their relatives. Dinosaurs Past and Present, Vol. 2 SJ Czerkas, EC Olson 5–49 Seattle: Univ. Washington Press
    [Google Scholar]
  113. Peteya JA, Clarke JA, Li Q, Gao KQ, Shawkey MD 2017. The plumage and colouration of an enantiornithine bird from the Early Cretaceous of China. Palaeontology 60:55–71
    [Google Scholar]
  114. Pinheiro FL, Prado G, Ito S, Simon JD, Wakamatsu K et al. 2019. Chemical characterization of pterosaur melanin challenges color inferences in extinct animals. Sci. Rep. 9:15947
    [Google Scholar]
  115. Price N, Green S, Troscianko J, Tregenza T, Stevens M 2019. Background matching and disruptive coloration as habitat-specific strategies for camouflage. Sci. Rep. 9:7840
    [Google Scholar]
  116. Prota G, d'Ischia M, Napolitano A 1998. The chemistry of melanins and related metabolites. The Pigmentary System J Nordlund 307–32 New York: Oxford Univ. Press
    [Google Scholar]
  117. Prum RO. 2006. Anatomy, physics, and evolution of structural colors. Bird Coloration GE Hill, KJ McGraw 295–353 Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  118. Prum RO, Torres RH. 2004. Structural colouration of mammalian skin: convergent evolution of coherently scattering dermal collagen arrays. J. Exp. Biol. 207:2157–72
    [Google Scholar]
  119. Rieseberg LH, Soltis DE. 1987. Flavonoids of fossil miocene Platanus and its extant relatives. Biochem. Syst. Ecol. 15:109–12
    [Google Scholar]
  120. Roulin A, Mafli A, Wakamatsu K 2013. Reptiles produce pheomelanin: evidence in the eastern Hermann's tortoise (Eurotestudo boettgeri). J. Herpetol. 47:258–61
    [Google Scholar]
  121. Rowland HM. 2008. From Abbott Thayer to the present day: What have we learned about the function of countershading?. Philos. Trans. R. Soc. B 364:1516519–27
    [Google Scholar]
  122. Roy A, Pittman M, Saitta ET, Kaye TG, Xu X 2019. Recent advances in amniote palaeocolour reconstruction and a framework for future research. Biol. Rev. 95:22–50
    [Google Scholar]
  123. Ryan MJ, Russell AP. 1997. Color. Encyclopedia of Dinosaurs P Currie, K Padian 134–35 San Diego, CA: Elsevier
    [Google Scholar]
  124. Saitta ET, Fletcher I, Martin P, Pittman M, Kaye TG et al. 2018. Preservation of feather fibers from the Late Cretaceous dinosaur Shuvuuia deserti raises concern about immunohistochemical analyses on fossils. Org. Geochem. 125:142–51
    [Google Scholar]
  125. Saitta ET, Kaye TG, Vinther J 2019. Sediment-encased maturation: a novel method for simulating diagenesis in organic fossil preservation. Palaeontology 62:135–50
    [Google Scholar]
  126. Saitta ET, Rogers C, Brooker RA, Abbott GD, Kumar S et al. 2017. Low fossilization potential of keratin protein revealed by experimental taphonomy. Palaeontology 60:547–56
    [Google Scholar]
  127. Schweitzer MH, Lindgren J, Moyer AE 2015. Melanosomes and ancient coloration re-examined: a response to Vinther 2015 (DOI 10.1002/bies. 201500018). BioEssays 37:1174–83
    [Google Scholar]
  128. Schweitzer MH, Zheng W, Moyer AE, Sjövall P, Lindgren J 2018. Preservation potential of keratin in deep time. PLOS ONE 13:e0206569
    [Google Scholar]
  129. Shawkey MD, Hill GE. 2006. Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller's jay (Cyanocitta stelleri). J. Exp. Biol. 209:1245–50
    [Google Scholar]
  130. Shawkey MD, Morehouse NI, Vukusic P 2009. A protean palette: colour materials and mixing in birds and butterflies. J. R. Soc. Interface 6:S221–31
    [Google Scholar]
  131. Simon JD, Peles D, Wakamatsu K, Ito S 2009. Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Res 22:563–79
    [Google Scholar]
  132. Sinninghe Damsté JS, Koopmans M 1997. The fate of carotenoids in sediments: an overview. Pure Appl. Chem. 69:2067–74
    [Google Scholar]
  133. Sinninghe Damsté JS, Rijpstra WIC, Kock-van Dalen A, De Leeuw JW, Schenck P 1989. Quenching of labile functionalised lipids by inorganic sulphur species: evidence for the formation of sedimentary organic sulphur compounds at the early stages of diagenesis. Geochim. Cosmochim. Acta 53:1343–55
    [Google Scholar]
  134. Slater TS, McNamara ME, Orr PJ, Foley TB, Ito S, Wakamatsu K 2019. Taphonomic experiments resolve controls on the preservation of melanosomes and keratinous tissues in feathers. 63:103–15
    [Google Scholar]
  135. Smith PR, Wilson M. 1992. Blood residues on ancient tool surfaces: a cautionary note. J. Archaeol. Sci. 19:237–41
    [Google Scholar]
  136. Smithwick FM, Mayr G, Saitta ET, Benton MJ, Vinther J 2017a. On the purported presence of fossilized collagen fibres in an ichthyosaur and a theropod dinosaur. Palaeontology 60:409–22
    [Google Scholar]
  137. Smithwick FM, Nicholls R, Cuthill IC, Vinther J 2017b. Countershading and stripes in the theropod dinosaur Sinosauropteryx reveal heterogeneous habitats in the Early Cretaceous Jehol Biota. Curr. Biol. 27:3337–43
    [Google Scholar]
  138. Snyder HK, Maia R, D'Alba L, Shultz AJ, Rowe KM et al. 2012. Iridescent colour production in hairs of blind golden moles (Chrysochloridae). Biol. Lett. 8:393–96
    [Google Scholar]
  139. Speiser DI, DeMartini DG, Oakley TH 2014. The shell-eyes of the chiton Acanthopleura granulata (Mollusca, Polyplacophora) use pheomelanin as a screening pigment. J. Nat. Hist. 48:2899–911
    [Google Scholar]
  140. Stankiewicz B, Briggs D, Michels R, Collinson M, Flannery M, Evershed R 2000. Alternative origin of aliphatic polymer in kerogen. Geology 28:559–62
    [Google Scholar]
  141. Thayer AH. 1918. Camouflage. Sci. Mon. 7:481–94
    [Google Scholar]
  142. Thayer GH. 1909. Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern: Being a Summary of Abbott H. Thayer's Discoveries New York: Macmillan
  143. Thiel V, Sjövall P. 2011. Using time-of-flight secondary ion mass spectrometry to study biomarkers. Annu. Rev. Earth Planet. Sci. 39:125–56
    [Google Scholar]
  144. Thomas DB, McGraw KJ, Butler MW, Carrano MT, Madden O, James HF 2014a. Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proc. R. Soc. B 281:20140806
    [Google Scholar]
  145. Thomas DB, Nascimbene PC, Dove CJ, Grimaldi DA, James HF 2014b. Seeking carotenoid pigments in amber-preserved fossil feathers. Sci. Rep. 4:5226
    [Google Scholar]
  146. Troscianko J, Wilson-Aggarwal J, Stevens M, Spottiswoode CN 2016. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6:19966
    [Google Scholar]
  147. Turner DD. 2016. A second look at the colors of the dinosaurs. Stud. Hist. Philos. Sci. A 55:60–68
    [Google Scholar]
  148. van der Reest AJ, Wolfe AP, Currie PJ 2016. A densely feathered ornithomimid (Dinosauria: Theropoda) from the Upper Cretaceous Dinosaur Park Formation, Alberta, Canada. Cretaceous Res 58:108–17
    [Google Scholar]
  149. Vinther J. 2015. A guide to the field of palaeo colour: Melanin and other pigments can fossilise: Reconstructing colour patterns from ancient organisms can give new insights to ecology and behaviour. BioEssays 37:643–56
    [Google Scholar]
  150. Vinther J. 2016. Fossil melanosomes or bacteria? A wealth of findings favours melanosomes. BioEssays 38:220–25
    [Google Scholar]
  151. Vinther J, Briggs DEG, Clarke J, Mayr G, Prum RO 2010. Structural coloration in a fossil feather. Biol. Lett. 6:128–31
    [Google Scholar]
  152. Vinther J, Briggs DEG, Prum RO, Saranathan V 2008. The colour of fossil feathers. Biol. Lett. 4:522–25
    [Google Scholar]
  153. Vinther J, Nicholls R, Lautenschlager S, Pittman M, Kaye TG et al. 2016. 3D camouflage in an ornithischian dinosaur. Curr. Biol. 26:2456–62
    [Google Scholar]
  154. Vitek NS, Vinther J, Schiffbauer JD, Briggs DE, Prum RO 2013. Exceptional three-dimensional preservation and coloration of an originally iridescent fossil feather from the Middle Eocene Messel Oil Shale. Paläontol. Z. 87:493–503
    [Google Scholar]
  155. Wakamatsu K, Ohtara K, Ito S 2009. Chemical analysis of late stages of pheomelanogenesis: conversion of dihydrobenzothiazine to a benzothiazole structure. Pigment Cell Melanoma Res 22:474–86
    [Google Scholar]
  156. Wang Y, Liu Z, Wang X, Shih C, Zhao Y et al. 2010. Ancient pinnate leaf mimesis among lacewings. PNAS 107:16212–15
    [Google Scholar]
  157. Wiemann J, Yang T-R, Norell MA 2018. Dinosaur egg colour had a single evolutionary origin. Nature 563:555
    [Google Scholar]
  158. Wiemann J, Yang T-R, Sander PN, Schneider M, Engeser M et al. 2015. The blue-green eggs of dinosaurs: how fossil metabolites provide insights into the evolution of bird reproduction. PeerJ PrePrints 3:e1323
    [Google Scholar]
  159. Williams ST. 2017. Molluscan shell colour. Biol. Rev. 92:1039–58
    [Google Scholar]
  160. Wogelius RA, Manning PL, Barden HE, Edwards NP, Webb SM et al. 2011. Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333:1622–26
    [Google Scholar]
  161. Wolkenstein K, Gross JH, Falk H, Schöler HF 2005. Preservation of hypericin and related polycyclic quinone pigments in fossil crinoids. Proc. R. Soc. B 273:451–56
    [Google Scholar]
  162. Wolnicka-Glubisz A, Pecio A, Podkowa D, Kolodziejczyk LM, Plonka PM 2012. Pheomelanin in the skin of Hymenochirus boettgeri (Amphibia: Anura: Pipidae). Exp. Dermatol. 21:537–40
    [Google Scholar]
  163. Wuttke M. 1983. Weichteil-Erhaltung durch lithifizierte Mikroorganismen bei mittel-Eozänen Vertebraten aus den Ölschiefern der Grube Messel bei Darmstadt. Senckenberg. Lethaea 64:509–27
    [Google Scholar]
  164. Yang Q, Wang Y, Labandeira CC, Shih C, Ren D 2014. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera). BMC Evol. Biol. 14:126
    [Google Scholar]
  165. Zelenitsky DK, Therrien F, Erickson GM, DeBuhr CL, Kobayashi Y et al. 2012. Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338:510–14
    [Google Scholar]
/content/journals/10.1146/annurev-earth-073019-045641
Loading
/content/journals/10.1146/annurev-earth-073019-045641
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error